Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA
Abstract
:1. Introduction
2. Methodology
2.1. Study Area
2.2. Stream Surveys
2.3. Data Analyses
3. Results
3.1. Riparian and Instream Variables: General Assessment
3.2. Canonical Correlations Modeling: Riparian Influence on Instream Habitat
3.3. Important Riparian and Instream Characteristics
4. Discussion
4.1. Major Findings
4.2. Management Implications
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Wohl, E. Forgotten Legacies: Understanding and Mitigating Historical Human Alterations of River Corridors. Water Resour. Res. 2019, 55, 5181–5201. [Google Scholar] [CrossRef]
- Rosen, A.M. The impact of environmental change and human land use in alluvial valleys in the Loess Plateau of China during Middle Holocene. Geomorphology 2008, 101, 298–307. [Google Scholar] [CrossRef]
- Dotterweich, M. The history of human-induced soil erosion: Geomorphic legacies, early descriptions and research, and the development of soil conservation-A global synopsis. Geomorphology 2013, 201, 1–34. [Google Scholar] [CrossRef]
- Trimble, S.W. Historical Agriculture and Soil Erosion in the Upper Mississippi Valley Hill Country; CRC Press: Boca Raton, FL, USA, 2013. [Google Scholar]
- Brown, A.G. Learning from the past: Palaeohydrology and palaecology. Freshw. Biol. 2002, 47, 817–829. [Google Scholar] [CrossRef]
- Stenfert Kroese, J.; Batista, P.V.G.; Jacobs, S.R.; Breuer, L.; Quinton, J.N.; Rufino, M.C. Agricultural land is the main sources of stream sediments after conversion of an African montane forest. Sci. Rep. 2020, 10, 14827. [Google Scholar] [CrossRef] [PubMed]
- Graziano, M.P.; Deguire, A.K.; Surasinghe, T.D. Riparian Buffers as a Critical Landscape Feature: Insights for Riverscape Conservation and Policy Renovations. Diversity 2022, 14, 172. [Google Scholar] [CrossRef]
- Trimble, S.W., Jr.; Sartz, R.S. How far from a stream should a logging road be located? J. For. 1957, 55, 339–341. [Google Scholar]
- Froehlich, W. Sediment production from unmetalled road surfaces. In Sediment and Stream Water Quality in a Changing Environment: Trends and Explanations; IAHS Publication: Wallingford, UK, 1991; Volume 203, pp. 21–30. [Google Scholar]
- Wolter, A.; Ward, B.; Millard, T. Instability eight sub-basins of the Chilliwack River Valley, British Columbia, Canada; a comparison of natural and logging-related landslide. Geomorphology 2010, 120, 123–132. [Google Scholar] [CrossRef]
- Wolman, M.G. A cycle of sedimentation and erosion in urban river channels. Geogr. Ann. Ser. A Phys Geogr. 1967, 49, 385–395. [Google Scholar] [CrossRef]
- Gregory, S.V.; Swanson, F.J.; McKee, W.A.; Cummins, K.W. An ecosystem perspective of riparian zones. BioScience 1991, 41, 540–551. [Google Scholar] [CrossRef]
- Pusey, B.J.; Arthington, A.H. Importance of the riparian zone to the conservation and management of freshwater fish: A review. Mar. Freshw. Res. 2003, 54, 1–16. [Google Scholar] [CrossRef]
- Naiman, R.J.; Decamps, H. The ecology of interfaces: Riparian zones. Ann. Rev. Ecol. Syst. 1997, 28, 621–658. [Google Scholar] [CrossRef]
- Vannote, R.L.; Minshall, G.W.; Cummins, K.W.; Sedell, J.R.; Cushing, C.E. The river continuum concept. Can. J. Fish. Aquat. Sci. 1980, 37, 130–137. [Google Scholar] [CrossRef]
- Junk, W.J.; Bayley, P.B.; Sparks, R.E. The flood-pulse concept in river-floodplain systems. Can. Spec. Publ. Fish. Aqua. Sci. 1989, 106, 110–127. [Google Scholar]
- Anbumozhi, V.; Radhakrishnan, J.; Yamaji, E. Impact of riparian buffer zones on water quality and associated management considerations. Ecol. Eng. 2005, 24, 517–523. [Google Scholar] [CrossRef]
- Stutter, M.; Kronvang, B.; Huallachain, D.O.; Rozemeijer, J. Current insights into the effectiveness of riparian management, attainment of multiple benefits, and potential technical enhancements. J. Environ. Qual. 2019, 48, 236–247. [Google Scholar] [CrossRef] [PubMed]
- Lynch, J.A.; Rishel, G.B.; Corbett, E.S. Thermal alteration of streams draining clearcut watersheds: Quantification and biological implications. Hydrobiologia 1984, 111, 161–169. [Google Scholar] [CrossRef]
- Oakley, A.L.; Collins, J.; Everson, L.; Heller, D.; Howerton, J.; Vincent, R. Riparian zones and freshwater wetlands. In Management of Wildlife and Fish Habitats in Forest of Western Oregon and Washington; US Department of Agriculture, Forest Service: Portland, OR, USA, 1985; pp. 57–80. [Google Scholar]
- Everett, R.A.; Ruiz, G.M. Coarse woody debris as a refuge from predation in aquatic communities. Oecologia 1993, 93, 475–486. [Google Scholar] [CrossRef]
- Sedell, J.R.; Reeves, G.H.; Hauer, F.R.; Stanford, J.A.; Hawkins, C.P. Role of refugia in recovery from disturbance: Modern fragmented and disconnected river systems. Environ. Manag. 1990, 14, 711–724. [Google Scholar] [CrossRef]
- Fremier, A.K.; Kiparsky, M.; Gmur, S.; Aycrigg, J.; Craig, R.K.; Svancara, L.K.; Goble, D.D.; Cosens, B.; Davis, F.W.; Scott, J.M. A riparian conservation network for ecological resilience. Biol. Conserv. 2015, 191, 29–37. [Google Scholar] [CrossRef]
- Lawson, J.R.; Fryirs, K.A.; Lenz, T.; Leishman, M.R. Heterogeneous flows foster heterogeneous assemblages: Relationships between functional diversity and hydrological heterogeneity in riparian plant communities. Freshw. Biol. 2015, 60, 2208–2225. [Google Scholar] [CrossRef]
- Wellnitz, T.; Poff, N.L. Functional redundancy in heterogeneous environments: Implications for conservation. Ecol. Lett. 2001, 4, 177–179. [Google Scholar] [CrossRef]
- Kotschy, K.; Biggs, R.; Daw, T.; Folke, C.; West, P. Principle 1—Maintain diversity and redundancy. In Principles for Building Resilience: Sustaining Ecosystem Services in Social-Ecological Systems; Cambridge University Press: Cambridge, UK, 2015; pp. 50–75. [Google Scholar]
- Mundahl, N.D.; Varela, W.L.; Weaver, C.; Mundahl, E.D.; Cochran-Biederman, J.L. Stream habitats and aquatic communities in an agricultural watershed: Changes related to a mandatory riparian buffer law. Environ. Manag. 2023, 5, 945–958. [Google Scholar] [CrossRef]
- Jowett, L.G.; Richardson, J.; Boubée, J.A.T. Effects of riparian manipulation on stream communities in small streams: Two case studies. N. Z. J. Mar. Freshw. Res. 2009, 43, 763–774. [Google Scholar] [CrossRef]
- Smith, C.M. Riparian pasture retirement effects on sediment, phosphorous and nitrogen in channelised surface run-off from pastures. N. Z. J. Mar. Freshw. Res. 1989, 23, 139–146. [Google Scholar] [CrossRef]
- Opperman, J.J.; Merenlender, A.M. The effectiveness of Riparian Restoration for Improving Fish Habitat in Four Hardwood-Dominated California Streams. N. Am. J. Fish. Manag. 2004, 24, 822–834. [Google Scholar] [CrossRef]
- Houston, W.A.; Black, R.L.; Wormington, K.R. Grasslands of cleared woodlands have lower invertebrate diversity and different assemblages to remnant woodlands in grazed landscapes of eastern Australia. J. Insect Conserv. 2023, 27, 999–1011. [Google Scholar] [CrossRef]
- Wiens, J.A. Ecological heterogeneity: An ontogeny of concepts and approaches. In The Ecological Consequences of Environmental Heterogeneity; Blackwell Science: Hoboken, NJ, USA, 1999. [Google Scholar]
- Brierley, G.J. The socio-ecological river, Socio-economic, cultural and environmental relations to river systems. In Finding the Voice of the River: Beyond Restoration and Management; Springer International Publishing AG: Cham, Switzerland, 2020; pp. 29–60. [Google Scholar]
- Allan, J.D. Landscapes and riverscapes: The influence of land use on stream ecosystems. Ann. Rev. Ecol. Syst. 2004, 35, 257–284. [Google Scholar] [CrossRef]
- Gordon, L.J.; Peterson, G.D.; Bennet, E.M. Agricultural modifications of hydrological flows create ecological surprises. Trends Ecol. Evol. 2007, 23, 211–219. [Google Scholar] [CrossRef]
- Armour, C.L.; Duff, D.A.; Elmore, W. The effects of livestock grazing on riparian and stream ecosystems. Fisheries 1991, 16, 7–11. [Google Scholar] [CrossRef]
- Battaglin, W.; Fairchild, J. Potential toxicity of pesticides measured in midwestern streams to aquatic organisms. Water Sci. Technol. 2002, 45, 95–102. [Google Scholar] [CrossRef] [PubMed]
- Moss, B. Water pollution by agriculture. Philos. Trans. R. Soc. Lond. Ser. B 2008, 363, 659–666. [Google Scholar] [CrossRef] [PubMed]
- McTammany, M.E.; Benfield, E.F.; Webster, J.R. Recovery of stream ecosystem metabolism from historical agriculture. J. N. Am. Benthol. Soc. 2007, 26, 532–545. [Google Scholar] [CrossRef]
- Thorp, J.H.; Thoms, M.C.; Delong, M.D. The Riverine Ecosystem Synthesis: Toward Conceptual Cohesiveness in River Science; Academic Press: London, UK, 2008. [Google Scholar]
- Matson, P.A.; Parton, W.J.; Power, A.J.; Swift, M.J. Agricultural intensification and ecosystem properties. Science 1997, 277, 504–509. [Google Scholar] [CrossRef]
- Whitewater River Watershed Project. A History of the Whitewater Watershed in Minnesota; Whitewater River Watershed Project: Lewiston, MI, USA, 2015. [Google Scholar]
- Trout Unlimited. The Economic Impact of Trout Angling in the Driftless Area; Trout Unlimited: Denver, CO, USA, 2016. [Google Scholar]
- Nerbonne, B.A.; Vondracek, B. Effects of local land use on physical habitat, benthic macroinvertebrates, and fish in the Whitewater River, Minnesota, USA. Environ. Manag. 2001, 28, 87–99. [Google Scholar] [CrossRef] [PubMed]
- Williams, M.A.; Vondracek, B. Spring distributions and relationships with land cover and hydrogeologic strata in a karst landscape in Winona County, Minnesota, USA. Carbonates Evaporites 2010, 25, 333–347. [Google Scholar] [CrossRef]
- Varela, W.L.; Mundahl, N.D.; Bergen, S.; Staples, D.F.; Cochran-Biederman, J.; Weaver, C.R. Physical and Biological Stream Health in an Agricultural Watershed after 30+ Years of Targeted Conservation Practices. Water 2023, 15, 3475. [Google Scholar] [CrossRef]
- Minnesota Pollution Control Agency. Mississippi River (Winona) Watershed Monitoring and Assessment Report; Minnesota Pollution Control Agency: St. Paul, MN, USA, 2013. [Google Scholar]
- Platts, W.S.; Megahan, W.F.; Minshall, G.W. Methods for Evaluating Stream, Riparian, and Biotic Conditions; Intermountain Forest and Range Experiment Station Technical Report INT-138; U.S. Department of Agriculture, Forest Service: Portland, OR, USA, 1982. [Google Scholar]
- Zar, J.H. Biostatistical Analysis; Prentice Hall Inc.: Upper Saddle River, NJ, USA, 1999. [Google Scholar]
- Rencher, A.C.; Christensen, W.F. Methods of Multivariate Analysis, 3rd ed.; Wiley Series in Probability Statistics; John Wiley and Sons Inc.: New York, NY, USA, 2012. [Google Scholar]
- Degani, A.; Shafto, M.; Olson, L. Canonical correlation analysis: Use of composite heliographs for representing multiple patterns. In Diagrammatic Representation and Inference, Proceedings of the International Conference on Theory and Application of Diagrams, Stanford, CA, USA, 28–30 June 2006; Springer: Berlin/Heidelberg, Germany, 2006; pp. 93–97. [Google Scholar]
- Mundahl, N.D.; Mundahl, E.D. Aquatic community structure and stream habitat in a karst agricultural landscape. Ecol. Process. 2022, 11, 18. [Google Scholar] [CrossRef]
- Yates, A.G.; Bailey, R.C.; Schwindt, J.A. Effectiveness of best management practices in improving stream ecosystem quality. Hydrobiologia 2007, 583, 331–344. [Google Scholar] [CrossRef]
- Barker, L.S.; Felton, Z.G.K.; Russek-Cohen, E. Use of Maryland biological stream survey data to determine effects of agricultural riparian buffers on measure of biological stream health. Environ. Monit. Assess. 2006, 117, 1–19. [Google Scholar] [CrossRef]
- Meleason, M.A.; Gregory, S.V.; Bolte, J.P. Implications of Riparian Management Strategies on Wood in Streams of the Pacific Northwest. Ecol. Appl. 2003, 13, 1212–1221. [Google Scholar] [CrossRef]
- Tabacchi, E.; Correll, D.L.; Hauer, R.; Pinay, G.; Planty-Tabacchi, A.M.; Wissmar, R.C. Development, maintenance, and role of riparian vegetation in the river landscape. Freshw. Biol. 1998, 40, 497–516. [Google Scholar] [CrossRef]
- Knight, K.W.; Schultz, R.C.; Mabry, C.M.; Isenhart, T.M. Ability of remnant riparian forests, with and without grass filters, to buffer concentrated surface runoff. J. Am. Water Resour. Assoc. 2010, 46, 311–322. [Google Scholar] [CrossRef]
- Duehr, J.P.; Siepker, M.J.; Pierce, C.L.; Isenhart, T.M. relation of riparian buffer strips to in-stream habitat, macroinvertebrates and fish in a small Iowa stream. J. IOWA Acad. Sci. 2006, 113, 101–107. [Google Scholar]
- Tapsell, S.M. River restoration: What are we restoring to? A case study of the Ravensbourne river, London. Landsc. Res. 1995, 20, 98–111. [Google Scholar] [CrossRef]
- Wohl, E.; Lane, S.N.; Wilcox, A.C. The science and practice of river restoration. Water Resour. Res. 2015, 51, 5974–5997. [Google Scholar] [CrossRef]
- Palmer, M.A.; Menninger, H.; Bernhardt, S.E. River restoration, habitat heterogeneity and biodiversity: A failure of theory or practice? Freshw. Biol. 2010, 55, 205–222. [Google Scholar] [CrossRef]
- Vidon, P.G.; Welsh, M.K.; Hassanzadeh, Y.T. Twenty Years of Riparian Zone Research (1997–2017): Where to Next? J. Environ. Qual. 2018, 48, 248–260. [Google Scholar] [CrossRef] [PubMed]
- Kroll, S.A.; Oakland, H.C. A review of studies documenting the effects of agricultural best management practices on physiochemical and biological measure of stream system integrity. Nat. Areas J. 2019, 39, 58–77. [Google Scholar] [CrossRef]
- Pearce, N.J.T.; Yates, A.G. Agricultural best management practices abundance and location does not influence stream ecosystem function of water quality in the summer season. Water 2015, 7, 6861–6876. [Google Scholar] [CrossRef]
- James, L.A. Legacy sediment: Definitions and processes of episodically produced anthropogenic sediment. Anthropocene 2013, 2, 16–26. [Google Scholar] [CrossRef]
- Hunt, L. South Branch Whitewater River Unified Fish Kill Response; Minnesota Department of Agriculture: St. Paul, MN, USA, 2015; 367p. [Google Scholar]
- Tornlund, E.; Ostlund, L. Floating timber in northern Sweden: The construction of floatways and transformation of rivers. Environ. Hist. 2002, 8, 85–106. [Google Scholar] [CrossRef]
- Brierley, G.J.; Brooks, A.P.; Fryirs, K.; Taylor, M.P. Did humid-temperate rivers in the Old and New Worlds respond differently to clearance of riparian vegetation and removal of woody debris? Prog. Phys. Geogr. 2005, 29, 27–49. [Google Scholar] [CrossRef]
- Pišút, P. Channel evolution of the pre-channelized Danube River in Bratislava, Slovakia (1712–1886). Earth Surf. Process. Landf. 2002, 27, 369–390. [Google Scholar] [CrossRef]
- Phillips, J.D.; Park, L. Forest blowdown impacts of Hurricane Rita on fluvial systems. Earth Surf. Process. Landf. 2009, 34, 1069–1081. [Google Scholar] [CrossRef]
- Greenwood, M.J.; Harding, J.S.; Niyogi, D.K.; McIntosh, A.R. Improving the effectiveness of riparian management for aquatic invertebrates in a degraded agricultural landscape: Stream size and land-use legacies. J. Appl. Ecol. 2012, 49, 213–222. [Google Scholar] [CrossRef]
- Quinn, J.M.; Williamson, R.B.; Smith, R.K.; Vickers, M.V. Effects of riparian grazing and channelisation on streams in Southland, New Zealand. 2. Benthic Invertebrates. N. Z. J. Mar. Freshw. Res. 1992, 26, 259–269. [Google Scholar] [CrossRef]
- Bunn, S.E.; Davies, P.M.; Mosisch, T.D. Ecosystem measures of river health and their response to riparian and catchment clearing. Freshw. Biol. 1999, 41, 333–346. [Google Scholar] [CrossRef]
- Walser, C.A.; Bart, H.L., Jr. Influence of agriculture on instream habitat and fish community structure in Piedmont watersheds of the Chattahoochee River system. Ecol. Freshw. Fish. 1999, 8, 237–246. [Google Scholar] [CrossRef]
- Blinn, C.R.; Kilgore, M.A. Riparian Management Practices: A summary of state guidelines. J. For. 2001, 99, 11–17. [Google Scholar]
- McKergow, L.A.; Matheson, F.E.; Quinn, J.M. Riparian management: A restoration tool for New Zealand streams. Ecol. Manag. Restor. 2016, 17, 218–227. [Google Scholar] [CrossRef]
- Hansen, B.; Reich, P.; Cavagnaro, T.; Lake, P.S. Challenges in applying scientific evidence to width recommendations for riparian management in agricultural Australia. Ecol. Manag. Restor. 2015, 16, 50–57. [Google Scholar] [CrossRef]
- Welcomme, R.L. Fisheries Ecology of Floodplain Rivers; Longman: London, UK, 1979. [Google Scholar]
- Death, R.G.; Collier, K.J. Measuring stream macroinvertebrate responses to gradients of vegetation cover: When is enough enough? Freshw. Biol. 2010, 55, 1447–1464. [Google Scholar] [CrossRef]
- Gregory, S.V. Riparian management in the 21st century. In Creating a Forestry for the 21st Century: The Science of Ecosystem Management; Island Press: Washington, DC, USA, 1997; pp. 69–86. [Google Scholar]
- Boothroyd, I.K.G.; Langer, E.R. Forest Harvesting and Riparian Management Guidelines: A Review; Technical Report 56; National Institute of Water and Atmospheric Research: Hamilton, New Zealand, 1999. [Google Scholar]
- Majer, J.D.; De Sousa-Majer, M.J.; Heterick, B.E. Partial clearing of a road corridor leads to homogenisation of the invertebrate fauna. Pac. Conserv. Biol. 2021, 27, 70–85. [Google Scholar] [CrossRef]
- Lovett, G.M.; Burns, D.A.; Driscoll, C.T.; Jenkins, J.C.; Mitchell, M.J.; Rustad, L.; Shanley, J.B.; Likens, G.E.; Haeuber, R. Who needs environmental monitoring? Front. Ecol. Environ. 2007, 5, 253–260. [Google Scholar] [CrossRef]
- Swartz, A.; Roon, D.; Reiter, M.; Warren, D. Stream temperature responses to experimental riparian canopy gaps along forested headwaters in western Oregon. For. Ecol. Manag. 2020, 474, 118354. [Google Scholar] [CrossRef]
- Kuglerová, L.; Muotka, T.; Chellaiah, D.; Jyväsjärvi, J.; Richardson, J.S. Protecting our streams by defining measurable targets for riparian management in a forestry context. J. Appl. Ecol. 2024, 61, 206–214. [Google Scholar] [CrossRef]
- Hunter, M.L.; Acuña, V.; Bauer, D.M.; Bell, K.P.; Calhoun, A.J.K.; Felipe-Lucia, M.R.; Fitzsimons, J.A.; González, E.; Kinnison, M.; Lindenmayer, D.; et al. Conserving small natural features with large ecological role: A synthetic overview. Biol. Conserv. 2017, 211, 88–95. [Google Scholar] [CrossRef]
- González, E.; Felipe-Lucia, M.R.; Bourgeois, B.; Boz, B.; Nilsson, C.; Palmer, G.; Sher, A.A. Integrative conservation of riparian zones. Biol. Conserv. 2017, 211, 20–29. [Google Scholar] [CrossRef]
- Garssen, A.G.; Verhoeven, J.T.A.; Soons, M.B. Effects of climate-induced increases in summer drought on riparian plant species: A meta-analysis. Freshw. Biol. 2014, 59, 1052–1063. [Google Scholar] [CrossRef] [PubMed]
- Katz, G.L.; Friedman, J.M.; Beatty, S.W. Delayed effects of flood control on a flood-dependent riparian forest. Ecol. Appl. 2005, 15, 1019–1035. [Google Scholar] [CrossRef]
Variable | North | Middle | South | F | P |
---|---|---|---|---|---|
Riparian Variables | |||||
Shade % | 52 (27) | 34 (24) | 34 (29) | 2.57 | 0.086 |
AOV (cm) | 16 (18) | 12 (13) | 18 (20) | 1.33 | 0.273 |
WRB (m) | 103 (38) | 127 (28) | 98 (37) | 1.12 | 0.334 |
Rock % | 8 (13) | 10 (13) | 4 (6) | 0.96 | 0.387 |
Bare soil % | 39 (23) | 30 (26) | 43 (28) | 1.61 | 0.209 |
Grass % | 37 (25) | 39 (27) | 41 (26) | 0.11 | 0.899 |
Forbs % | 12 (14) | 19 (19) | 12 (14) | 1.82 | 0.170 |
Shrub % | 1 (2) | 0.4 (2) | 1 (2) | 0.49 | 0.615 |
Tree % | 3 (6) | 2 (4) | 2 (5) | 0.81 | 0.450 |
Instream Variables | |||||
Width/Depth | 7 (4) | 7 (4) | 7 (2) | 0.11 | 0.893 |
CV (cm−1) | 28 (21) | 35 (25) | 35 (25) | 1.83 | 0.170 |
Fines % | 41 | 25 | 43 | 3.23 | 0.04 * |
Gravel % | 10 | 24 | 30 | 5.77 | 0.005 * |
Rubble % | 30 | 34 | 21 | 1.68 | 0.196 |
Boulder % | 9 | 15 | 3 | 2.47 | 0.094 |
Embed | 2.8 (1.1) | 2.1 (0.9) | 2.9 (0.6) | 5.15 | 0.009 * |
Riffle % | 21 (28) | 36 (39) | 21 (34) | 2.05 | 0.03 * |
Run % | 55 (37) | 53 (39) | 70 (37) | 3.58 | 0.03 * |
Pool % | 23 (27) | 11 (20) | 9 (16) | 5.58 | 0.006 * |
Cover % | 33 (26) | 25 (20) | 20 (18) | 3.66 | 0.03 * |
Variate | Corr | F | P |
---|---|---|---|
1 | 0.893 | 2.4356 | >0.00001 **** |
2 | 0.789 | 1.7832 | 0.0004 *** |
3 | 0.722 | 1.429 | 0.0311 * |
4 | 0.617 | 1.1038 | 0.313 |
5 | 0.586 | 0.8665 | 0.683 |
6 | 0.38 | 0.4577 | 0.986 |
7 | 0.247 | 0.2755 | 0.996 |
8 | 0.164 | 0.1721 | 0.994 |
9 | 0.059 | 0.0525 | 0.983 |
Fork | Typical Riparian Characteristics | Typical Instream Characteristics |
---|---|---|
North | High % Shade; Wide Buffer; High % Bare Soil; Less % Grass | Low Width/Depth; Slow Flow; High % Fines; Moderate Rubble; High Embeddedness; High % Run |
Middle | Wide Buffers; High % Grasses; Low % Shade; Less Forbs; Low % Bank Rock | Fast Flow; Low Width/Depth; Low Fines; Moderate % Gravel; Moderate % Rubble; Low Embeddedness; High % Riffles |
South | Narrow Buffer; Low % Shade; Overhanging Vegetation; High % Bare Soil; High % Grass; | Low Width/Depth; Fast Flow; High % Fines; Moderate % Gravel; Low % Rubble; High Embeddedness; High % Run; Low % Pools |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Varela, W.L.; Mundahl, N.D.; Staples, D.F.; Greene, R.H.; Bergen, S.; Cochran-Biederman, J.; Weaver, C.R. Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA. Water 2024, 16, 864. https://doi.org/10.3390/w16060864
Varela WL, Mundahl ND, Staples DF, Greene RH, Bergen S, Cochran-Biederman J, Weaver CR. Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA. Water. 2024; 16(6):864. https://doi.org/10.3390/w16060864
Chicago/Turabian StyleVarela, Will L., Neal D. Mundahl, David F. Staples, Rachel H. Greene, Silas Bergen, Jennifer Cochran-Biederman, and Cole R. Weaver. 2024. "Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA" Water 16, no. 6: 864. https://doi.org/10.3390/w16060864
APA StyleVarela, W. L., Mundahl, N. D., Staples, D. F., Greene, R. H., Bergen, S., Cochran-Biederman, J., & Weaver, C. R. (2024). Influence of Riparian Conditions on Physical Instream Habitats in Trout Streams in Southeastern Minnesota, USA. Water, 16(6), 864. https://doi.org/10.3390/w16060864