Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater
Abstract
1. Introduction
2. Materials and Methods
2.1. Experimental Setup and Operation
2.2. Analytical Methods
2.2.1. Enzyme Assay
2.2.2. DNA Extractions
2.2.3. Metagenomic Sequencing
3. Results and Discussion
3.1. Removal Efficiency of A/O BCO Reactor
3.2. Key Functional Enzymes
3.3. Microbial Community
3.4. Metabolic Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Xie, Y.D.; Zhang, Q.H.; Dzakpasu, M.; Zheng, Y.C.; Tian, Y.; Jin, P.K.; Yang, S.J.; Wang, X.C. Towards the formulation of rural sewage discharge standards in China. Sci. Total Environ. 2021, 759, 143533. [Google Scholar] [CrossRef] [PubMed]
- Zheng, T.; Li, W.; Ma, Y.; Liu, J. Time-based succession existed in rural sewer biofilms: Bacterial communities, sulfate-reducing bacteria and methanogenic archaea, and sulfide and methane generation. Sci. Total Environ. 2021, 765, 144397. [Google Scholar] [CrossRef] [PubMed]
- Singh, R.P.; Kun, W.; Fu, D. Designing process and operational effect of modified septic tank for the pre-treatment of rural domestic sewage. J. Environ. Manag. 2019, 251, 109552. [Google Scholar] [CrossRef] [PubMed]
- Zha, X.; Ma, J.; Lu, X. Performance of a coupling device combined energy-efficient rotating biological contactors with anoxic filter for low-strength rural wastewater treatment. J. Clean. Prod. 2018, 196, 1106–1115. [Google Scholar] [CrossRef]
- Gong, L.; Jun, L.; Yang, Q.; Wang, S.; Ma, B.; Peng, Y. Biomass characteristics and simultaneous nitrification-denitrification under long sludge retention time in an integrated reactor treating rural domestic sewage. Bioresour. Technol. 2012, 119, 277–284. [Google Scholar] [CrossRef]
- Wu, H.; Wang, S.; Kong, H.; Liu, T.; Xia, M. Performance of combined process of anoxic baffled reactor-biological contact oxidation treating printing and dyeing wastewater. Bioresour. Technol. 2007, 98, 1501–1504. [Google Scholar] [CrossRef]
- Zheng, T.; Li, P.; Ma, X.; Sun, X.; Wu, C.; Wang, Q.; Gao, M. Pilot-scale experiments on multilevel contact oxidation treatment of poultry farm wastewater using saran lock carriers under different operation model. J. Environ. Sci. 2019, 77, 336–345. [Google Scholar] [CrossRef]
- Zheng, T.; Xiong, R.; Li, W.; Wu, W.; Ma, Y.; Li, P.; Guo, X. An enhanced rural anoxic/oxic biological contact oxidation process with air-lift reflux technique to strengthen total nitrogen removal and reduce sludge generation. J. Clean. Prod. 2022, 348, 131371. [Google Scholar] [CrossRef]
- Zhao, Y.; Wang, H.; Dong, W.; Chang, Y.; Yan, G.; Chu, Z.; Ling, Y.; Wang, Z.; Fan, T.; Li, C. Nitrogen removal and microbial community for the treatment of rural domestic sewage with low C/N ratio by A/O biofilter with Arundo donax as carbon source and filter media. J. Water Process Eng. 2020, 37, 101509. [Google Scholar] [CrossRef]
- Lu, H.; Chandran, K. Factors promoting emissions of nitrous oxide and nitric oxide from denitrifying sequencing batch reactors operated with methanol and ethanol as electron donors. Biotechnol. Bioeng. 2010, 106, 390–398. [Google Scholar] [CrossRef]
- Kalyuzhnaya, M.G.; Beck, D.A.C.; Vorobev, A.; Smalley, N.; Kunkel, D.D.; Lidstrom, M.E.; Chistoserdova, L. Novel methylotrophic isolates from lake sediment, description of Methylotenera versatilis sp. nov. and emended description of the genus Methylotenera. Int. J. Syst. Evol. Microbiol. 2012, 62, 106–111. [Google Scholar] [CrossRef] [PubMed]
- Pan, Y.; Hua, T.W.; Sun, R.Z.; Fu, Y.Y.; Xiao, Z.C.; Wang, J.; Yu, H.Q. Machine Learning-Assisted Optimization of Mixed Carbon Source Compositions for High-Performance Denitrification. Environ. Sci. Technol. 2024, 58, 12498–12508. [Google Scholar] [CrossRef] [PubMed]
- Wang, B.; Ma, J.; Zhang, L.; Su, Y.; Xie, Y.; Ahmad, Z.; Xie, B. The synergistic strategy and microbial ecology of the anaerobic co-digestion of food waste under the regulation of domestic garbage classification in China. Sci. Total Environ. 2021, 765, 144632. [Google Scholar] [CrossRef] [PubMed]
- Lobeda, K.; Jin, Q.; Wu, J.; Zhang, W.; Huang, H. Lactic acid production from food waste hydrolysate by Lactobacillus pentosus: Focus on nitrogen supplementation, initial sugar concentration, pH, and fed-batch fermentation. J. Food Sci. 2022, 87, 3071–3083. [Google Scholar] [CrossRef] [PubMed]
- Poe, N.E.; Yu, D.; Jin, Q.; Ponder, M.A.; Stewart, A.C.; Ogejo, J.A.; Wang, H.; Huang, H. Compositional variability of food wastes and its effects on acetone-butanol-ethanol fermentation. Waste Manag. 2020, 107, 150–158. [Google Scholar] [CrossRef]
- Zhang, M.; Wang, X.; Yang, J.; Wang, D.; Liang, J.; Zhou, L. Nitrogen removal performance of high ammonium and high salt wastewater by adding carbon source from food waste fermentation with different acidogenic metabolic pathways. Chemosphere 2022, 292, 133512. [Google Scholar] [CrossRef]
- Tang, S.; Liao, Y.; Xu, Y.; Dang, Z.; Zhu, X.; Ji, G. Microbial coupling mechanisms of nitrogen removal in constructed wetlands: A review. Bioresour. Technol. 2020, 314, 123759. [Google Scholar] [CrossRef]
- Zhang, M.J.; Zhao, G.L.; Wang, X.X.; Zhou, B.; Zhou, Y.J.; Wang, D.Z.; Liang, J.R.; Zhou, L.X. Insight into performance of nitrogen removal enhanced by adding lactic acid-rich food waste fermentation liquid as carbon source in municipal wastewater treatment. Bioresour. Technol. 2024, 399, 130602. [Google Scholar] [CrossRef]
- Li, B.; Yan, W.; Wang, Y.; Wang, H.; Zhou, Z.; Li, Y.; Zhang, W. Effects of key enzyme activities and microbial communities in a flocculent-granular hybrid complete autotrophic nitrogen removal over nitrite reactor under mainstream conditions. Bioresour. Technol. 2019, 280, 136–142. [Google Scholar] [CrossRef]
- Wang, J.; Wang, H.; Zhang, R.; Wei, L.; Cao, R.; Wang, L.; Lou, Z. Variations of nitrogen-metabolizing enzyme activity and microbial community under typical loading conditions in full-scale leachate anoxic/aerobic system. Bioresour. Technol. 2022, 351, 126946. [Google Scholar] [CrossRef]
- Yang, X.; Yuan, J.; Guo, W.; Tang, X.; Zhang, S. The enzymes-based intermediary model explains the influence mechanism of different aeration strategies on nitrogen removal in a sequencing batch biofilm reactor treating simulated aquaculture wastewater. J. Clean. Prod. 2022, 356, 131835. [Google Scholar] [CrossRef]
- Chen, X.T.; Zhao, B.H.; Zhang, J.; Li, Y.Q.; Yang, H.S.; Zhang, Y.Q. Rapid start-up of partial nitrification reactor by exogenous AHLs and Vanillin combined with intermittent aeration. Sci. Total Environ. 2023, 859, 160191. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.B.; Zhong, D.; Cao, Y.C.; Ma, W.C.; Zhou, D.P.; Li, Z.P.; Gan, Y.L. Efficient nitrogen removal by multi-stage A/O mud membrane composite process with segmented influent: Performance and microbial community structure. Environ. Res. 2024, 250, 118446. [Google Scholar] [CrossRef]
- Mardanov, A.V.; Beletsky, A.V.; Ravin, N.V.; Botchkova, E.A.; Litti, Y.V.; Nozhevnikova, A.N. Genome of a Novel Bacterium “Candidatus Jettenia ecosi” Reconstructed From the Metagenome of an Anammox Bioreactor. Front. Microbiol. 2019, 10, 2442. [Google Scholar] [CrossRef]
- Xu, H.; Deng, Y.; Zou, J.; Zhang, K.; Li, X.; Yang, Y.; Huang, S.; Liu, Z.Q.; Wang, Z.; Hu, C. Nitrification performance and bacterial community dynamics in a membrane bioreactor with elevated ammonia concentration: The combined inhibition effect of salinity, free ammonia and free nitrous acid on nitrification at high ammonia loading rates. Sci. Total Environ. 2022, 831, 154972. [Google Scholar] [CrossRef] [PubMed]
- Bovio-Winkler, P.; Guerrero, L.D.; Erijman, L.; Oyarzua, P.; Eugenia Suarez-Ojeda, M.; Cabezas, A.; Etchebehere, C. Genome-centric metagenomic insights into the role of Chloroflexi in anammox, activated sludge and methanogenic reactors. Bmc Microbiol. 2023, 23, 45. [Google Scholar] [CrossRef] [PubMed]
- Nie, Z.; Huo, M.; Wang, F.; Ai, S.; Sun, X.; Zhu, S.; Li, Q.; Bian, D. Pilot study on urban sewage treatment with micro pressure swirl reactor. Bioresour. Technol. 2021, 320 Pt A, 124305. [Google Scholar] [CrossRef]
- Huang, X.; Dong, W.; Wang, H.; Feng, Y.; Sun, F.; Zhou, T. Sludge alkaline fermentation enhanced anaerobic- multistage anaerobic/oxic (A-MAO) process to treat low C/N municipal wastewater: Nutrients removal and microbial metabolic characteristics. Bioresour. Technol. 2020, 302, 122583. [Google Scholar] [CrossRef]
- Nie, Y.; Chen, R.; Tian, X.; Li, Y.-Y. Characterization of the effect of surfactant on biomass adaptation and microbial community in sewage treatment by anaerobic membrane bioreactor. J. Ind. Eng. Chem. 2019, 76, 268–276. [Google Scholar] [CrossRef]
- Su-ungkavatin, P.; Thongnueakhaeng, W.; Chaiprasert, P. Simultaneous removal of sulfur and nitrogen compounds with methane production from concentrated latex wastewater in two bioreactor zones of micro-oxygen hybrid reactor. J. Chem. Technol. Biotechnol. 2019, 94, 3276–3291. [Google Scholar] [CrossRef]
- Philippot, L.; Piutti, S.; Martin-Laurent, F.; Hallet, S.; Germon, J.C. Molecular analysis of the nitrate-reducing community from unplanted and maize-planted soils. Appl. Environ. Microbiol. 2002, 68, 6121–6128. [Google Scholar] [CrossRef] [PubMed]
- Cheneby, D.; Hallet, S.; Mondon, M.; Martin-Laurent, F.; Germon, J.C.; Philippot, L. Genetic characterization of the nitrate reducing community based on narG nucleotide sequence analysis. Microb. Ecol. 2003, 46, 113–121. [Google Scholar] [CrossRef] [PubMed]
- Cheneby, D.; Perrez, S.; Devroe, C.; Hallet, S.; Couton, Y.; Bizouard, F.; Iuretig, G.; Germon, J.C.; Philippot, L. Denitrifying bacteria in bulk and maize-rhizospheric soil: Diversity and N2O-reducing abilities. Can. J. Microbiol. 2004, 50, 469–474. [Google Scholar] [CrossRef] [PubMed]
- Wu, Z.; Wang, Y.; Liu, C.; Yin, N.; Hu, Z.; Shen, L.; Islam, A.R.M.T.; Wei, Z.; Chen, S. Characteristics of soil N2O emission and N2O-producing microbial communities in paddy fields under elevated CO2 concentrations. Environ. Pollut. 2023, 318, 120872. [Google Scholar] [CrossRef] [PubMed]
- Avrahami, S.; Bohannan, B.J.M. N2O emission rates in a California meadow soil are influenced by fertilizer level, soil moisture and the community structure of ammonia-oxidizing bacteria. Glob. Chang. Biol. 2009, 15, 643–655. [Google Scholar] [CrossRef]
- Hou, S.; Ai, C.; Zhou, W.; Liang, G.; He, P. Structure and assembly cues for rhizospheric nirK- and nirS-type denitrifier communities in long-term fertilized soils. Soil. Biol. Biochem. 2018, 119, 32–40. [Google Scholar] [CrossRef]
- Song, T.; Zhang, X.; Li, J.; Wu, X.; Feng, H.; Dong, W. A review of research progress of heterotrophic nitrification and aerobic denitrification microorganisms (HNADMs). Sci. Total Environ. 2021, 801, 149319. [Google Scholar] [CrossRef]
Operational Condition | pH | COD (mg/L) | NH4+–N (mg/L) | TN (mg/L) |
---|---|---|---|---|
Phase A: steady-state | 6.8–7.8 | 220–300 | 13–19 | 20–40 |
Phase B: low carbon concentration and high flow rate | 6.8–7.8 | 80–120 | 10–16 | 20–35 |
Phase C: After carbon source supplementation | 6.8–7.8 | 250–300 | 15–20 | 20–38 |
Composition | Concentration (mg/L) |
---|---|
Total solid (g/L) | 54.7 |
Volatile solid (g/L) | 27 |
Acetic acid (mg COD/L) | 5739.9 |
Propionic acid (mg COD/L) | 933.8 |
Butyric acid (mg COD/L) | 1455.6 |
Total volatile fatty acids (mg COD/L) | 11,553.8 |
COD (mg/L) | 136,400 |
Dissolved COD (mg/L) | 74,200 |
NH4+–N (mg/L) | 301.5 |
TN (mg/L) | 2997.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, Y.; Su, Y.; Wang, F.; Feng, L.; Wang, X.; Mustafa, A.M. Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater. Water 2024, 16, 3191. https://doi.org/10.3390/w16223191
Zhang Y, Su Y, Wang F, Feng L, Wang X, Mustafa AM. Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater. Water. 2024; 16(22):3191. https://doi.org/10.3390/w16223191
Chicago/Turabian StyleZhang, Yanju, Yu Su, Feng Wang, Leiyu Feng, Xiaojuan Wang, and Ahmed M. Mustafa. 2024. "Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater" Water 16, no. 22: 3191. https://doi.org/10.3390/w16223191
APA StyleZhang, Y., Su, Y., Wang, F., Feng, L., Wang, X., & Mustafa, A. M. (2024). Food Waste Fermentation Liquid as a Supplementary Carbon Source for Enhanced Biological Nitrogen Removal from Rural Wastewater. Water, 16(22), 3191. https://doi.org/10.3390/w16223191