Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection and Processing
2.3. Heavy Metal Indices
2.4. Biotic Indices
Indices | Algorithm | Index Values | EcoQs | Reference | Note |
---|---|---|---|---|---|
AMBI | 0.0–1.2 | High | [45] | EGI: disturbance-sensitive species; EGII: disturbance-indifferent species; EGIII: disturbance-tolerant species; EGIV: second-order opportunistic species; EGV: first-order opportunistic species. | |
1.2–3.3 | Good | ||||
3.3–5.0 | Moderate | ||||
5.0–6.0 | Poor | ||||
>6.0 | Bad | ||||
BENTIX | 6–4.5 | High | [46] | GI=EGI+EGII; GII=EGIII+EGIV; GIII= EGV. | |
4.5–3.5 | Good | ||||
3.5–2.5 | Moderate | ||||
2.5–2.0 | Poor | ||||
0.0 | Bad | ||||
H’(log2) | >4 | High | [49] | Ni: Number of individuals belonging to the ith species; N: total number of individuals. | |
4–3 | Good | ||||
3–2 | Moderate | ||||
2–1 | Poor | ||||
<1 | Bad | ||||
M-AMBI | >0.77 | High | [48] | H’: Shannon diversity index; S: number of species | |
0.53–0.77 | Good | ||||
0.38–0.53 | Moderate | ||||
0.20–0.38 | Poor | ||||
≤0.2 | Bad |
2.5. Data Analysis
3. Results
3.1. The Environmental Characteristics of Study Areas
3.2. Macrobenthos Composition
3.3. Results of Heavy Metal Indices
3.4. Results of Biotic Indices
3.5. Final Ecological Quality in the Central Area of the East Sea
3.6. Results of Correlation Analysis and Kappa Analysis
4. Discussion
4.1. The Concentration of Heavy Metals
4.2. The EcoQs of Heavy Metal and Biotic Indices
4.3. Statistical Analysis
4.4. Final Ecological Quality in the East Sea of South Korea
5. Conclusions
- (1)
- The heavy metal concentrations in the study area were all below the effects range low (ERL) thresholds. However, some sampling stations’ mercury (Hg) levels were several times higher than the geochemical background values.
- (2)
- The results from the three heavy metal indices suggest that the ecological threat posed by heavy metals in the study area is higher in winter than in summer. Additionally, correlation and kappa analyses supported the feasibility of using a single heavy metal index to assess the ecological status of the central East Sea region.
- (3)
- Although the AMBI, BENTIX, and M-AMBI indicated that the ecological quality at most sampling stations was acceptable, their responses to environmental factors were weak. Further analysis using correlation and kappa tests revealed that a single biotic index does not suffice for an accurate ecological assessment of the East Sea. Specifically, the BENTIX may not be suitable for this region.
- (4)
- The comprehensive assessment using seven indices indicates that the final ecological quality at most sampling stations within the study area is acceptable. Principal component analysis supports the finding that stations with unacceptable final ecological quality are associated with high heavy metal content. Consequently, future research must investigate the sources of heavy metals and the impact of human activities on the concentration of heavy metals in the central East Sea of South Korea.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Crain, C.M.; Halpern, B.S.; Beck, M.W.; Kappel, C.V. Understanding and Managing Human Threats to the Coastal Marine Environment. Ann. N. Y. Acad. Sci. 2009, 1162, 39–62. [Google Scholar] [CrossRef] [PubMed]
- Martínez, M.L.; Intralawan, A.; Vázquez, G.; Pérez-Maqueo, O.; Sutton, P.; Landgrave, R. The Coasts of Our World: Ecological, Economic and Social Importance. Ecol. Econ. 2007, 63, 254–272. [Google Scholar] [CrossRef]
- Zhai, T.; Wang, J.; Fang, Y.; Qin, Y.; Huang, L.; Chen, Y. Assessing Ecological Risks Caused by Human Activities in Rapid Urbanization Coastal Areas: Towards an Integrated Approach to Determining Key Areas of Terrestrial-Oceanic Ecosystems Preservation and Restoration. Sci. Total Environ. 2020, 708, 135153. [Google Scholar] [CrossRef] [PubMed]
- Borja, A.; Bricker, S.B.; Dauer, D.M.; Demetriades, N.T.; Ferreira, J.G.; Forbes, A.T.; Hutchings, P.; Jia, X.; Kenchington, R.; Marques, J.C.; et al. Overview of Integrative Tools and Methods in Assessing Ecological Integrity in Estuarine and Coastal Systems Worldwide. Mar. Pollut. Bull. 2008, 56, 1519–1537. [Google Scholar] [CrossRef] [PubMed]
- Borja, A.; Dauer, D.M. Assessing the Environmental Quality Status in Estuarine and Coastal Systems: Comparing Methodologies and Indices. Ecol. Indic. 2008, 8, 331–337. [Google Scholar] [CrossRef]
- Pinto, R.; Patrício, J.; Baeta, A.; Fath, B.D.; Neto, J.M.; Marques, J.C. Review and Evaluation of Estuarine Biotic Indices to Assess Benthic Condition. Ecol. Indic. 2009, 9, 1–25. [Google Scholar] [CrossRef]
- Borja, Á.; Marín, S.L.; Muxika, I.; Pino, L.; Rodríguez, J.G. Is There a Possibility of Ranking Benthic Quality Assessment Indices to Select the Most Responsive to Different Human Pressures? Mar. Pollut. Bull. 2015, 97, 85–94. [Google Scholar] [CrossRef] [PubMed]
- Asl, A.G.; Nabavi, S.M.B.; Rouzbahani, M.M.; Alipour, S.S.; Monavari, S.M. Ecological Quality Status of Stressed Coastal Benthic Ecosystems in Nayband Bay from the Northern Persian Gulf, Iran Using AMBI, M-AMBI, Bentix, and H’ Indices. J. Wildl. Biodivers. 2022, 8, 279–297. [Google Scholar] [CrossRef]
- Caglar, S.; Albayrak, S. Assessment of Ecological Quality Status of Küçükçekmece Bay (Marmara Sea) by Applying BENTIX, AMBI, BOPA and BO2A Biotic Indexes. Medit. Mar. Sci. 2012, 13, 198. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Sun, X.; Zhang, Y.; Zhan, Q.; Zhang, X. Assessing Benthic Habitat Ecological Quality Using Four Benthic Indices in the Coastal Waters of Sanshandao, Laizhou Bay, China. Ecol. Indic. 2021, 129, 107980. [Google Scholar] [CrossRef]
- Magni, P.; Vesal, S.E.; Giampaoletti, J.; Como, S.; Gravina, M.F. Joint Use of Biological Traits, Diversity and Biotic Indices to Assess the Ecological Quality Status of a Mediterranean Transitional System. Ecol. Indic. 2023, 147, 109939. [Google Scholar] [CrossRef]
- Wang, L.; Luo, X.; Yang, J.; Zhang, J.; Fan, Y.; Shen, J. Assessing Benthic Habitat Quality Using Biotic Indices in the Laizhou Bay, China. Acta Oceanol. Sin. 2020, 39, 49–58. [Google Scholar] [CrossRef]
- Sule, A.Y.; Yakub, A.S.; Nubi, A.O.; Bassey, B.O.; Mahu, E.; Igbo, J.K.; Bello, B.O.; Sohou, Z.; Abiodun, O.A.; Olapoju, O.A.; et al. Assessment of Ecological Quality Status of Western Nigeria Offshore Waters (Gulf of Guinea) Using Macrobenthic Assemblage. Thalass. Int. J. Mar. Sci. 2024, 40, 639–651. [Google Scholar] [CrossRef]
- Yan, J.; Sui, J.; Xu, Y.; Li, X.; Wang, H.; Zhang, B. Assessment of the Benthic Ecological Status in Adjacent Areas of the Yangtze River Estuary, China, Using AMBI, M-AMBI and BOPA Biotic Indices. Mar. Pollut. Bull. 2020, 153, 111020. [Google Scholar] [CrossRef]
- Lu, X.; Xu, J.; Xu, Z.; Liu, X. Assessment of Benthic Ecological Quality Status Using Multi-Biotic Indices Based on Macrofaunal Assemblages in a Semi-Enclosed Bay. Front. Mar. Sci. 2021, 8, 734710. [Google Scholar] [CrossRef]
- Mulik, J.; Sukumaran, S.; Dias, H.Q. Can the Ecological Status of Three Differentially Impacted Monsoonal Tropical Estuaries in NW India, Be Adequately Assessed by a Common Estuarine Benthic Index? Ecol. Indic. 2020, 119, 106807. [Google Scholar] [CrossRef]
- Dong, J.-Y.; Wang, X.; Zhang, X.; Bidegain, G.; Zhao, L. Integrating Multiple Indices Based on Heavy Metals and Macrobenthos to Evaluate the Benthic Ecological Quality Status of Laoshan Bay, Shandong Peninsula, China. Ecol. Indic. 2023, 153, 110367. [Google Scholar] [CrossRef]
- Zaib, M.; Zeeshan, A.; Hameed, S.; Wakeel, A.; Qasim, S.; Aslam, S. Soil Contamination and Human Health: Exploring the Heavy Metal Landscape: A Comprehensive Review. J. Health Rehabil. 2023, 3, 351–356. [Google Scholar] [CrossRef]
- Sharifuzzaman, S.M.; Rahman, H.; Ashekuzzaman, S.M.; Islam, M.M.; Chowdhury, S.R.; Hossain, M.S. Heavy Metals Accumulation in Coastal Sediments. In Environmental Remediation Technologies for Metal-Contaminated Soils; Hasegawa, H., Rahman, I.M.M., Rahman, M.A., Eds.; Springer: Tokyo, Japan, 2016; pp. 21–42. ISBN 978-4-431-55758-6. [Google Scholar]
- Zaynab, M.; Al-Yahyai, R.; Ameen, A.; Sharif, Y.; Ali, L.; Fatima, M.; Khan, K.A.; Li, S. Health and Environmental Effects of Heavy Metals. J. King Saud. Univ. Sci. 2022, 34, 101653. [Google Scholar] [CrossRef]
- Eto, K. Minamata Disease. Neuropathology. 2000, 20, 14–19. [Google Scholar] [CrossRef]
- Funabashi, H. Minamata Disease and Environmental Governance. Int. J. Jpn. Sociol. 2006, 15, 7–25. [Google Scholar] [CrossRef]
- Li, C.; Wang, H.; Liao, X.; Xiao, R.; Liu, K.; Bai, J.; Li, B.; He, Q. Heavy Metal Pollution in Coastal Wetlands: A Systematic Review of Studies Globally over the Past Three Decades. J. Hazard. Mater. 2022, 424, 127312. [Google Scholar] [CrossRef]
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic Pollution of Aquatic Ecosystems: Emerging Problems with Global Implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Kowalska, J.B.; Mazurek, R.; Gąsiorek, M.; Zaleski, T. Pollution Indices as Useful Tools for the Comprehensive Evaluation of the Degree of Soil Contamination–A Review. Environ. Geochem. Health. 2018, 40, 2395–2420. [Google Scholar] [CrossRef]
- Zhao, L.; Wang, Z.; Kong, L.; Zhao, Z.; Geng, B.; Gu, S.; Li, Y.; Han, X.; Liu, S.; Li, B.; et al. Risk Assessment of Soil Heavy Metals in Mining Activity Areas: A Case Study in Eastern Shandong Province, China. Environ. Earth. Sci. 2023, 82, 513. [Google Scholar] [CrossRef]
- Jannat, J.N.; Mia, M.Y.; Jion, M.M.; Islam, M.S.; Ali, M.M.; Siddique, M.A.; Rakib, M.R.; Ibrahim, S.M.; Pal, S.C.; Costache, R.; et al. Pollution Trends and Ecological Risks of Heavy Metal(Loid)s in Coastal Zones of Bangladesh: A Chemometric Review. Mar. Pollut. Bull. 2023, 191, 114960. [Google Scholar] [CrossRef]
- Kim, K.-B.; Jung, Y.-J.; Oh, J.-K.; Kang, H.; Son, D.-S.; Ma, C.-W. Macrobenthic Community and Benthic Health Assessment of Central Area in Asan Bay. J. Korean Soc. Fish. Mar. Edu. 2021, 33, 903–917. [Google Scholar] [CrossRef]
- Marine Environment Research Division, National Institute of Fisheries Science; Jung, R.H.; Seo, I.-S.; Choi, B.-M.; Choi, M.; Yoon, S.-P.; Park, S.R.; Na, J.H.; Yun, J.S. Community Structure and Health Assessment of Macrobenthic Assemblages at Spring and Summer in Geoje-Hansan Bay, Southern Coast of Korea. J. Korean Soc. Mar. Environ. Saf. 2016, 22, 27–41. [Google Scholar] [CrossRef]
- Oh, S.H.; Choi, J.H.; Son, D.S.; Ma, C.W. Macrobenthos Community on the Intertidal at Garolim Bay in Summer. J. Environ. Biol. 2019, 40, 896–907. [Google Scholar] [CrossRef]
- Youn, S.H.; Lee, J.W.; Oh, C.W.; Choi, B.M.; Yoon, K.T.; Na, J.H.; Seo, I.S. Community Structure and Health Status of Macrobenthic Animals in the Nakdong River Estuary, Busan, Korea. Ocean Polar Res. 2021, 43, 73–88. [Google Scholar] [CrossRef]
- Park, S.W.; Shin, H.C. Community Structure of Macrobenthic Polychaetes and Its Health Assessment in Ulsan Coastal Area of Korea During 2010s. J. Korean Soc. Mar. Environ. Energy 2022, 25, 41–52. [Google Scholar] [CrossRef]
- Ryu, J.; Hong, S.; Chang, W.K.; Khim, J.S. Performance Evaluation and Validation of Ecological Indices toward Site-Specific Application for Varying Benthic Conditions in Korean Coasts. Sci. Total Environ. 2016, 541, 1161–1171. [Google Scholar] [CrossRef] [PubMed]
- Park, S.; Kim, G.; Kwon, H.K.; Han, I.-S. Long-Term Changes in the Concentrations of Nutrients in the Marginal Seas (Yellow Sea, East China Sea, and East/Japan Sea) Neighboring the Korean Peninsula. Mar. Pollut. Bull. 2023, 192, 115012. [Google Scholar] [CrossRef] [PubMed]
- Lee, J.; Kim, B.; Noh, J.; Lee, C.; Kwon, I.; Kwon, B.-O.; Ryu, J.; Park, J.; Hong, S.; Lee, S.; et al. The First National Scale Evaluation of Organic Carbon Stocks and Sequestration Rates of Coastal Sediments along the West Sea, South Sea, and East Sea of South Korea. Sci. Total Environ. 2021, 793, 148568. [Google Scholar] [CrossRef] [PubMed]
- Seong Khim, J.; Lee, C.; Joon Song, S.; Bae, H.; Noh, J.; Lee, J.; Kim, H.-G.; Choi, J.-W. Marine Biodiversity in Korea: A Review of Macrozoobenthic Assemblages, Their Distributions, and Long-Term Community Changes from Human Impacts. In Oceanography and Marine Biology; CRC Press: Boca Raton, FL, USA, 2021; pp. 483–532. ISBN 978-1-00-313884-6. [Google Scholar]
- Barale, V. The Asian Marginal and Enclosed Seas: An Overview. In Remote Sensing of the Asian Seas; Barale, V., Gade, M., Eds.; Springer International Publishing: Cham, Switzerland, 2019; pp. 3–38. ISBN 978-3-319-94065-6. [Google Scholar]
- Bok, Y.-W. Community Structure of a Macrobenthos in the Central Area of the East Sea, South Korea. Master’s Thesis, Soonchunhyang University, Asan, Republic of Korea, 2017. [Google Scholar]
- KORDI (Korea Ocean Research and Development Institute). Feasibility Studieson Yhemarrineranching Program of East, West and Costal Areas in Korea; KORDI: Ansan, Republic of Korea, 2003. [Google Scholar]
- Woo, J.; Lee, H.; Park, J.; Park, K.; Cho, D.; Jang, D.; Park, S.; Choi, M.; Yoo, J. Background Concentration and Contamination Assessment of Heavy Metals in Korean Coastal Sediments. Sea J. Korean Soc. Oceanogr. 2019, 24, 64–78. [Google Scholar] [CrossRef]
- Hakanson, L. An Ecological Risk Index for Aquatic Pollution Control.a Sedimentological Approach. Water Res. 1980, 14, 975–1001. [Google Scholar] [CrossRef]
- Simonini, R.; Grandi, V.; Massamba-N’Siala, G.; Iotti, M.; Montanari, G.; Prevedelli, D. Assessing the Ecological Status of the North-western Adriatic Sea within the European Water Framework Directive: A Comparison of Bentix, AMBI and M-AMBI Methods. Mar. Ecol. 2009, 30, 241–254. [Google Scholar] [CrossRef]
- Song, C.; Yan, R.; Jiang, M.; Peng, R.; Han, Q. Testing the Applicability of Marine Biotic Indices for Ecological Quality in the Northern East China Sea. J. Sea Res. 2023, 195, 102441. [Google Scholar] [CrossRef]
- Borja, A.; Franco, J.; Pérez, V. A Marine Biotic Index to Establish the Ecological Quality of Soft-Bottom Benthos within European Estuarine and Coastal Environments. Mar. Pollut. Bull. 2000, 40, 1100–1114. [Google Scholar] [CrossRef]
- Simboura, N.; Zenetos, A. Benthic Indicators to Use in Ecological Quality Classification of Mediterranean Soft Bottom Marine Ecosystems, Including a New Biotic Index. Medit. Mar. Sci. 2002, 3, 77. [Google Scholar] [CrossRef]
- Shannon, C.E.; Weaver, W. The Mathematical Theory of Communication, 1st ed.; The University of Illinois Press: Urbana, IL, USA, 1964; pp. 1–131. [Google Scholar]
- Muxika, I.; Borja, Á.; Bald, J. Using Historical Data, Expert Judgement and Multivariate Analysis in Assessing Reference Conditions and Benthic Ecological Status, According to the European Water Framework Directive. Mar. Pollut. Bull. 2007, 55, 16–29. [Google Scholar] [CrossRef]
- Borja, A.; Tunberg, B.G. Assessing Benthic Health in Stressed Subtropical Estuaries, Eastern Florida, USA Using AMBI and M-AMBI. Ecol. Indic. 2011, 11, 295–303. [Google Scholar] [CrossRef]
- Liang, J.; Ma, C.-W.; Kim, S.-K.; Park, S.-H. Assessing the Benthic Ecological Quality in the Intertidal Zone of Cheonsu Bay, Korea, Using Multiple Biotic Indices. Water 2024, 16, 272. [Google Scholar] [CrossRef]
- Monserud, R.A.; Leemans, R. Comparing Global Vegetation Maps with the Kappa Statistic. Ecol. Model. 1992, 62, 275–293. [Google Scholar] [CrossRef]
- Buchman, M.F. (Ed.) NOAA Screening Quick Reference Tables; NOAA: Washington, DC, USA, 2008. Available online: https://repository.library.noaa.gov/view/noaa/9327 (accessed on 1 January 2024).
- Huang, F.; Xu, Y.; Tan, Z.; Wu, Z.; Xu, H.; Shen, L.; Xu, X.; Han, Q.; Guo, H.; Hu, Z. Assessment of Pollutions and Identification of Sources of Heavy Metals in Sediments from West Coast of Shenzhen, China. Environ. Sci. Pollut. Res. 2018, 25, 3647–3656. [Google Scholar] [CrossRef]
- Ha, E.; Basu, N.; Bose-O’Reilly, S.; Dórea, J.G.; McSorley, E.; Sakamoto, M.; Chan, H.M. Current Progress on Understanding the Impact of Mercury on Human Health. Environ. Res. 2017, 152, 419–433. [Google Scholar] [CrossRef] [PubMed]
- Mishra, R.K.; Sharma, V. Biotic Strategies for Toxic Heavy Metal Decontamination. Recent Pat. Biotechnol. 2017, 11, 218–228. [Google Scholar] [CrossRef] [PubMed]
- Methylmercury; Programme International sur la Sécurité des Substances Chimiques (Eds.) Environmental Health Criteria; World Health Organization: Geneva, Switzerland, 1990; ISBN 978-92-4-157101-2. [Google Scholar]
- Wong, C.S.C.; Li, X.D.; Zhang, G.; Qi, S.H.; Peng, X.Z. Atmospheric Deposition of Heavy Metals in the Pearl River Delta, China. Atmos. Environ. 2003, 37, 767–776. [Google Scholar] [CrossRef]
- Elrashidi, M.A.; Hammer, D.; Fares, A.; Seybold, C.A.; Ferguson, R.; Peaslee, S.D. Loss of Heavy Metals by Runoff from Agricultural Watersheds. Soil Sci. 2007, 172, 876–894. [Google Scholar] [CrossRef]
- Akpor, O.B. Heavy Metal Pollutants in Wastewater Effluents: Sources, Effects and Remediation. Adv. Biosci. Bioeng. 2014, 2, 37. [Google Scholar] [CrossRef]
- Tian, X.; Xie, Q.; Fan, M.; Chai, G.; Li, G. Identification of Heavy Metal Pollutants and Their Sources in Farmland: An Integrated Approach of Risk Assessment and X-Ray Fluorescence Spectrometry. Sci. Rep. 2022, 12, 12196. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.; Cai, L.-M.; Wen, H.-H.; Luo, J.; Wang, Q.-S.; Liu, X. Spatial Distribution and Source Apportionment of Heavy Metals in Soil from a Typical County-Level City of Guangdong Province, China. Sci. Total Environ. 2019, 655, 92–101. [Google Scholar] [CrossRef] [PubMed]
- Liang, J.; Huang, H.-R.; Ma, C.-W.; Son, D.-S.; Kim, S.-K. Using the Heavy Metal Indices and Benthic Indices to Assess the Ecological Quality in the Tidal Flats of Garolim Bay, South Korea. Water 2024, 16, 736. [Google Scholar] [CrossRef]
- Liang, J.; Shu, M.; Huang, H.-R.; Ma, C.-W.; Kim, S.-K. Using Benthic Indices to Assess the Ecological Quality of Sandy Beaches and the Impact of Urbanisation on Sandy Beach Ecosystems. J. Mar. Sci. Eng. 2024, 12, 487. [Google Scholar] [CrossRef]
- Jayachandran, P.R.; Jima, M.; Philomina, J.; Bijoy Nandan, S. Assessment of Benthic Macroinvertebrate Response to Anthropogenic and Natural Disturbances in the Kodungallur-Azhikode Estuary, Southwest Coast of India. Environ. Monit. Assess. 2020, 192, 626. [Google Scholar] [CrossRef] [PubMed]
- Zhao, Z.; Liu, Q.; Liao, Y.; Yu, P.; Tang, Y.; Liu, Q.; Shi, X.; Shou, L.; Zeng, J.; Chen, Q.; et al. Ecological Risk Assessment of Trace Metals in Sediments and Their Effect on Benthic Organisms from the South Coast of Zhejiang Province, China. Mar. Pollut. Bull. 2023, 187, 114529. [Google Scholar] [CrossRef] [PubMed]
- Gillett, D.J.; Weisberg, S.B.; Grayson, T.; Hamilton, A.; Hansen, V.; Leppo, E.W.; Pelletier, M.C.; Borja, A.; Cadien, D.; Dauer, D.; et al. Effect of Ecological Group Classification Schemes on Performance of the AMBI Benthic Index in US Coastal Waters. Ecol. Indic. 2015, 50, 99–107. [Google Scholar] [CrossRef]
- Sun, Y.; Chen, B.; Wu, H.; Huang, H.; Ma, Z.; Tang, K. Assessing Benthic Ecological Status in Subtropical Islands, China Using AMBI and Bentix Indices. Estuar. Coast. Shelf Sci. 2018, 207, 345–350. [Google Scholar] [CrossRef]
- Wu, H.-Y.; Fu, S.-F.; Hu, W.-J.; Chen, F.-G.; Cai, X.-Q.; Chen, Q.-H.; Wu, Y.-B. Response of Different Benthic Biotic Indices to Eutrophication and Sediment Heavy Metal Pollution, in Fujian Coastal Water, East China Sea. Chemosphere 2022, 307, 135653. [Google Scholar] [CrossRef]
- Sivaraj, S.; Murugesan, P.; Muthuvelu, S.; Vivekanandan, K.E.; Vijayalakshmi, S. AMBI and M-AMBI Indices as a Robust Tool for Assessing the Effluent Stressed Ecosystem in Nandgaon Coastal Waters, Maharashtra, India. Estuar. Coast. Shelf Sci. 2014, 146, 60–67. [Google Scholar] [CrossRef]
- Zhang, Y.; Lv, Z.; Guan, B.; Liu, Y.; Li, F.; Li, S.; Ma, Y.; Yu, J.; Li, Y. Status of Macrobenthic Community and Its Relationships to Trace Metals and Natural Sediment Characteristics. CLEAN-Soil Air Water 2013, 41, 1027–1034. [Google Scholar] [CrossRef]
- Souza, F.M.; Gilbert, E.R.; Brauko, K.M.; Lorenzi, L.; Machado, E.; Camargo, M.G. Macrobenthic Community Responses to Multiple Environmental Stressors in a Subtropical Estuary. PeerJ 2021, 9, e12427. [Google Scholar] [CrossRef] [PubMed]
- Morgan, A.J.; Kille, P.; Stürzenbaum, S.R. Microevolution and Ecotoxicology of Metals in Invertebrates. Environ. Sci. Technol. 2007, 41, 1085–1096. [Google Scholar] [CrossRef] [PubMed]
- Egorova, K.S.; Ananikov, V.P. Toxicity of Metal Compounds: Knowledge and Myths. Organometallics 2017, 36, 4071–4090. [Google Scholar] [CrossRef]
- Wang, W.-X. Prediction of Metal Toxicity in Aquatic Organisms. Chin. Sci. Bull. 2013, 58, 194–202. [Google Scholar] [CrossRef]
- Keller, A.A.; Adeleye, A.S.; Conway, J.R.; Garner, K.L.; Zhao, L.; Cherr, G.N.; Hong, J.; Gardea-Torresdey, J.L.; Godwin, H.A.; Hanna, S.; et al. Comparative Environmental Fate and Toxicity of Copper Nanomaterials. NanoImpact 2017, 7, 28–40. [Google Scholar] [CrossRef]
- Vareda, J.P.; Valente, A.J.M.; Durães, L. Assessment of Heavy Metal Pollution from Anthropogenic Activities and Remediation Strategies: A Review. J. Environ. Manag. 2019, 246, 101–118. [Google Scholar] [CrossRef] [PubMed]
- Zhou, H.; Yue, X.; Chen, Y.; Liu, Y. Source-Specific Probabilistic Contamination Risk and Health Risk Assessment of Soil Heavy Metals in a Typical Ancient Mining Area. Sci. Total Environ. 2024, 906, 167772. [Google Scholar] [CrossRef]
- Hadzi, G.Y.; Essumang, D.K.; Ayoko, G.A. Assessment of Contamination and Potential Ecological Risks of Heavy Metals in Riverine Sediments from Gold Mining and Pristine Areas in Ghana. J. Trace Elem. Miner. 2024, 7, 100109. [Google Scholar] [CrossRef]
- Zhang, L.; Wong, M.H. Environmental Mercury Contamination in China: Sources and Impacts. Environ. Int. 2007, 33, 108–121. [Google Scholar] [CrossRef]
- Fang, F.; Wang, Q.; Li, J. Urban Environmental Mercury in Changchun, a Metropolitan City in Northeastern China: Source, Cycle, and Fate. Sci. Total Environ. 2004, 330, 159–170. [Google Scholar] [CrossRef]
Indices | Algorithm | Index Values | Level of Risk | Reference | Note |
---|---|---|---|---|---|
PLI | <1 | Unpolluted | [17] | PI is the ratio of heavy metal content in sediments to the geochemical background values. | |
1–2 | Moderately polluted | ||||
2–3 | Heavily polluted | ||||
>3 | Extremely polluted | ||||
Pn | ≤0.7 | Clean | [17] | PI is the ratio of heavy metal content in sediments to the geochemical background values. | |
0.7–1 | Warning limit | ||||
1–2 | Slight pollution | ||||
2–3 | Moderate pollution | ||||
≥3 | Heavy pollution | ||||
RI | <120 | Low ecological risk | [17] | Tr is the potential ecological risk coefficient for heavy metal; PI is the ratio of heavy metal content in sediments to the geochemical background values. | |
120–240 | Moderate ecological risk | ||||
240–480 | Considerable ecological risk | ||||
>480 | Very high ecological risk |
Indices | Thresholds | Acceptable/Unacceptable |
---|---|---|
PLI | <1 | Acceptable |
≥1 | Unacceptable | |
Pn | <1 | Acceptable |
≥1 | Unacceptable | |
RI | <120 | Acceptable |
≥120 | Unacceptable | |
AMBI | ≤3.3 | Acceptable |
>3.3 | Unacceptable | |
BENTIX | >3.5 | Acceptable |
≤3.5 | Unacceptable | |
H’ | ≥3 | Acceptable |
<3 | Unacceptable | |
M-AMBI | >0.53 | Acceptable |
≤0.53 | Unacceptable |
Environmental Factors | Range (Min–Max) | Mean ± SD |
---|---|---|
IL, % | 1–10 | 4.76 ± 3.13 |
COD, mg/g | 0.2–30 | 10.4 ± 10.67 |
As, mg/kg | 1.91–6.14 | 3.35 ± 1.1 |
Cd, mg/kg | 0.04–0.33 | 0.124 ± 0.08 |
Cr, mg/kg | 8.71–66.98 | 43.7 ± 13.93 |
Cu, mg/kg | 1.83–32.56 | 16.6 ± 9.39 |
Hg, mg/kg | 0.01–0.06 | 0.022 ± 0.01 |
Pb, mg/kg | 9.79–32.27 | 20.48 ± 6.11 |
Zn, mg/kg | 11.27–109.31 | 65.9 ± 25.53 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liang, J.; Ma, C.-W.; Son, D.-S. Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea. Water 2024, 16, 1230. https://doi.org/10.3390/w16091230
Liang J, Ma C-W, Son D-S. Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea. Water. 2024; 16(9):1230. https://doi.org/10.3390/w16091230
Chicago/Turabian StyleLiang, Jian, Chae-Woo Ma, and Dae-Sun Son. 2024. "Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea" Water 16, no. 9: 1230. https://doi.org/10.3390/w16091230
APA StyleLiang, J., Ma, C. -W., & Son, D. -S. (2024). Using the Heavy Metal and Biotic Indices to Assess Ecological Quality in the Central Area of the East Sea, South Korea. Water, 16(9), 1230. https://doi.org/10.3390/w16091230