Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Pretreatment of DS Biomass
2.2. Bioengery Recovery from DS
2.3. Adsorption of MB Using Biochar
2.3.1. Effect of pH on MB Adsorption
2.3.2. Effect of Biochar Dosage on MB Adsorption
2.3.3. Effect of Initial MB Content on Adsorption
2.3.4. Long-Term MB Removal Using Biochar
2.4. Analysis Method
2.4.1. Thermogravimetry (TG) Analyses of Organic Wastes
2.4.2. Scanning Electron Microscope (SEM)
2.4.3. Analysis Methods of Dye
3. Results and Discussions
3.1. Properties of Bioenergy Recovery from DS
3.2. Properties of Biochar
3.3. Effect of Key Factors on MB Removal Using Biochar
3.3.1. Effect of pH on MB Removal
3.3.2. Effect of Biochar Dosage on MB Removal
3.3.3. Effect of MB Content on Removal Efficiency
3.4. Adsorption Kinetics
3.5. Comparison of Dye Removal with Different Adsorbents Reported in the Literature
3.6. Long-Term MB Removal Using DS Biochar
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Abdel Azim, E.; Samy, M.; Hanafy, M.; Mahanna, H. Novel mint-stalks derived biochar for the adsorption of methylene blue dye: Effect of operating parameters, adsorption mechanism, kinetics, isotherms, and thermodynamics. J. Environ. Manag. 2024, 357, 120738. [Google Scholar] [CrossRef] [PubMed]
- Sun, X.-N.; Yu, K.; He, J.-H.; Chen, Y.; Guo, J.-Z.; Li, B. Multiple roles of ferric chloride in preparing efficient magnetic hydrochar for sorption of methylene blue from water solutions. Bioresour. Technol. 2023, 373, 128715. [Google Scholar] [CrossRef] [PubMed]
- Nguyen, T.-B.; Do, Q.-H.; Chen, C.-W.; Chen, W.-H.; Bui, X.-T.; Dong, C.-D. Pyrolysis temperature effect on biochar-derived cow manure: Physicochemical properties and adsorption behavior toward organic dyes. J. Taiwan Inst. Chem. Eng. 2024, 164, 105675. [Google Scholar] [CrossRef]
- Li, X.; Natsuki, J.; Natsuki, T. A recyclable silver nanoparticles/graphene oxide nanoscroll composite photocatalyst. Environ. Technol. Innov. 2021, 21, 101210. [Google Scholar] [CrossRef]
- Chandrasekar, R.; Prakash, P.; Ghosh, D.; Narayanasamy, S. Heteroatom doped biochar-aluminosilicate composite as a green alternative for the removal of hazardous dyes: Functional characterization and modeling studies. Environ. Res. 2024, 260, 119579. [Google Scholar] [CrossRef] [PubMed]
- Dimbo, D.; Abewaa, M.; Adino, E.; Mengistu, A.; Takele, T.; Oro, A.; Rangaraju, M. Methylene blue adsorption from aqueous solution using activated carbon of spathodea campanulata. Results Eng. 2024, 21, 101910. [Google Scholar] [CrossRef]
- Yang, P.; Lu, Y.; Zhang, H.; Li, R.; Hu, X.; Shahab, A.; Elnaggar, A.Y.; Alrefaei, A.F.; AlmutairiI, M.H.; Ali, E. Effective removal of methylene blue and crystal violet by low-cost biomass derived from eucalyptus: Characterization, experiments, and mechanism investigation. Environ. Technol. Innov. 2024, 33, 103459. [Google Scholar] [CrossRef]
- Khandelwal, D.; Rana, I.; Mishra, V.; Ranjan, K.R.; Singh, P. Unveiling the impact of dyes on aquatic ecosystems through zebrafish—A comprehensive review. Environ. Res. 2024, 261, 119684. [Google Scholar] [CrossRef]
- Thabede, P.M.; Shooto, N.D.; Naidoo, E.B. Removal of methylene blue dye and lead ions from aqueous solution using activated carbon from black cumin seeds. S. Afr. J. Chem. Eng. 2020, 33, 39–50. [Google Scholar] [CrossRef]
- Alatabe, M.J.A.; Ghorbanpour, M. A performance comparison of photo-fenton decolorization of methylene blue by using bentonite/iron composites prepared by liquid phase and solid phase ion exchange method. Desalination Water Treat. 2024, 317, 100027. [Google Scholar] [CrossRef]
- Shaheen, I.; Ata, S.; Aslam, H.; Farooq, H.; Ali, A.; Elqahtani, Z.M.; Alwadai, N.; Iqbal, M.; Arif, H.; Nazir, A. Photocatalytic removal of methylene blue and Victoria blue R dyes using Tb and La-doped BaZnO2. Desalination Water Treat. 2024, 318, 100389. [Google Scholar] [CrossRef]
- Teresa Jose, J.; Priya, K.L.; Chellappan, S.; Sreelekshmi, S.; Remesh, A.; Venkidesh, V.; Krishna, A.J.; Pugazhendhi, A.; Selvam, S.; Baiju, V.; et al. A hybrid electrocoagulation-biocomposite adsorption system for the decolourization of dye wastewater. Environ. Res. 2024, 252, 118759. [Google Scholar] [CrossRef] [PubMed]
- Chen, S.-y.; Li, L.; Feng, M.; Huang, T.; Zhang, N.; Wang, Y. UV-activated superwetting ability of electrospun polysulfone/titanium dioxide membranes toward highly efficient methylene blue removal and oil/water separation. J. Membr. Sci. 2024, 695, 122450. [Google Scholar] [CrossRef]
- Hashemi, E.; Norouzi, M.-M.; Sadeghi-Kiakhani, M. Magnetic biochar as a revolutionizing approach for diverse dye pollutants elimination: A comprehensive review. Environ. Res. 2024, 261, 119548. [Google Scholar] [CrossRef]
- Wang, L.; Zhou, Z.; Li, X.; Zeng, L.; Xu, W.; Ma, Y.; Cai, J. Enhanced removal of methylene blue from water by mesopore-dominant biochar from kelp: Kinetic, equilibrium and thermodynamic studies. Colloids Surf. A Physicochem. Eng. Asp. 2024, 688, 133652. [Google Scholar] [CrossRef]
- Xu, R.; Wei, J.; Cheng, D.; Wang, W.; Hong, L.; Chen, Y.; Guo, Y. Abundant porous biochar derived from luffa vine for removal of methylene blue: Selective adsorption and mechanistic studies. Ind. Crops Prod. 2024, 219, 119114. [Google Scholar] [CrossRef]
- Chaoui, A.; Farsad, S.; Ben Hamou, A.; Amjlef, A.; Nouj, N.; Ezzahery, M.; El Alem, N. Reshaping environmental sustainability: Poultry by-products digestate valorization for enhanced biochar performance in methylene blue removal. J. Environ. Manag. 2024, 351, 119870. [Google Scholar] [CrossRef]
- Mensah, K.; Mahmoud, H.; Fujii, M.; Samy, M.; Shokry, H. Dye removal using novel adsorbents synthesized from plastic waste and eggshell: Mechanism, isotherms, kinetics, thermodynamics, regeneration, and water matrices. Biomass Convers. Biorefinery 2024, 14, 12945–12960. [Google Scholar] [CrossRef]
- Jiang, P.; Zhou, L.; Han, Y.; Fu, W.; Su, S.; Zeng, M. Utilizing waste corn straw to photodegrade methyl orange and methylene blue: Photothermal effect of biochar enhances photodegradation efficiency. J. Environ. Chem. Eng. 2024, 12, 112914. [Google Scholar] [CrossRef]
- Chen, J.; Yan, Z.; Zhang, S.; Yue, L.; Xu, Z. Fabrication of agro–waste lotus leaf–derived adsorbent for effective removal of organic pollutants from water. Chem. Eng. Sci. 2024, 283, 119426. [Google Scholar] [CrossRef]
- Vyavahare, G.; Patil, R.; Gurav, R.; Shorobi, F.M.; Kadam, S.; Jadhav, J.; Park, J.H. Investigating the efficacy of biochar produced from agro-waste for basic fuchsin dye removal: Kinetics, isotherm, and thermodynamic studies. J. Indian Chem. Soc. 2024, 101, 101278. [Google Scholar] [CrossRef]
- Liu, J.; Huang, S.; Chen, K.; Wang, T.; Mei, M.; Li, J. Preparation of biochar from food waste digestate: Pyrolysis behavior and product properties. Bioresour. Technol. 2020, 302, 122841. [Google Scholar] [CrossRef] [PubMed]
- Yu, L.; Gamliel, D.P.; Markunas, B.; Valla, J.A. A Promising Solution for Food Waste: Preparing Activated Carbons for Phenol Removal from Water Streams. ACS Omega 2021, 6, 8870–8883. [Google Scholar] [CrossRef]
- Chatterjee, R.; Sajjadi, B.; Chen, W.-Y.; Mattern, D.L.; Hammer, N.; Raman, V.; Dorris, A. Effect of Pyrolysis Temperature on PhysicoChemical Properties and Acoustic-Based Amination of Biochar for Efficient CO2 Adsorption. Front. Energy Res. 2020, 8, 85. [Google Scholar] [CrossRef]
- Messaoudi, N.E.; Mouden, A.E.; Khomri, M.E.; Bouich, A.; Fernine, Y.; Ciğeroğlu, Z.; Américo-Pinheiro, J.H.P.; Labjar, N.; Jada, A.; Sillanpää, M.; et al. Experimental study and theoretical statistical modeling of acid blue 25 remediation using activated carbon from Citrus sinensis leaf. Fluid Phase Equilibria 2023, 563, 113585. [Google Scholar] [CrossRef]
- El Khomri, M.; El Messaoudi, N.; Dbik, A.; Bentahar, S.; Lacherai, A.; Chegini, Z.G.; Bouich, A. Removal of Congo red from aqueous solution in single and binary mixture systems using Argan nutshell wood. Pigment Resin Technol. 2022, 51, 477–488. [Google Scholar] [CrossRef]
- Yang, C.; Wu, H.; Cai, M.; Li, Y.; Guo, C.; Han, Y.; Zhang, Y.; Song, B. Valorization of food waste digestate to ash and biochar composites for high performance adsorption of methylene blue. J. Clean. Prod. 2023, 397, 136612. [Google Scholar] [CrossRef]
- Manmeen, A.; Kongjan, P.; Palamanit, A.; Jariyaboon, R. Biochar and pyrolysis liquid production from durian peel by using slow pyrolysis process: Regression analysis, characterization, and economic assessment. Ind. Crops Prod. 2023, 203, 117162. [Google Scholar] [CrossRef]
- Wang, L.; Wei, B.; Cai, F.; Chen, C.; Liu, G. Recycling durian shell and jackfruit peel via anaerobic digestion. Bioresour. Technol. 2022, 343, 126032. [Google Scholar] [CrossRef]
- Nguyen, N.T.H.; Nguyen, T.T.T.; Nguyen, D.T.C.; Tran, T.V. A comprehensive review on the production of durian fruit waste-derived bioadsorbents for water treatment. Chemosphere 2024, 363, 142801. [Google Scholar] [CrossRef]
- Ly, T.B.; Trinh, A.M.H.; Tran, H.P.T.; Dang, K.N.; Nguyen, T.D.T.; Tran, V.T.; Le, P.K. Evaluation of an operating durian shell charcoal briquette manufacturing line and development of a biorefinery process for higher value products. Energy 2024, 307, 132727. [Google Scholar] [CrossRef]
- Liu, H.; Liu, J.; Huang, H.; Evrendilek, F.; Wen, S.; Li, W. Optimizing bioenergy and by-product outputs from durian shell pyrolysis. Renew. Energy 2021, 164, 407–418. [Google Scholar] [CrossRef]
- Liu, H.; Chen, X.; Wei, X.; Chen, Z.; Yuan, H.; Evrendilek, F.; Huang, S.; Chen, T.; Xie, W.; Zhong, S.; et al. Co-thermal conversion, atmosphere, and blend type controls over heavy metals in biochars and bottom slags of textile dyeing sludge and durian shell. Fuel 2023, 352, 129017. [Google Scholar] [CrossRef]
- Xiong, M.; Huang, J.; He, X.; Zhou, Z.; Qu, X.; Faisal, S.; Abomohra, A. Evaluation of bio-oil/biodiesel production from co-pyrolysis of corn straw and natural hair: A new insight towards energy recovery and waste biorefinery. Fuel 2023, 331, 125710. [Google Scholar] [CrossRef]
- Li, X.; Cen, K.; Wang, L.; Jia, D.; Zhu, X.; Chen, D. Co-pyrolysis of cellulose and lignin: Effects of pyrolysis temperature, residence time, and lignin percentage on the properties of biochar using response surface methodology. Ind. Crops Prod. 2024, 219, 119071. [Google Scholar] [CrossRef]
- Zhang, L.; Yao, Z.; Zhao, L.; Yu, F.; Li, Z.; Yi, W.; Fu, P.; Jia, J.; Zhao, Y. Effects of various pyrolysis temperatures on the physicochemical characteristics of crop straw-derived biochars and their application in tar reforming. Catal. Today 2024, 433, 114663. [Google Scholar] [CrossRef]
- Zhou, P.; Li, X.; Zhou, J.; Peng, Z.; Shen, L.; Li, W. Insights of the adsorption mechanism of methylene blue on biochar from phytoextraction residues of Citrus aurantium L.: Adsorption model and DFT calculations. J. Environ. Chem. Eng. 2023, 11, 110496. [Google Scholar] [CrossRef]
- Zhang, H.; Peng, B.; Liu, Q.; Wu, C.; Li, Z. Preparation of porous biochar from heavy bio-oil for adsorption of methylene blue in wastewater. Fuel Process. Technol. 2022, 238, 107485. [Google Scholar] [CrossRef]
- Wu, Z.-F.; Wang, Z.-K.; Li, J.-B.; Qiu, Y.-H.; Chen, Z.-L.; Owens, G.; Yang, Z.-M. Effects of biochars derived from different feedstocks and pyrolysis temperatures on the anaerobic digestion of kitchen waste. Renew. Energy 2024, 230, 120833. [Google Scholar] [CrossRef]
- Costa Louzada, T.C.; Weschenfelder, S.E.; dos Passos, B.T.; Mazur, L.P.; Marinho, B.A.; da Cunha, M.d.F.R.; da Silva, A.; Ulson de Souza, A.A.; Guelli Ulson de Souza, S.M.A. New insights in the treatment of real oilfield produced water: Feasibility of adsorption process with coconut husk activated charcoal. J. Water Process Eng. 2023, 54, 104026. [Google Scholar] [CrossRef]
- Tao, J.; Wu, W.; Lin, D.; Yang, K. Role of biochar pyrolysis temperature on intracellular and extracellular biodegradation of biochar-adsorbed organic compounds. Environ. Pollut. 2024, 346, 123583. [Google Scholar] [CrossRef] [PubMed]
- Gotore, O.; Masere, T.P.; Muronda, M.T. The immobilization and adsorption mechanisms of agro-waste based biochar: A review on the effectiveness of pyrolytic temperatures on heavy metal removal. Environ. Chem. Ecotoxicol. 2024, 6, 92–103. [Google Scholar] [CrossRef]
- Tamjidi, S.; Moghadas, B.K.; Esmaeili, H.; Shakerian Khoo, F.; Gholami, G.; Ghasemi, M. Improving the surface properties of adsorbents by surfactants and their role in the removal of toxic metals from wastewater: A review study. Process Saf. Environ. Prot. 2021, 148, 775–795. [Google Scholar] [CrossRef]
- Shi, X.; Zhang, X.; Bi, F.; Zheng, Z.; Sheng, L.; Xu, J.; Wang, Z.; Yang, Y. Effective toluene adsorption over defective UiO-66-NH2: An experimental and computational exploration. J. Mol. Liq. 2020, 316, 113812. [Google Scholar] [CrossRef]
- Abdelwahab, O. Evaluation of the use of loofa activated carbons as potential adsorbents for aqueous solutions containing dye. Desalination 2008, 222, 357–367. [Google Scholar] [CrossRef]
- Mahanna, H.; Azab, M. Adsorption of Reactive Red 195 dye from industrial wastewater by dried soybean leaves modified with acetic acid. Desalination Water Treat. 2020, 178, 312–321. [Google Scholar] [CrossRef]
- Ebrahimian Pirbazari, A.; Saberikhah, E.; Habibzadeh Kozani, S.S. Fe3O4–wheat straw: Preparation, characterization and its application for methylene blue adsorption. Water Resour. Ind. 2014, 7–8, 23–37. [Google Scholar] [CrossRef]
- Mensah, K.; Mahmoud, H.; Fujii, M.; Shokry, H. Novel nano-ferromagnetic activated graphene adsorbent extracted from waste for dye decolonization. J. Water Process Eng. 2022, 45, 102512. [Google Scholar] [CrossRef]
- Wang, Z.; Li, J.; Liu, G.; Li, C. Biochar obtained from alkaline earth metal-treated mushroom residue: Thermal behavior and methyl orange adsorption capability. J. Environ. Manag. 2024, 351, 119669. [Google Scholar] [CrossRef]
- Zhao, F.; Shan, R.; Li, S.; Yuan, H.; Chen, Y. Characterization and Co-Adsorption Mechanism of Magnetic Clay-Biochar Composite for De-Risking Cd(II) and Methyl Orange Contaminated Water. Int. J. Mol. Sci. 2023, 24, 5755. [Google Scholar] [CrossRef]
- Xu, J.; Fu, M.; Ma, Q.; Zhang, X.; You, C.; Shi, Z.; Lin, Q.; Wang, X.; Feng, W. Modification of biochar by phosphoric acid via wet pyrolysis and using it for adsorption of methylene blue. RSC Adv. 2023, 13, 15327–15333. [Google Scholar] [CrossRef] [PubMed]
Kinetic Model | Parameters | |
---|---|---|
Pseudo-first-order t | qe exp. (mg/g) | 100.4 |
qe cal. (mg/g) | 114.09 | |
k1 (g/(mg·min)) | 0.0131 | |
R2 | 0.938 | |
Pseudo-second-order | qe cal. (mg/g) | 99.22 |
k2 (g/(mg·min)) | 0.0002 | |
R2 | 0.998 |
Biomass | Biochar Preparation Method | Dye | Removal Efficiency | Maximal Adsorption Capacity (mg/g) | Reference |
---|---|---|---|---|---|
Mushroom residue | Mixed with MgCl2 and stirred for 4 h, dried, and then pyrolyzed at 400 °C for 2 h. | MO | - | 81.30 | [49] |
Bentonite and corn straw | Impregnated with Fe(NO3)3⋅9H2O, stirred for 1 h, then pyrolyzed under 600 °C for 1 h in N2 atmosphere. | MO | >80% | 18.88 | [50] |
Algae | Algae powder mixed with 75% H3PO4, stirring for 2 h, 200 °C heated for 5 h, then combined with KOH at 700 °C for 6 h. | MB | 108.20 | [51] | |
Cow manure | Heated to 900 °C at a rate of 10 °C/min for 120 min, washed with DI water. | MB | - | 200 | [3] |
Mint stalks | Pyrolysis under limited-oxygen condition at 500 °C for 2 h. | MB | 97.3% | - | [1] |
DS | Pyrolysis under limited-oxygen condition at 400 °C for 2 h. | MB | 100% | 207.1 | This study |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pu, Y.; Jin, N.; Xiong, Y.; Chen, J.; Liu, R.; Tang, J.; Wang, Q.; Abomohra, A. Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment. Water 2024, 16, 2688. https://doi.org/10.3390/w16182688
Pu Y, Jin N, Xiong Y, Chen J, Liu R, Tang J, Wang Q, Abomohra A. Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment. Water. 2024; 16(18):2688. https://doi.org/10.3390/w16182688
Chicago/Turabian StylePu, Yunhui, Ni Jin, Yao Xiong, Jingyun Chen, Ruoran Liu, Jialing Tang, Qingyuan Wang, and Abdelfatah Abomohra. 2024. "Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment" Water 16, no. 18: 2688. https://doi.org/10.3390/w16182688
APA StylePu, Y., Jin, N., Xiong, Y., Chen, J., Liu, R., Tang, J., Wang, Q., & Abomohra, A. (2024). Performance of Bioenergy Production from Durian Shell Wastes Coupled with Dye Wastewater Treatment. Water, 16(18), 2688. https://doi.org/10.3390/w16182688