Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil)
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Hydrologic Data and Data Sources
2.3. Statistical Analysis and Interpretation
3. Results
3.1. Jauru Basin (JB)
3.2. Taquari Basin (TB)
3.3. Miranda Basin (MB)
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Changes in the Severity of Compound Drought and Hot Extremes over Global Land Areas. Environ. Res. Lett. 2018, 13, 124022. [Google Scholar] [CrossRef]
- Libonati, R.; DaCamara, C.C.; Peres, L.F.; Sander de Carvalho, L.A.; Garcia, L.C. Rescue Brazil’s Burning Pantanal Wetlands. Nature 2020, 588, 217–219. [Google Scholar] [CrossRef] [PubMed]
- Leal Filho, W.; Azeiteiro, U.M.; Salvia, A.L.; Fritzen, B.; Libonati, R. Fire in Paradise: Why the Pantanal Is Burning. Environ. Sci. Policy 2021, 123, 31–34. [Google Scholar] [CrossRef]
- Chagas, V.B.P.; Chaffe, P.L.B.; Blöschl, G. Climate and Land Management Accelerate the Brazilian Water Cycle. Nat. Commun. 2022, 13, 5136. [Google Scholar] [CrossRef]
- Feron, S.; Cordero, R.R.; Damiani, A.; MacDonell, S.; Pizarro, J.; Goubanova, K.; Valenzuela, R.; Wang, C.; Rester, L.; Beaulieu, A. South America Is Becoming Warmer, Drier, and More Flammable. Commun. Earth Environ. 2024, 5, 501. [Google Scholar] [CrossRef]
- Vidal-Riveros, C.; Currey, B.; McWethy, D.B.; Bieng, M.A.N.; Souza-Alonso, P. Spatiotemporal Analysis of Wildfires and Their Relationship with Climate and Land Use in the Gran Chaco and Pantanal Ecoregions. Sci. Total Environ. 2024, 955, 176823. [Google Scholar] [CrossRef]
- Ropelewski, C.H.; Halpert, M.S. Precipitation Patterns Associated with the High Index Phase of the Southern Oscilation. J. Clim. 1989, 2, 268–284. [Google Scholar] [CrossRef]
- Grimm, A.M. How Do La Niña Events Disturb the Summer Monsoon System in Brazil? Clim. Dyn. 2004, 22, 123–138. [Google Scholar] [CrossRef]
- Cai, W.; McPhaden, M.J.; Grimm, A.M.; Rodrigues, R.R.; Taschetto, A.S.; Garreaud, R.D.; Dewitte, B.; Poveda, G.; Ham, Y.G.; Santoso, A.; et al. Climate Impacts of the El Niño–Southern Oscillation on South America. Nat. Rev. Earth Environ. 2020, 1, 215–231. [Google Scholar] [CrossRef]
- Chaves, H.M.L.; Lorena, D.R. Assessing Reservoir Reliability Using Classical and Long-Memory Statistics. J. Hydrol. Reg. Stud. 2019, 26, 100641. [Google Scholar] [CrossRef]
- Thielen, D.; Schuchmann, K.L.; Ramoni-Perazzi, P.; Marquez, M.; Rojas, W.; Quintero, J.I.; Marques, M.I. Quo Vadis Pantanal? Expected Precipitation Extremes and Drought Dynamics from Changing Sea Surface Temperature. PLoS ONE 2020, 15, e0227437. [Google Scholar] [CrossRef] [PubMed]
- Genta, J.L.; Perez-Iribarren, G.; Mechoso, C.R. A Recent Increasing Trend in the Streamflow of Rivers in Southeastern South America. J. Clim. 1998, 11, 2858–2862. [Google Scholar] [CrossRef]
- Krepper, C.M.; García, N.O.; Jones, P.D. Paraguay River Basin Response to Seasonal Rainfall. Int. J. Climatol. 2006, 26, 1267–1278. [Google Scholar] [CrossRef]
- Bergier, I. Effects of Highland Land-Use over Lowlands of the Brazilian Pantanal. Sci. Total Environ. 2013, 463–464, 1060–1066. [Google Scholar] [CrossRef]
- Pobocikova, I.; de Souza, A.; Abreu, M.C.; de Oliveira-Júnior, J.F.; Dos Santos, C.M.; Lins, T.M.P.; Aristone, F.; Ramos, P.L. The Impacts of Climate Change on Rainfall Modeling in the Pantanal of Mato Grosso Do Sul. Acta Sci. Technol. 2021, 43, e55112. [Google Scholar] [CrossRef]
- Collischonn, W.; Tucci, C.E.M.; Clarke, R.T. Further Evidence of Changes in the Hydrological Regime of the River Paraguay: Part of a Wider Phenomenon of Climate Change? J. Hydrol. 2001, 245, 218–238. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Girard, P.; Roque, F.O.; Nunes da Cunha, C.; Chiaravalotti, R.M.; Nunes, A.V.; Bortolotto, I.M.; Guerra, A.; Pauliquevis, C.; Friedlander, M.; et al. The Pantanal: How Long Will There Be Life in the Rhythm of the Waters? In River Culture: Life as a Dance to the Rhythm of the Waters; UNESCO: Paris, France, 2023; pp. 497–536. [Google Scholar]
- Gonçalves, H.C.; Mercante, M.A.; Santos, E.T. Hydrological Cycle. Braz. J. Biol. 2016, 71, 241–253. [Google Scholar] [CrossRef]
- Alho, C.J.R.; Silva, J.S.V. Effects of Severe Floods and Droughts on Wildlife of the Pantanal Wetland (Brazil)—A Review. Animals 2012, 2, 591–610. [Google Scholar] [CrossRef]
- Hirsch, R.M. A Perspective on Nonstationarity and Water Management. J. Am. Water Resour. Assoc. 2011, 47, 436–446. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2023: Synthesis Report. Contribution of Working Groups I, II and III to the Sixth Assessment Report of the Intergovernmental Panel on Climate Change; IPCC: Geneva, Switzerland, 2023. [Google Scholar]
- Hoffmann, W.A.; Jackson, R.B. Vegetation-Climate Feedbacks in the Conversion of Tropical Savanna to Grassland. J. Clim. 2000, 13, 1593–1602. [Google Scholar] [CrossRef]
- Oliveira, P.T.; Nearing, M.A.; Moran, S.M.; Goodrich, D.C.; Wendland, E.; Gupta, H.V. Trends in Water Balance Components across the Brazilia Cerrado. Water Resour. Res. 2014, 20, 7100–7114. [Google Scholar] [CrossRef]
- Salmona, Y.B.; Matricardi, E.A.T.; Skole, D.L.; Silva, J.F.A.; Coelho Filho, O.d.A.; Pedlowski, M.A.; Sampaio, J.M.; Castrillón, L.C.R.; Brandão, R.A.; da Silva, A.L.; et al. A Worrying Future for River Flows in the Brazilian Cerrado Provoked by Land Use and Climate Changes. Sustainability 2023, 15, 4251. [Google Scholar] [CrossRef]
- Guerra, A.; Resende, F.; Bergier, I.; Fairbrass, A.; Bernardino, C.; Centurião, D.A.S.; Bolzan, F.; Marcel, G.; Rosa, I.M.D.; da Silva, J.C.S.; et al. Land Use and Regulating Ecosystem Services Scenarios for the Brazilian Pantanal and Its Surroundings under Different Storylines of Future Regional Development. Conserv. Sci. Pract. 2025, e70012. [Google Scholar] [CrossRef]
- Campos, J.d.O.; Chaves, H.M.L. Trends and Variabilities in the Historical Series of Monthly and Annual Precipitation in Cerrado Biome in the Period 1977-2010. Rev. Bras. Meteorol. 2020, 35, 157–169. [Google Scholar] [CrossRef]
- Hofmann, G.S.; Silva, R.C.; Weber, E.J.; Barbosa, A.A.; Oliveira, L.F.B.; Alves, R.J.V.; Hasenack, H.; Schossler, V.; Aquino, F.E.; Cardoso, M.F. Changes in Atmospheric Circulation and Evapotranspiration Are Reducing Rainfall in the Brazilian Cerrado. Sci. Rep. 2023, 13, 11236. [Google Scholar] [CrossRef]
- Hamilton, S.K. Human Impacts on Hydrology in the Pantanal Wetland of South America. Water Sci. Technol. 2002, 45, 35–44. [Google Scholar] [CrossRef]
- Mercante, M.A.; Rodrigues, S.C.; Ross, J.L.S. Geomorphology and Habitat Diversity in the Pantanal. Brazilian J. Biol. 2011, 71, 233–240. [Google Scholar] [CrossRef] [PubMed]
- Alho, C.J.R.; Sabino, J. Seasonal Pantanal Flood Pulse: Implications for Biodiversity Conservation—A Review. Oecologia Aust. 2012, 16, 958–978. [Google Scholar] [CrossRef]
- de Oliveira, M.D.; Calheiros, D.F.; Hamilton, S.K. Mass Balances of Major Solutes, Nutrients and Particulate Matter as Water Moves through the Floodplains of the Pantanal (Paraguay River, Brazil). Rev. Bras. Recur. Hídr. 2019, 24, e1. [Google Scholar] [CrossRef]
- Assine, M.L.; Macedo, H.A.; Stevaux, J.C.; Bergier, I.; Padovani, C.R.; Silva, A. Avulsive Rivers in the Hydrology of the Pantanal Wetland. Handb. Environ. Chem. 2016, 37, 83–110. [Google Scholar] [CrossRef]
- Colman, C.B.; Oliveira, P.T.S.; Almagro, A.; Soares-Filho, B.S.; Rodrigues, D.B.B. Effects of Climate and Land-Cover Changes on Soil Erosion in Brazilian Pantanal. Sustainability 2019, 11, 7053. [Google Scholar] [CrossRef]
- Leite-Filho, A.T.; Soares-Filho, B.S.; Oliveira, U.; Coe, M. Intensification of Climate Change Impacts on Agriculture in the Cerrado Due to Deforestation. Nat. Sustain. 2025, 8, 34–43. [Google Scholar] [CrossRef]
- Bravo, J.M.; Collischonn, W.; da Paz, A.R.; Allasia, D.; Domecq, F. Impact of Projected Climate Change on Hydrologic Regime of the Upper Paraguay River Basin. Clim. Change 2014, 127, 27–41. [Google Scholar] [CrossRef]
- Roque, F.O.; Ochoa-Quintero, J.; Ribeiro, D.B.; Sugai, L.S.M.; Costa-Pereira, R.; Lourival, R.; Bino, G. Upland Habitat Loss as a Threat to Pantanal Wetlands. Conserv. Biol. 2016, 30, 1131–1134. [Google Scholar] [CrossRef]
- Pinheiro Noveli, R.A.; Lima de Paula Silva, B.; Escalante Pereira, L. Dinâmica Espacial Das Inundações Do Pantanal Sul. Rev. GeoPantanal 2023, 18, 74–85. [Google Scholar] [CrossRef]
- Pereira, G.; Ramos, R.d.C.; Rocha, L.C.; Brunsell, N.A.; Merino, E.R.; Mataveli, G.A.V.; da S. Cardozo, F. Rainfall Patterns and Geomorphological Controls Driving Inundation Frequency in Tropical Wetlands: How Does the Pantanal Flood? Prog. Phys. Geogr. 2021, 45, 669–686. [Google Scholar] [CrossRef]
- WWF Brazil Early Warning to Mitigate the Impacts of Drought in the Pantanal. Available online: https://wwfbrnew.awsassets.panda.org/downloads/0107-nota-tecnica---crise-hidrica.pdf (accessed on 31 March 2025).
- Moraes, E.C.; Pereira, G.; Da, F.; Cardozo, S. Evaluation of Reduction of Pantanal Wetlands in 2012. Available online: https://www.geopantanal.cnptia.embrapa.br/publicacoes/4geo/p6_81-93.pdf (accessed on 6 May 2025).
- Junk, W.J. Flood Pulsing and the Linkages between Terrestrial, Aquatic, and Wetland Systems. Int. Ver. Theor. Angew. Limnol. Verh. 2005, 29, 11–38. [Google Scholar] [CrossRef]
- Ivory, S.J.; McGlue, M.M.; Spera, S.; Silva, A.; Bergier, I. Vegetation, Rainfall, and Pulsing Hydrology in the Pantanal, the World’s Largest Tropical Wetland. Environ. Res. Lett. 2019, 14, 124017. [Google Scholar] [CrossRef]
- Araujo, A.G.d.J.; Obregón, G.O.; Sampaio, G.; Monteiro, A.M.V.; da Silva, L.T.; Soriano, B.; Padovani, C.; Rodriguez, D.A.; Maksic, J.; Farias, J.F.S. Relationships between Variability in Precipitation, River Levels, and Beef Cattle Production in the Brazilian Pantanal. Wetl. Ecol. Manag. 2018, 26, 829–848. [Google Scholar] [CrossRef]
- Chiaravalloti, R.M.; Freitas, D.M.; de Souza, R.A.; Biswas, S.; Markos, A.; Manfroi, M.N.; Dyble, M. Resilience of Social-Ecological Systems: Drastic Seasonal Change Is Associated with Economic but Not Social Flexibility among Fishers in the Brazilian Pantanal. Ecol. Soc. 2021, 26, 30. [Google Scholar] [CrossRef]
- Garcia, L.C.; Szabo, J.K.; de Oliveira Roque, F.; de Matos Martins Pereira, A.; Nunes da Cunha, C.; Damasceno-Júnior, G.A.; Morato, R.G.; Tomas, W.M.; Libonati, R.; Ribeiro, D.B. Record-Breaking Wildfires in the World’s Largest Continuous Tropical Wetland: Integrative Fire Management Is Urgently Needed for Both Biodiversity and Humans. J. Environ. Manag. 2021, 293, 112870. [Google Scholar] [CrossRef] [PubMed]
- Marengo, J.A.; Cunha, A.P.; Cuartas, L.A.; Deusdará Leal, K.R.; Broedel, E.; Seluchi, M.E.; Michelin, C.M.; De Praga Baião, C.F.; Chuchón Ângulo, E.; Almeida, E.K.; et al. Extreme Drought in the Brazilian Pantanal in 2019–2020: Characterization, Causes, and Impacts. Front. Water 2021, 3, 639204. [Google Scholar] [CrossRef]
- Spracklen, D.V.; Arnold, S.R.; Taylor, C.M. Observations of Increased Tropical Rainfall Preceded by Air Passage over Forests. Nature 2012, 489, 282–285. [Google Scholar] [CrossRef]
- Dey, P.; Mishra, A. Separating the Impacts of Climate Change and Human Activities on Streamflow: A Review of Methodologies and Critical Assumptions. J. Hydrol. 2017, 548, 278–290. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Singh, D.; Mankin, J.S.; Horton, D.E.; Swain, D.L.; Touma, D.; Charland, A.; Liu, Y.; Haugen, M.; Tsiang, M.; et al. Quantifying the Influence of Global Warming on Unprecedented Extreme Climate Events. Proc. Natl. Acad. Sci. USA 2017, 114, 4881–4886. [Google Scholar] [CrossRef]
- Marengo, J.A. Variations and Change in South American Streamflow. Clim. Change 1995, 31, 99–117. [Google Scholar] [CrossRef]
- Woodward, C.; Shulmeister, J.; Larsen, J.; Jacobsen, G.E.; Zawadzki, A. The Hydrological Legacy of Deforestation on Global Wetlands. Science 2014, 346, 844–847. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Dubreuil, V.; Hirota, M.; Filho, S.R.; Lindoso, D.P.; Nabucet, J. Detecting Deforestation Impacts in Southern Amazonia Rainfall Using Rain Gauges. Int. J. Climatol. 2017, 37, 2889–2900. [Google Scholar] [CrossRef]
- Marengo, J.A.; Tomasella, J.; Uvo, C.R. Trends in Streamflow and Rainfall in Tropical South America: Amazonia, Eastern Brazil, and Northwestern Peru. J. Geophys. Res. Atmos. 1998, 103, 1775–1783. [Google Scholar] [CrossRef]
- Debortoli, N.S.; Dubreuil, V.; Funatsu, B.; Delahaye, F.; de Oliveira, C.H.; Rodrigues-Filho, S.; Saito, C.H.; Fetter, R. Rainfall Patterns in the Southern Amazon: A Chronological Perspective (1971–2010). Clim. Change 2015, 132, 251–264. [Google Scholar] [CrossRef]
- Cigizoglu, H.K.; Bayazit, M.; Önöz, B. Trends in the Maximum, Mean, and Low Flows of Turkish Rivers. J. Hydrometeorol. 2005, 6, 280–290. [Google Scholar] [CrossRef]
- De Souza, S.A.; Matos, B.A.; Troger, F.H.; De, T.L.L. Stationarity Analysis of Streamflow Time Series at Paraguai Basin. In Proceedings of the XXII Simpósio Brasileiro de Recursos Hídricos, Brasília, Brazil, 22–27 November 2015; pp. 1–8. [Google Scholar]
- Alvares, C.A.; Stape, J.L.; Sentelhas, P.C.; De Moraes Gonçalves, J.L.; Sparovek, G. Köppen’s Climate Classification Map for Brazil. Meteorol. Zeitschrift 2013, 22, 711–728. [Google Scholar] [CrossRef]
- Gudmundsson, L.; Bremnes, J.B.; Haugen, J.E.; Engen-Skaugen, T. Technical Note: Downscaling RCM Precipitation to the Station Scale Using Statistical Transformations – A Comparison of Methods. Hydrol. Earth Syst. Sci. 2012, 16, 3383–3390. [Google Scholar] [CrossRef]
- Cavalcante, R.B.L.; da Silva Ferreira, D.B.; Pontes, P.R.M.; Tedeschi, R.G.; da Costa, C.P.W.; de Souza, E.B. Evaluation of Extreme Rainfall Indices from CHIRPS Precipitation Estimates over the Brazilian Amazonia. Atmos. Res. 2020, 238, 104879. [Google Scholar] [CrossRef]
- Correia Filho, W.L.F.; de Oliveira-Júnior, J.F.; da Silva Junior, C.A.; Santiago, D.d.B. Influence of the El Niño–Southern Oscillation and the Sypnotic Systems on the Rainfall Variability over the Brazilian Cerrado via Climate Hazard Group InfraRed Precipitation with Station Data. Int. J. Climatol. 2022, 42, 3308–3322. [Google Scholar] [CrossRef]
- WMO. Calculation of Monthly and Annual 30-Year Standard Normals; WMO: Ginebra, Switzerland, 1989. [Google Scholar]
- Dahmen, E.R.; Hall, M.J. Screening of Hydrological Data: Tests for Stationarity and Relative Consistency; International Institute for Land Reclamation and Improvement/ILRI: Wageningen, The Netherlands, 1990; ISBN 9070754231. [Google Scholar]
- Libiseller, C.; Grimvall, A. Performance of Partial Mann-Kendall Tests for Trend Detection in the Presence of Covariates. Environmetrics 2002, 13, 71–84. [Google Scholar] [CrossRef]
- Chandrasekaran, S.; Poomalai, S.; Saminathan, B.; Suthanthiravel, S.; Sundaram, K.; Abdul Hakkim, F.F. An Investigation on the Relationship between the Hurst Exponent and the Predictability of a Rainfall Time Series. Meteorol. Appl. 2019, 26, 511–519. [Google Scholar] [CrossRef]
- Hurst, H.E.A. A Suggested Statistical Model of Some Time Series Which Occur in Nature. Nature 1957, 180, 494. [Google Scholar] [CrossRef]
- Salas, J.D. Analysis and Modeling of Hydrologic Time Series. In Handbook of Hydrology; Maidmend, D.R., Ed.; McGraw-Hill: New York, NY, USA, 1992; pp. 19.1–19.72. [Google Scholar]
- Mandelbrot, B.; Wallis, J. Range R/S in the Measurement Long Run Statistical Dependence. Water Resour. Res. 1969, 5, 967–988. [Google Scholar] [CrossRef]
- Mirza, M.Q.; Warrick, R.A.; Ericksen, N.J.; Kenny, G.J. Tendances et Persistance Des Précipitations Des Bassins Des Fleuves Gange, Brahmapoutre et Meghna. Hydrol. Sci. J. 1998, 43, 845–858. [Google Scholar] [CrossRef]
- Tatli, H. Detecting Persistence of Meteorological Drought via the Hurst Exponent. Meteorol. Appl. 2015, 22, 763–769. [Google Scholar] [CrossRef]
- Yue, S.; Pilon, P.; Cavadias, G. Power of the Mann-Kendall and Spearman’s Rho Tests for Detecting Monotonic Trends in Hydrological Series. J. Hydrol. 2002, 259, 254–271. [Google Scholar] [CrossRef]
- Stevaux, J.C.; de Azevedo Macedo, D.; Assine, M.L.; Silva, A. Changing Fluvial Styles and Backwater Flooding along the Upper Paraguay River Plains in the Brazilian Pantanal Wetland. Geomorphology 2020, 350, 106906. [Google Scholar] [CrossRef]
- Veiga, S.F.; Nobre, P.; Giarolla, E.; Capistrano, V.B.; da Silva, M.B., Jr.; Casagrande, F.; Soares, H.C.; Kubota, P.Y.; Figueroa, S.N.; Bottino, M.J.; et al. Climate Change over South America Simulated by the Brazilian Earth System Model under RCP4.5 and RCP8.5 Scenarios. J. S. Am. Earth Sci. 2023, 131, 104598. [Google Scholar] [CrossRef]
- Bruijinzeel, L.A. Hydrology of Moist Tropical Forests and Effects of Conversion: A State of Knowledge Review. Unesco International Hydrological Programme: Paris, France, 1990. [Google Scholar]
- Tucci, C.E.M.; Clarke, R.T. Impact Og Changes in Vegetation Cover on Runoff: Review of Terrestrail Hydrological Cycle Processes. Global Cycle Description of Hydrological Processes in the Basin. RBRH Rev. Bras. Recur. Hídr. 1997, 2, 135–152. [Google Scholar]
- Blöchl, G.; Ardoin-Bardin, S.; Bonell, M.; Dorninger, M.; Goodrich, D.; Gutknecht, D.; Matamoros, D.; Merz, B.; Shand, P.; Szolgay, J. At What Scales Do Climate Variability and Land Cover Change Impact on Flooding and Low Flows? Hydrol. Process. 2007, 21, 1241–1247. [Google Scholar] [CrossRef]
- Chagas, V.B.P.; Chaffe, P.L.B. The Role of Land Cover in the Propagation of Rainfall Into Streamflow Trends. Water Resour. Res. 2018, 54, 5986–6004. [Google Scholar] [CrossRef]
- Marques, M.C.S.; Rodriguez, D.A. Impacts of the Landscape Changes in the Low Streamflows of Pantanal Headwaters—Brazil. Hydrol. Process. 2022, 36, e14617. [Google Scholar] [CrossRef]
- Lázaro, W.L.; Oliveira-Júnior, E.S.; da Silva, C.J.; Castrillon, S.K.I.; Muniz, C.C. Climate Change Reflected in One of the Largest Wetlands in the World: An Overview of the Northern Pantanal Water Regime. Acta Limnol. Bras. 2020, 32, e104. [Google Scholar] [CrossRef]
- Padovani, C.R.; Vettorazzi, C.A.; Shimabukuro, Y.E.; Adami, M.; Morais De Freitas, R. Estudo Das Inundações Do Pantanal a Partir de Imagens MODIS. Available online: http://marte.sid.inpe.br/col/dpi.inpe.br/sbsr@80/2008/11.16.12.48/doc/4805-4812.pdf (accessed on 31 March 2025).
- Rao, A.R.; Bhattacharya, D. Effect of Short-Term Memory on Hurst Phenomenon. J. Hydrol. Eng 2001, 6, 125–131. [Google Scholar] [CrossRef]
- Silva, C.A.; Lima, M. Soy Moratorium in Mato Grosso: Deforestation Undermines the Agreement. Land Use Policy 2018, 71, 540–542. [Google Scholar] [CrossRef]
- Chiaravalloti, R.; Bolzan, F.; Roque, F.; Biswas, S. Ecosystem Services in the Floodplains: Socio-Cultural Services Associated with Ecosystem Unpredictability in the Pantanal Wetland, Brazil. Aquat. Ecosyst. Health Manag. 2022, 25, 72–80. [Google Scholar] [CrossRef]
- Were, D.; Kansiime, F.; Fetahi, T.; Cooper, A.; Jjuuko, C. Carbon Sequestration by Wetlands: A Critical Review of Enhancement Measures for Climate Change Mitigation. Earth Syst. Environ. 2019, 3, 327–340. [Google Scholar] [CrossRef]
- Lolu, A.J.; Ahluwalia, A.S.; Sidhu, M.C.; Reshi, Z.A.; Mandotra, S.K. Carbon Sequestration and Storage by Wetlands: Implications in the Climate Change Scenario. In Restoration of Wetland Ecosystem: A Trajectory Towards a Sustainable Environment; Springer: Singapore, 2020; pp. 45–58. [Google Scholar]
- Wantzen, K.; Beer, F.; Jungkunst, H.; Glatzel, S. Carbon Dynamics in Wetlands. In Encyclopedia of Inland Waters, 2nd ed.; Elsevier: Amsterdam, The Netherlands, 2022; Volume 3, pp. 169–181. [Google Scholar]
- De Freitas, D.A.F.; Silva, M.L.N.; Cardoso, E.L.; da Silva Oliveira, D.M.; Moitinho, M.R.; Curi, N. Carbon and Nitrogen Stocks in Soil under Native Pastures in the Pantanal Wetland Biome, Brazil. Agronomy 2024, 14, 1994. [Google Scholar] [CrossRef]
- Mônica Harris, M.B.; Tomas, W.; Mour, G.; Da Silva, C.J.; Guimar, E.; Sonoda, A.; Fachim, E. Safeguarding the Pantanal Wetlands: Threats and Conservation Initiatives. Conserv. Biol. 2005, 19, 714–720. [Google Scholar] [CrossRef]
- Tomas, W.M.; Andrade, M.H.; Berlinck, C.N.; Bolzan, F.; Camilo, A.R.; Catella, A.C.; Chiaravalloti, R.M.; da Cunha, C.N.; Damasceno Junior, G.A.; Fernando, A.M.E.; et al. Eight Basic Principles for the Elaboration of Public Policies and Development Projects for the Pantanal. Conserv. Sci. Pract. 2024, e13207. [Google Scholar] [CrossRef]
- Oliveira, M.R.; Ferreira, B.H.S.; Souza, E.B.; Lopes, A.A.; Bolzan, F.P.; Roque, F.O.; Pott, A.; Pereira, A.M.M.; Garcia, L.C.; Damasceno, G.A.; et al. Indigenous Brigades Change the Spatial Patterns of Wildfires, and the Influence of Climate on Fire Regimes. J. Appl. Ecol. 2022, 59, 1279–1290. [Google Scholar] [CrossRef]
- Cristaldo, M.F.; de Souza, C.C.; de Jesus, L.; Padovani, C.R.; de Oliveira, P.T.S.; da Gama Viganó, H.H. Análise e Distribuição Da Rede de Monitoramento de Chuvas Na Região Do Pantanal Brasileiro. Rev. Bras. Meteorol. 2017, 32, 199–205. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Coelho, M.E.M.S.; Chaves, H.M.L.; Fonseca, M.R. Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil). Water 2025, 17, 1549. https://doi.org/10.3390/w17101549
Coelho MEMS, Chaves HML, Fonseca MR. Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil). Water. 2025; 17(10):1549. https://doi.org/10.3390/w17101549
Chicago/Turabian StyleCoelho, Maria Eduarda Moraes Sarmento, Henrique Marinho Leite Chaves, and Maria Rita Fonseca. 2025. "Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil)" Water 17, no. 10: 1549. https://doi.org/10.3390/w17101549
APA StyleCoelho, M. E. M. S., Chaves, H. M. L., & Fonseca, M. R. (2025). Trends, Patterns, and Persistence of Rainfall, Streamflow, and Flooded Area in the Upper Paraguay Basin (Brazil). Water, 17(10), 1549. https://doi.org/10.3390/w17101549