Analytical Type-Curve Method for Hydraulic Parameter Estimation in Leaky Confined Aquifers with Fully Enclosed Rectangular Cutoff Walls
Abstract
1. Introduction
2. Methodology
2.1. Solution of Drawdown in an Infinite Leaky Confined Aquifer
2.1.1. Mathematical Model
- (1)
- The pumped aquifer is homogeneous and isotropic, with constant hydraulic properties.
- (2)
- The hydraulic head in the overlying water table aquifer is kept constant during the pumping period.
- (3)
- The groundwater flow obeys Darcy’s law.
- (4)
- The horizontal flow and storage in the aquitard are negligible and the leakage across the aquitard is represented as a distributed source or sink term in the aquifer.
- (5)
- The well is treated as a line sink of negligible radius, with no hydraulic head loss considered across the screen.
- (6)
- The radial specific discharge across the well face is uniformly distributed.
2.1.2. Drawdown Solution
2.2. Solution of Drawdown in a Rectangular Leaky Confined Aquifer Bounded by Cutoff Wall
2.3. Estimation for Hydrogeological Parameters Using the Type-Curve Method
3. Case Study for Pumping Test
3.1. Test Site
3.2. Pumping Test
3.3. Parameter Estimation
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Hantush, M.S.; Jacob, C.E. Non-steady Radial Flow in an Infinite Leaky Aquifer. Trans. Am. Geophys. Union 1955, 36, 95–100. [Google Scholar]
- Bear, J. Hydraulics of Groundwater; McGraw-Hill and Dover: New York, NY, USA, 2007. [Google Scholar]
- Hantush, M.S. Hydraulics of Wells. Adv. Hydrosci. 1964, 1, 281–432. [Google Scholar]
- Hunt, B. Flow to Vertical and Non-vertical Wells in Leaky Aquifers. ASCE J. Hydrol. Eng. 2005, 10, 477–484. [Google Scholar] [CrossRef]
- Batu, V. Aquifer Hydraulics: A Comprehensive Guide to Hydrogeologic Data Analysis; Wiley: Chichester, UK, 1998. [Google Scholar]
- Perina, T.; Lee, T.C. General Well Function for Pumping from a Confined, Leaky, or Unconfined Aquifer. J. Hydrol. 2006, 317, 239–260. [Google Scholar] [CrossRef]
- Feng, Q.; Zhan, H. Constant-head Test at a Partially Penetrating Well in an Aquifer-aquitard. J. Hydrol. 2019, 569, 495–505. [Google Scholar] [CrossRef]
- Hantush, M.S. Flow of Groundwater in Relatively Thick Leaky Aquifers. Water Resour. Res. 1967, 3, 583–590. [Google Scholar] [CrossRef]
- Perina, T. Groundwater Flow Near a Recirculation Well with Mixed-type Boundary Condition Along Wellbore in Confined, Unconfined, Leaky, or Reservoir-covered aquifers. Adv. Water Resour. 2022, 164, 104197. [Google Scholar] [CrossRef]
- Zeng, C.F.; Zheng, G.; Zhou, X.F.; Xue, X.L.; Zhou, H.Z. Behaviours of Wall and Soil during Pre-Excavation Dewatering under Different Foundation Pit Widths. Comput. Geotech. 2019, 115, 103169. [Google Scholar] [CrossRef]
- Chen, J.; Zeng, C.; Xue, X.; Wang, S.; Zhao, Y.; Zhang, Z. ABAQUS-Based Numerical Analysis of Land Subsidence Induced by Pit Pumping in Multi-Aquifer Systems. Water 2025, 17, 2210. [Google Scholar] [CrossRef]
- Li, M.G.; Chen, J.J.; Xia, X.H.; Zhang, Y.Q.; Wang, D.F. Statistical and hydro-mechanical coupling analyses on groundwater drawdown and soil deformation caused by dewatering in a multi-aquifer-aquitard system. J. Hydrol. 2020, 589, 125365. [Google Scholar] [CrossRef]
- Zeng, C.F.; Xue, X.-L.; Zheng, G.; Xue, T.-Y.; Mei, G.-X. Responses of Retaining Wall and Surrounding Ground to Pre-Excavation Dewatering in an Alternated Multi-Aquifer-Aquitard System. J. Hydrol. 2018, 559, 609–626. [Google Scholar] [CrossRef]
- Li, X.W.; Xu, Y.S.; Wang, X.W. Analysis of Factors Affecting the Groundwater Level during Foundation Pit Dewatering in the Soft Soil Area: A Review. Environ. Earth Sci. 2024, 83, 526. [Google Scholar] [CrossRef]
- Shen, S.L.; Wu, Y.X.; Misra, A. Calculation of Head Difference at Two Sides of a Cutoff Barrier During Excavation Dewatering. Comput. Geotech. 2017, 91, 192–202. [Google Scholar] [CrossRef]
- Zeng, C.F.; Song, W.W.; Xue, X.L.; Li, M.K.; Bai, N.; Mei, G.X. Construction Dewatering in a Metro Station Incorporating Buttress Retaining Wall to Limit Ground Settlement: Insights from Experimental Modelling. Tunn. Undergr. Space Technol. 2021, 116, 104124. [Google Scholar] [CrossRef]
- Zeng, C.F.; Powrie, W.; Xu, C.J.; Xue, X.L. Wall Movement during Dewatering inside a Diaphragm Wall before Soil Excavation. Undergr. Space 2025, 22, 355–368. [Google Scholar] [CrossRef]
- Zeng, C.F.; Chen, H.B.; Liao, H.; Xue, X.L.; Chen, Q.N.; Diao, Y. Behaviours of Groundwater and Strata during Dewatering of Large-Scale Excavations with a Nearby Underground Barrier. J. Hydrol. 2023, 620, 129400. [Google Scholar] [CrossRef]
- Chen, Z.; Huang, J.; Zhan, H.; Wang, J.; Dou, Z.; Zhang, C.; Chen, C.; Fu, Y. Optimization Schemes for Deep Foundation Pit Dewatering Under Complicated Hydrogeological Conditions Using MODFLOW-USG. Eng. Geol. 2022, 303, 106653. [Google Scholar] [CrossRef]
- Li, J.B.; Li, M.G.; Chen, H.B.; Chen, J.J. Numerical Investigation of the Effects of Compressibility of Gassy Groundwater (CGG) on the Performance of Deep Excavations in Shanghai Soft Deposits. Eng. Geol. 2023, 327, 107306. [Google Scholar] [CrossRef]
- Feng, Q.G.; Lin, H.M. Transient Flow Induced by Pumping in an Anisotropic Confined Aquifer with a Waterproof Curtain During Excavation Dewatering. Comput. Geotech. 2024, 168, 106116. [Google Scholar] [CrossRef]
- Xue, X.L.; Sun, H.Y.; Zeng, C.F.; Chen, H.-B.; Zheng, G.; Xu, C.-J.; Han, L. Why Pile-Supported Building Settled Continuously after Water Level Was Stabilized during Dewatering: Clues from Interaction between Pile and Multi Aquifers. J. Hydrol. 2024, 638, 131539. [Google Scholar] [CrossRef]
- He, D.; Zeng, C.; Xu, C.; Xue, X.; Zhao, Y.; Han, L.; Sun, H. Barrier Effect of Existing Building Pile on the Responses of Groundwater and Soil During Foundation Pit Dewatering. Water 2024, 16, 2977. [Google Scholar] [CrossRef]
- Yang, K.; Xu, C.; Zeng, C.; Zhu, L.; Xue, X.; Han, L. Analysis of Recharge Efficiency Under Barrier Effects Incurred by Adjacent Underground Structures. Water 2025, 17, 257. [Google Scholar] [CrossRef]
- Yeh, H.D.; Chang, Y.C. Recent Advances in Modeling of Well Hydraulics. Adv. Water Resour. 2013, 51, 27–51. [Google Scholar] [CrossRef]
- Zhou, Q.; Birkholzer, J.T.; Tsang, C.F. A Semi-analytical Solution for Large-scale Injection-induced Pressure Perturbation and Leakage in a Laterally Bounded Aquifer–aquitard System. Transp. Porous Med. 2009, 78, 127–148. [Google Scholar] [CrossRef]
- Feng, Q.G.; Cai, B.H.; Feng, X.L.; Yuan, X. Analytical Solutions of Transient Flow Model for a Partially Penetrating Well in a Finite Leaky Confined Aquifer System. Rock Soil Mech. 2021, 42, 168–176. [Google Scholar]
- Shen, S.L.; Wu, Y.X.; Xu, Y.S.; Hino, T.; Wu, H.N. Evaluation of Hydraulic Parameters from Pumping Tests in Multi-aquifers with Vertical Leakage in Tianjin. Comput. Geotech. 2015, 68, 196–207. [Google Scholar] [CrossRef]
- Ha, D.; Zheng, G.; Zhou, H.; Zeng, C.; Zhang, H. Estimation of Hydraulic Parameters from Pumping Tests in a Multiaquifer System. Undergr. Space 2020, 5, 210–222. [Google Scholar] [CrossRef]
- Zhuang, C.; Zhou, Z.; Zhan, H.; Wang, J.; Li, Y.; Dou, Z. New Graphical Methods for Estimating Aquifer Hydraulic Parameters Using Pumping Tests with Exponentially Decreasing Rates. Hydrol. Process. 2019, 33, 2314–2322. [Google Scholar] [CrossRef]
- Li, Y.; Xie, W.T.; Wang, H.W.; Peng, B.; Xiong, F.; Zhu, C. Hydrogeological Parameter Estimation of Confined Aquifer within a Rectangular Shaped Drop Waterproof Curtain. Water 2023, 15, 356. [Google Scholar] [CrossRef]
- Dashti, Z.; Nakhaei, M.; Vadiati, M.; Karami, G.H.; Kisi, O. Estimation of Unconfined Aquifer Transmissivity Using a Comparative Study of Machine Learning Models. Water Resour Manag. 2023, 37, 4909–4931. [Google Scholar] [CrossRef]
- Dashti, Z.; Nakhaei, M.; Vadiati, M.; Karami, G.H.; Kisi, O. A Literature Review on Pumping Test Analysis (2000–2022). Environ. Sci. Pollut. Res. 2023, 30, 9184–9206. [Google Scholar] [CrossRef]
- Boonstra, H.; Soppe, R. Well Hydraulics and Aquifer Tests. In Groundwater Engineering, 2nd ed.; Delleur, J.W., Ed.; CRC Press: Boca Raton, FL, USA, 2007; pp. 10-1–10-35. [Google Scholar]
- Li, P.; Qian, H.; Wu, J. Comparison of Three Methods of Hydrogeological Parameter Estimation in Leaky Aquifers Using Transient Flow Pumping Tests. Hydrol. Process. 2014, 28, 2293–2301. [Google Scholar] [CrossRef]
- Doherty, J.E. PEST, Model-Independent Parameter Estimation: User Manual, 7th ed.; Watermark: Brisbane, Australia, 2018. [Google Scholar]
- Zhuang, C.; Li, Y.; Zhou, Z.; Illman, W.A.; Dou, Z.; Wang, J.; Yan, L. A Type-Curve Method for the Analysis of Pumping Tests with Piecewise-Linear Pumping Rates. Ground Water 2020, 58, 788–798. [Google Scholar] [CrossRef] [PubMed]
- Walton, W.C. Aquifer Test Modelling; CRC Press: Boca Raton, FL, USA, 2007. [Google Scholar]
- Hantush, M.S. Analysis of Data from Pumping Tests in Leaky Aquifers. Eos Trans. Am. Geophys. Union. 1956, 37, 702–714. [Google Scholar]
- Singh, S.K. Simple Method for Quick Estimation of Leaky-Aquifer Parameters. J. Irrig. Drain. Eng. 2010, 136, 149–153. [Google Scholar] [CrossRef]
- Li, P.; Qian, H. Global Curve-Ftting for Determining the Hydrogeological Parameters of Leaky Confined Aquifers by Transient Flow Pumping Test. Arab. J. Geosci. 2013, 6, 2745–2753. [Google Scholar] [CrossRef]
- Yeh, H.D.; Huang, Y.C. Parameter Estimation for Leaky Aquifers Using the Extended Kalman Filter, And Considering Model and Data Measurement Uncertainties. J. Hydrol. 2005, 302, 28–45. [Google Scholar] [CrossRef]
- De Smedt, F. Determination of Aquitard Storage from Pumping Tests in Leaky Aquifers. Water 2023, 15, 3735. [Google Scholar] [CrossRef]
- Ministry of Housing and Urban-Rural Development of the People’s Republic of China. Technical Specification for Retaining and Protection of Building Foundation Excavations (JGJ 120-2012); China Architecture & Building Press: Beijing, China, 2012. [Google Scholar]
- Zheng, G.; Ha, D.; Loaiciga, H.; Zhou, H.Z. Estimation of Hydraulic Parameters of Leaky Aquifers Based on Pumping Tests. Hydrogeol. J. 2019, 27, 3081–3095. [Google Scholar] [CrossRef]
- Leng, C.H.; Yeh, H.D. Aquifer Parameter Identification Using the Extended Kalman Filter. Water Resour. Res. 2003, 39, 1062. [Google Scholar] [CrossRef]
- Feng, Q.G.; Zhan, H. On The Aquitard–Aquifer Interface Flow and The Drawdown Sensitivity with A Partially Penetrating Pumping Well in an Anisotropic Leaky Confined Aquifer. J. Hydrol. 2015, 521, 74–83. [Google Scholar] [CrossRef]
- Feng, Q.G.; Zhan, H. Integrated Aquitard-Aquifer Flow with A Mixed-Type Well-Face Boundary and Skin Effect. Adv. Water Resour. 2016, 89, 42–52. [Google Scholar] [CrossRef]
- Feng, Q.; Wen, Z. Non-Darcian Flow to A Partially Penetrating Well in A Confined Aquifer with A Finite-Thickness Skin. Hydrogeol. J. 2016, 24, 1287–1296. [Google Scholar] [CrossRef]
- Lin, G.F.; Chen, G.R. An Improved Neural Network Approach to The Determination of Aquifer Parameters. J. Hydrol. 2006, 316, 281–289. [Google Scholar] [CrossRef]
- Mathon, B.R.; Ozbek, M.M.; Pinder, G.F. Transmissivity and Storage Coefficient Estimation by Coupling the Cooper-Jacob Method and Modified Fuzzy Least-Squares Regression. J. Hydrol. 2008, 353, 267–274. [Google Scholar] [CrossRef]
- Lin, H.T.; Ke, K.Y.; Chen, C.H.; Wu, S.C.; Tan, Y.C. Estimating Anisotropic Aquifer Parameters by Artificial Neural Networks. Hydrol. Process. 2010, 24, 3237–3250. [Google Scholar] [CrossRef]
- Feng, Q.; Zhan, H. Two-Region Flow Caused by Pumping at A Partial Penetration Well in A Leaky Confined Aquifer. Int. J. Numer. Anal. Methods Geomech. 2023, 47, 717–735. [Google Scholar] [CrossRef]
- Zhu, Q.; Wen, Z. Combined Role of Leaky and Non-Darcian Effects on the Flow to a Pumping Well with a Non-Uniform Flux Well-Face Boundary. J. Hydrol. 2020, 580, 123532. [Google Scholar] [CrossRef]
- Liu, L.; Lei, M.; Cao, C.; Shi, C. Dewatering Characteristics and Inflow Prediction of Deep Foundation Pits with Partial Penetrating Curtains in Sand and Gravel Strata. Water 2019, 11, 2182. [Google Scholar] [CrossRef]
- Feng, Q.G.; Lin, H.M. Transient Groundwater Response to Pumping in a Confined Aquifer during Deep Circular Excavation Dewatering. Int. J. Geomech. 2025, 25, 04025284. [Google Scholar] [CrossRef]
- Wu, Y.X.; Shen, J.S.; Cheng, W.C.; Hino, T. Semi-Analytical Solution to Pumping Test Data with Barrier, Wellbore Storage, and Partial Penetration Effects. Eng. Geol. 2017, 226, 44–51. [Google Scholar] [CrossRef]
- Xue, T.; Xue, X.; Long, S.; Chen, Q.; Lu, S.; Zeng, C. Effect of Pre-Existing Underground Structures on Groundwater Flow and Strata Movement Induced by Dewatering and Excavation. Water 2023, 15, 814. [Google Scholar] [CrossRef]
- Zeng, C.F.; Powrie, W.; Chen, H.B.; Wang, S.; Diao, Y.; Xue, X.-L. Ground Behavior Due to Dewatering Inside a Foundation Pit Considering the Barrier Effect of Preexisting Building Piles on Aquifer Flow. J. Geotech. Geoenviron. Eng. 2024, 150, 05024004. [Google Scholar] [CrossRef]
- Zeng, C.F.; Liao, H.; Xue, X.L.; Long, S.C.; Luo, G.J.; Diao, Y.; Li, M.G. Responses of Groundwater and Soil to Dewatering Considering the Barrier Effect of Adjacent Metro Station on Multi-Aquifers. J. Hydrol. 2022, 612, 128117. [Google Scholar] [CrossRef]
t (min) | 0 | 3 | 10 | 15 | 20 | 25 | 30 | 60 | 90 |
s (m) | 0 | 0.66 | 1.66 | 2.2 | 2.68 | 2.86 | 3.00 | 3.38 | 3.68 |
t (min) | 120 | 150 | 180 | 210 | 240 | 270 | 300 | 360 | 420 |
s (m) | 3.87 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 | 4.00 |
r1 | r2 | r3 | r4 | r5 | r6 | r7 |
36.578 | 61.578 | 86.578 | 86.894 | 62.021 | 37.319 | 13.741 |
r8 | r9 | r10 | r11 | r12 | r13 | - |
15.327 | 39.128 | 63.852 | 63.422 | 38.422 | 13.422 | - |
α1 | α2 | α3 | α4 | α5 | α6 | α7 |
3.1593 | 5.3185 | 7.4778 | 7.7642 | 5.3568 | 3.2233 | 1.1868 |
α8 | α9 | α10 | α11 | α12 | α13 | - |
1.3238 | 3.3795 | 5.5149 | 5.4778 | 3.3185 | 1.1593 | - |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fu, J.; Wang, Y.; Xiao, X.; Lin, H.; Feng, Q. Analytical Type-Curve Method for Hydraulic Parameter Estimation in Leaky Confined Aquifers with Fully Enclosed Rectangular Cutoff Walls. Water 2025, 17, 2972. https://doi.org/10.3390/w17202972
Fu J, Wang Y, Xiao X, Lin H, Feng Q. Analytical Type-Curve Method for Hydraulic Parameter Estimation in Leaky Confined Aquifers with Fully Enclosed Rectangular Cutoff Walls. Water. 2025; 17(20):2972. https://doi.org/10.3390/w17202972
Chicago/Turabian StyleFu, Jing, Yan Wang, Xiaojin Xiao, Huiming Lin, and Qinggao Feng. 2025. "Analytical Type-Curve Method for Hydraulic Parameter Estimation in Leaky Confined Aquifers with Fully Enclosed Rectangular Cutoff Walls" Water 17, no. 20: 2972. https://doi.org/10.3390/w17202972
APA StyleFu, J., Wang, Y., Xiao, X., Lin, H., & Feng, Q. (2025). Analytical Type-Curve Method for Hydraulic Parameter Estimation in Leaky Confined Aquifers with Fully Enclosed Rectangular Cutoff Walls. Water, 17(20), 2972. https://doi.org/10.3390/w17202972