Sulfadiazine and Nitrogen Removal Performance and Mechanisms of a Saline-Resistant Strain of Acinetobacter sp. RT-6
Abstract
:1. Introduction
2. Materials and Methods
2.1. Culture Medium
2.2. Isolation of Strain RT-6
2.3. Identification of Strain RT-6 and nirK Gene Detection
2.4. The Characteristics of SDZ and Ammonia-N Removal
2.5. The Suitable SDZ and Ammonia-N Removal Conditions of Strain RT-6
2.6. The Ammonia-N Removal Mechanism of Strain RT-6
2.7. SDZ and TN Removal Kinetic Model
2.8. Analysis of Nitrogen Balance and Electron Flow Distribution
2.9. Identification of Intermediates
2.10. Analytical Methods
3. Results and Discussion
3.1. Isolation and Identification of Strain RT-6
3.2. Ammonia-N and SDZ Removal Performances of Strain RT-6
3.3. Effects of SDZ Concentration on SDZ Degradation and TN Removal
3.4. Effect of C/N Ratio on SDZ Degradation and TN Removal
3.5. Effect of Salinity on SDZ Degradation and TN Removal
3.6. The Mechanisms of Biological TN Removal
3.7. Nitrogen Balance and Electron Flow Distribution
3.8. SDZ Degradation Pathway
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- APHA; AWWA; WEF. Standard Methods for the Examination of Water and Wastewater, 20th ed; American Public Health Association: Washington, DC, USA, 2005. [Google Scholar]
- Cao, L.J.; Zhang, J.Y.; Zhao, R.X.; Deng, Y.; Liu, J.; Fu, W.J.; Lei, Y.S.; Zhang, T.; Li, X.Y.; Li, B. Genomic characterization, kinetics, and pathways of sulfamethazine biodegradation by Paenarthrobacter sp. A01. Environ. Int. 2019, 131, 104961. [Google Scholar] [CrossRef] [PubMed]
- Cetecioglu, Z.; Ince, B.; Gros, M.; Rodriguez-Mozaz, S.; Barceló, D.; Ince, O.; Orhon, D. Biodegradation and reversible inhibitory impact of sulfamethoxazole on the utilization of volatile fatty acids during anaerobic treatment of pharmaceutical industry wastewater. Sci. Total Environ. 2015, 536, 667–674. [Google Scholar]
- Chen, D.Y.; Zhao, L.; Wang, Z.M.; Li, Y.H.; Li, Y.; Yin, M.L.; Wang, X.H.; Yang, Y.K. Successional dynamics of low C/N activated sludge system under salinity shock: Performance, nitrogen removal pathways, microbial community, and assembly. Chemosphere 2022, 307, 135703. [Google Scholar] [PubMed]
- Chen, J.F.; Xie, S.G. Overview of sulfonamide biodegradation and the relevant pathways and microorganisms. Sci. Total Environ. 2018, 640–641, 1465–1477. [Google Scholar] [CrossRef] [PubMed]
- Chen, J.; Strous, M. Denitrification and aerobic respiration, hybrid electron transport chains and co-evolution. Biochim. Biophys. Acta–Bioenerg. 2013, 1827, 136–144. [Google Scholar] [CrossRef]
- Deng, Y.; Li, B.; Zhang, T. Bacteria That Make a Meal of Sulfonamide Antibiotics: Blind Spots and Emerging Opportunities. Environ. Sci. Technol. 2018, 52, 3854–3868. [Google Scholar] [CrossRef]
- Garoma, T.; Umamaheshwar, S.K.; Mumper, A. Removal of sulfadiazine, sulfamethizole, sulfamethoxazole, and sulfathiazole from aqueous solution by ozonation. Chemosphere 2010, 79, 814–820. [Google Scholar] [CrossRef]
- Ge, S.; Wang, S.; Yang, X.; Qiu, S.; Li, B.; Peng, Y. Detection of nitrifiers and evaluation of partial nitrification for wastewater treatment: A review. Chemosphere 2015, 140, 85–98. [Google Scholar]
- Guo, Q.Q.; Zhao, Q.; Du, J.S.; Wang, H.Z.; Li, X.F.; Ren, N.Q. Enhanced removal of sulfadiazine by sulfidated ZVI activated persulfate process:Performance, mechanisms and degradation pathways. Chem. Eng. J. 2021, 388, 124308. [Google Scholar]
- Grabert, R.; Boopathy, R.; Nathaniel, R.; LaFleur, G. Effect of tetracycline on ammonia and carbon removal by the facultative bacteria in the anaerobic digester of a sewage treatment plant. Bioresour. Technol. 2018, 267, 265–270. [Google Scholar] [CrossRef]
- Hayati, F.; AkbarIsari, A.A.; Anvaripour, B.; Fattahi, M.; Kakavandi, B. Ultrasound-assisted photocatalytic degradation of sulfadiazine using MgO@CNT heterojunction composite: Effective factors, pathway and biodegradability studies. Chem. Eng. J. 2020, 381, 122636. [Google Scholar] [CrossRef]
- Huang, S.; Yu, D.S.; Chen, G.H.; Wang, Y.Y.; Tang, P.; Liu, C.C.; Tian, Y.; Zhang, M. Realization of nitrite accumulation in a sulfide-driven autotrophic denitrification process: Simultaneous nitrate and sulfur removal. Chemosphere 2021, 278, 130413. [Google Scholar] [PubMed]
- Hu, B.; Quan, J.N.; Huang, K.; Zhao, J.Q.; Xing, G.H.; Wu, P.; Chen, Y.; Ding, X.Q.; Hu, Y.S. Effects of C/N ratio and dissolved oxygen on aerobic denitrificatio process: A mathematical modeling study. Chemosphere 2021, 272, 129521. [Google Scholar] [PubMed]
- Hoang, N.P.V.; Huu, H.N.; Guo, W.S.; Khanh, H.N.; Soon, W.C.; Dinh, D.N.; Cheng, D.L.; Xuan, T.B.; Liu, Y.; Zhang, X.B. Effect of calcium peroxide pretreatment on the remediation of sulfonamide antibiotics (SMs) by Chlorella sp. Sci. Total Environ. 2021, 793, 148598. [Google Scholar]
- Ji, B.; Yang, K.; Zhu, L.; Jiang, Y.; Wang, H.; Zhou, J.; Zhang, H. Aerobic denitrification: A review of important advances of the last 30 years. Biotechnol. Bioprocess Eng. 2015, 20, 643–651. [Google Scholar] [CrossRef]
- Jia, Y.T.; Zhou, M.M.; Chen, Y.C.; Luo, J.; Hu, Y.Y. Carbon selection for nitrogen degradation pathway by Stenotrophomonas maltophilia: Based on the balances of nitrogen, carbon and electron. Bioresour. Technol. 2019, 294, 122114. [Google Scholar] [CrossRef]
- Lastre-Acosta, A.M.; Palharim, P.H.; Barbosa, I.M.; Mierzwa, J.C.; Teixeira, A.C.S.C. Removal of sulfadiazine from simulated industrial wastewater by a membrane bioreactor and ozonation. J. Environ. Manag. 2020, 271, 111040. [Google Scholar]
- Li, K.J.; Xu, A.L.; Wu, D.H.; Zhao, S.Y.; Meng, T.; Zhang, Y.J. Degradation of ofloxacin by a manganese-oxidizing bacterium Pseudomonas sp. F2 and its biogenic manganese oxides. Bioresour. Technol. 2021, 328, 124826. [Google Scholar]
- Liang, D.H.; Hu, Y.Y.; Cheng, J.H.; Chen, Y.C. Simultaneous sulfamethoxazole biodegradation and nitrogen conversionin low C/N ratio pharmaceutical wastewater byAchromobactersp. JL9. Sci. Total Environ. 2020, 703, 135586. [Google Scholar]
- Liang, D.H.; Hu, Y.Y. Application of a heavy metal-resistant Achromobacter sp. for the simultaneous immobilization of cadmium and degradation of sulfamethoxazole from wastewater. J. Hazard. Mater. 2021, 402, 24032. [Google Scholar] [CrossRef]
- Liang, D.H.; Hu, Y.Y.; Huang, R.Z.; Cheng, J.H.; Chen, Y.C. Effects of various antibiotics on aerobic nitrogen removal and antibiotic degradation performance: Mechanism, degradation pathways, and microbial community evolution. J. Hazard. Mater. 2022, 422, 126818. [Google Scholar] [PubMed]
- Medhi, K.; Singhal, A.; Chauhan, D.K. Investigating the nitrification and denitrification kinetics under aerobic and anaerobic conditions by Paracoccus denitrificans ISTOD1. Bioresour. Technol. 2017, 242, 334–343. [Google Scholar] [CrossRef] [PubMed]
- Mysoon, M.A.; Hicham, B.; Latifah, A. Degradation of sulfadiazine and electricity generation from wastewater using Bacillus subtilis EL06 integrated with an open circuit system. Chemosphere 2021, 276, 130145. [Google Scholar]
- Qi, M.Y.; Ma, X.D.; Liang, B.; Zhang, L.Y.; Kong, D.Y.; Li, Z.L.; Wang, A.J. Complete genome sequences of the antibiotic sulfamethoxazole-mineralizing bacteria Paenarthrobacter sp. P27 and Norcardiodes sp. N27. Environ. Res. 2022, 204, 112013. [Google Scholar] [CrossRef] [PubMed]
- Reis, P.J.; Reis, A.C.; Ricken, B.; Kolvenbach, B.A.; Manaia, C.M.; Corvini, P.F.; Nunes, O.C. Biodegradation of sulfamethoxazole and other sulfonamides by Achromobacter denitrificans PR1. J. Hazard. Mater. 2014, 280, 741–749. [Google Scholar]
- Song, Q.; Chen, C.G.; Zhou, W.Z.; Xie, X.H. Application of a Spiral Symmetric Stream Anaerobic Bioreactor for treating saline heparin sodium pharmaceutical wastewater: Reactor operating characteristics, organics degradation pathway and salt tolerance mechanism. Water Res. 2021, 205, 117671. [Google Scholar] [CrossRef] [PubMed]
- Sudmalis, D.; Millah, S.K.; Gagliano, M.C.; Butre, C.I.; Plugge, C.M.; Rijnaarts, H.H.M.; Zeeman, G.; Temmink, H. The potential of osmolytes and their precursors to alleviate osmotic stress of anaerobic granular sludge. Water Res. 2018, 147, 142–151. [Google Scholar] [CrossRef]
- Su, J.F.; Liang, D.H.; Lian, T.T. Comparison of denitrification performance by bacteriumAchromobactersp.A14 under different electron donor conditions. Chem. Eng. J. 2018, 333, 320–326. [Google Scholar] [CrossRef]
- Sun, Z.Y.; Lv, Y.K.; Liu, Y.X.; Ren, R.P. Removal of nitrogen by heterotrophic nitrification-aerobic denitrification of a novel metal resistant bacterium Cupriavidus sp. S1. Bioresour. Technol. 2016, 220, 142–150. [Google Scholar]
- Sun, S.B.; Yao, H.; Fu, W.Y.; Xue, S.; Zhang, W. Enhanced degradation of antibiotics by photo-fenton reactive membrane filtration. J. Hazard. Mater. 2020, 386, 121955. [Google Scholar]
- Tappe, W.; Herbst, M.; Hofmann, D.; Koeppchen, S.; Kummer, S.; Thiele, B.; Groeneweg, J. Degradation of sulfadiazine by Microbacterium lacus strain sdzm4, isolated from lysimeters previously manured with slurry from sulfadiazine–medicated pigs. Appl. Environ. Microbiol. 2013, 79, 2572–2577. [Google Scholar] [CrossRef] [PubMed]
- Tan, Z.W.; Abdoulahi, M.H.; Yang, X.Y.; Zhu, Y.M.; Gong, B.N.; Li, Y.T. Carbon source type can affect tetracycline removal by Pseudomonas sp. TC952 through regulation of extracellular polymeric substances composition and production. Sci. Total Environ. 2022, 804, 149907. [Google Scholar]
- Wang, L.; You, L.X.; Zhang, J.M.; Yang, T.; Zhang, W.; Zhang, Z.X.; Liu, P.X.; Wu, S.; Zhao, F.; Ma, J. Biodegradation of sulfadiazine in microbial fuel cells: Reaction mechanism, biotoxicity removal and the correlation with reactor microbes. J. Hazard. Mater. 2018, 360, 402–411. [Google Scholar] [CrossRef]
- Wang, H.Y.; SWang, S.J.; Jiang, J.Q.; Shu, J. Removal of sulfadiazine by ferrate(VI) oxidation and montmorillonite adsorption—Synergistic effect and degradation pathways. J. Environ. Chem. Eng. 2019, 7, 103225. [Google Scholar] [CrossRef]
- Wang, B.Z.; Ni, B.J.; Yuan, Z.G.; Guo, J.H. Insight into the nitrification kinetics and microbial response of an enriched nitrifying sludge in the biodegradation of sulfadiazine. Environ. Pollut. 2019, 255, 113160. [Google Scholar] [PubMed]
- Wang, S.Z.; Hu, Y.M.; Wang, J.L. Biodegradation of typical pharmaceutical compounds by a novel strain Acinetobacter sp. J. Environ. Manag. 2018, 217, 240–246. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.J.; Geng, C.C.; Chen, T.J.; Li, J.S.; Xu, Y.; Fu, D.F. Adaptability of enhanced bioretention cell for nitrogen and phosphorus removal under two antibiotics stress. Ecotoxicol. Environ. Saf. 2022, 230, 113114. [Google Scholar]
- Wittorf, L.; Jones, C.M.; Bonilla-Rosso, G.; Hallin, S. Expression ofnirKandnirSgenes in two strains ofPseudomonasstutzeriharbouring both types of NO-forming nitrite reductases. Res. Microbiol. 2018, 169, 343–347. [Google Scholar] [CrossRef]
- Yang, Y.; Mathieu, J.M.; Chattopadhyay, S.; Miller, J.T.; Wu, T.; Shibata, T.; Guo, W.; Alvarez, P.J. Defense mechanisms of Pseudomonas aeruginosa PAO1 against quantum dots and their released heavy metals. ACS Nano 2012, 6, 6091–6098. [Google Scholar] [CrossRef]
- Yao, S.; Ni, J.; Ma, T.; Li, C. Heterotrophic nitrification and aerobic denitrification at low temperature by a newly isolated bacterium, acinetobacter sp. HA2. Bioresour. Technol. 2013, 139, 80–86. [Google Scholar] [CrossRef]
- Yu, M.; Sun, C.D.; Wang, L.H.; Zang, K.; Li, M.Z.; Zhou, L.; Zheng, Y. Semi-coke activated persulfate promotes simultaneous degradation of sulfadiazine and tetracycline in a binary mixture. Chem. Eng. J. 2021, 416, 129122. [Google Scholar]
- Zhang, H.Y.; Zhou, W.H.; Zhan, X.H.; Chi, Z.X.; Li, W.G.; He, B.S.; Tan, S.W. Biodegradation performance and biofouling control of a halophilic biocarriers-MBR in saline pharmaceutical (ampicillin-containing) wastewater treatment. Chemosphere 2021, 263, 127949. [Google Scholar] [PubMed]
- Zhang, M.Y.; Fan, D.P.; Su, C.; Pan, L.Q.; He, Q.L.; Li, Z.L.; Liu, C. Biotransformation of Sulfamethoxazole by a Novel Strain, Nitratireductor sp. GZWM139: Characterized Performance, Metabolic Mechanism and Application Potential. J. Hazard. Mater. 2023, 441, 129861. [Google Scholar] [PubMed]
- Zhang, Z.S.; Guo, Y.D.; Guo, L.; Hu, F.W.; Zhao, Y.G.; Jin, C.J.; She, Z.L.; Gao, M.C.; Wang, G.C. Elucidating salinity adaptation and shock loading on denitrificationperformance: Focusing on microbial community shift and carbon sourceevaluation. J. Hazard. Mater. 2021, 402, 123450. [Google Scholar]
- Zhang, Q.Q.; Yang, G.F.; Wang, H.; Wu, K.; Jin, R.C.; Zheng, P. Estimating the recovery of ANAMMOX performance from inhibition by copper (II) and oxytetracycline (OTC). Sep. Purif. Technol. 2013, 113, 90–103. [Google Scholar] [CrossRef]
- Zhang, Q.; Liu, Y.; Ai, G.; Miao, L.; Zheng, H.; Liu, Z. The characteristics of a novel heterotrophic nitrification-aerobic denitrification bacterium, Bacillus methylotrophicus strain L7. Bioresour. Technol. 2012, 108, 35–44. [Google Scholar] [CrossRef]
- Zhang, T.; Cai, L.; Xu, B.T.; Li, X.C.; Qiu, W.H.; Fu, C.X.; Zheng, C.M. Sulfadiazine biodegradation byPhanerochaete chrysosporium:Mechanism and degradation product identification. Chemosphere 2019, 237, 124418. [Google Scholar]
- Zhao, T.T.; Chen, P.P.; Zhang, L.J.; Zhang, L.; Gao, Y.H.; Ai, S.; Liu, H.; Liu, X.Y. Heterotrophic nitrification and aerobic denitrification by a novel Acinetobacter sp. TAC-1 at low temperature and high ammonia nitrogen. Bioresour. Technol. 2021, 339, 125620. [Google Scholar] [CrossRef]
- Zhao, Q.; Guo, W.Q.; Luo, H.C.; Xing, C.M.; Wang, H.Z.; Liu, B.H.; Si, Q.S.; Li, D.N.; Sun, L.S.; Ren, N.Q. Insights into removal of sulfonamides in anaerobic activated sludge system: Mechanisms, degradation pathways and stress responses. J. Hazard. Mater. 2022, 423, 127248. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhu, X.; Wang, G.; Xie, J.; Zhao, Y.; Liang, D. Sulfadiazine and Nitrogen Removal Performance and Mechanisms of a Saline-Resistant Strain of Acinetobacter sp. RT-6. Water 2024, 16, 328. https://doi.org/10.3390/w16020328
Zhu X, Wang G, Xie J, Zhao Y, Liang D. Sulfadiazine and Nitrogen Removal Performance and Mechanisms of a Saline-Resistant Strain of Acinetobacter sp. RT-6. Water. 2024; 16(2):328. https://doi.org/10.3390/w16020328
Chicago/Turabian StyleZhu, Xiaoqiang, Guobin Wang, Jieyun Xie, Ya Zhao, and Donghui Liang. 2024. "Sulfadiazine and Nitrogen Removal Performance and Mechanisms of a Saline-Resistant Strain of Acinetobacter sp. RT-6" Water 16, no. 2: 328. https://doi.org/10.3390/w16020328
APA StyleZhu, X., Wang, G., Xie, J., Zhao, Y., & Liang, D. (2024). Sulfadiazine and Nitrogen Removal Performance and Mechanisms of a Saline-Resistant Strain of Acinetobacter sp. RT-6. Water, 16(2), 328. https://doi.org/10.3390/w16020328