Microbial Selection for the Densification of Activated Sludge Treating Variable and High-Strength Industrial Wastewater
Abstract
:1. Introduction
2. Methods
2.1. Laboratory-Scale SBR Reactor Set Up
2.2. Set Up of Membrane Filtration Unit
2.3. Analytical Techniques
2.4. In Situ DOC Substrate Removal
2.5. DNA Extraction and Bacteria 16S rRNA Gene Sequencing
3. Results and Discussion
3.1. Characteristics of the Industrial Wastewater
3.2. In Situ DOC Removal
3.3. Sludge Properties
3.3.1. Sludge Concentration ML(V)SS
3.3.2. Settleability
3.3.3. CST
3.3.4. Microscopy
3.3.5. Microbial Community
3.4. Membrane Filtration Experiments
3.5. Unsuccessful Granulation
- High settling time: The settling of the reactor in our experiment was 55 min. For AGS, the settling time should be less, so the loose flocs are washed out, and the best settling flocs remains in the reactor. In AGS formation, typically, a short settling of 2–10 min is applied [20].
- High particulate COD (pCOD): A high amount of pCOD in the influent is not good for granulation. In our experiment, the average pCOD value was 832 mg·L−1. In pCOD, the most challenging part is the slowly biodegradable fraction, which is hydrolyzed to rbCOD in the reactor. The leakage of rbCOD to the aerobic phase favors OHO, and it is detrimental to granulation [48].
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Fan, N.; Wang, R.; Qi, R.; Gao, Y.; Rossetti, S.; Tandoi, V.; Yang, M. Control strategy for filamentous sludge bulking: Bench-scale test and full-scale application. Chemosphere 2018, 210, 709–716. [Google Scholar] [CrossRef] [PubMed]
- Tandoi, V.; Rossetti, S.; Wanner, J. (Eds.) Activated Sludge Separation Problems: Theory, Control Measures, Practical Experiences; IWA Publishing: Melbourne, Australia, 2017. [Google Scholar] [CrossRef]
- Cornelissen, R.; Van Dyck, T.; Dries, J.; Ockier, P.; Smets, I.; Van den Broeck, R.; Van Hulle, S.; Feyaerts, M. Application of online instrumentation in industrial wastewater treatment plants—A survey in Flanders, Belgium. Water Sci. Technol. 2018, 78, 957–967. [Google Scholar] [CrossRef] [PubMed]
- van Loosdrecht, M.C.M.; Pot, M.A.; Heijnen, J.J. Importance of bacterial storage polymers in bioprocesses. Water Sci. Technol. 1997, 35, 41–47. [Google Scholar] [CrossRef]
- Guo, J.; Peng, Y.; Wang, Z.; Yuan, Z.; Yang, X.; Wang, S. Control filamentous bulking caused by chlorine-resistant Type 021N bacteria through adding a biocide CTAB. Water Res. 2012, 46, 6531–6542. [Google Scholar] [CrossRef] [PubMed]
- Wang, P.; Yu, Z.; Qi, R.; Zhang, H. Detailed comparison of bacterial communities during seasonal sludge bulking in a municipal wastewater treatment plant. Water Res. 2016, 105, 157–166. [Google Scholar] [CrossRef] [PubMed]
- Zerva, I.; Remmas, N.; Kagalou, I.; Melidis, P.; Ariantsi, M.; Sylaios, G.; Ntougias, S. Effect of Chlorination on Microbiological Quality of Effluent of a Full-Scale Wastewater Treatment Plant. Life 2021, 11, 68. [Google Scholar] [CrossRef] [PubMed]
- Ferreira, V.; Martins, C.; Pereira, M.O.; Nicolau, A. Use of an aerobic selector to overcome filamentous bulking in an activated sludge wastewater treatment plant. Environ. Technol. 2014, 35, 1525–1531. [Google Scholar] [CrossRef] [PubMed]
- Jenkins, D.; Richard, M.G.; Daigger, G.T. Manual on the Causes and Control of Activated Sludge Bulking, Foaming, and Other Solids Separation Problems; CRC Press: Boca Raton, FL, USA, 2003. [Google Scholar]
- Cao, Y.S.; Teo, K.H.; Yuen, W.A.; Long, W.Y.; Seah, B. Performance analysis of anoxic selector in upgrading activated sludge process in tropical climate. Water Sci. Technol. 2005, 52, 27–37. [Google Scholar] [CrossRef] [PubMed]
- Tsertou, E.; Caluwé, M.; Goossens, K.; Dobbeleers, T.; Dockx, L.; Poelmans, S.; Suazo, K.S.; Dries, J. Is building up substrate during anaerobic feeding necessary for granulation? Water Sci. Technol. 2022, 86, 763–776. [Google Scholar] [CrossRef] [PubMed]
- Caluwé, M.; Goossens, K.; Seguel Suazo, K.; Tsertou, E.; Dries, J. Granulation strategies applied to industrial wastewater treatment: From lab to full-scale. Water Sci. Technol. 2022, 85, 2761–2771. [Google Scholar] [CrossRef]
- Stes, H.; Aerts, S.; Caluwé, M.; Dobbeleers, T.; Wuyts, S.; Kiekens, F.; D’aes, J.; De Langhe, P.; Dries, J. Formation of aerobic granular sludge and the influence of the pH on sludge characteristics in a SBR fed with brewery/bottling plant wastewater. Water Sci. Technol. 2018, 77, 2253–2264. [Google Scholar] [CrossRef] [PubMed]
- Ali, M.; Wang, Z.; Salam, K.W.; Hari, A.R.; Pronk, M.; van Loosdrecht, M.C.M.; Saikaly, P.E. Importance of Species Sorting and Immigration on the Bacterial Assembly of Different-Sized Aggregates in a Full-Scale Aerobic Granular Sludge Plant. Environ. Sci. Technol. 2019, 53, 8291–8301. [Google Scholar] [CrossRef]
- Martins, A.M.P.; Heijnen, J.J.; van Loosdrecht, M.C.M. Bulking sludge in biological nutrient removal systems. Biotechnol. Bioeng. 2004, 86, 125–135. [Google Scholar] [CrossRef] [PubMed]
- Haaksman, V.; Schouteren, M.; van Loosdrecht, M.; Pronk, M. Impact of the anaerobic feeding mode on substrate distribution in aerobic granular sludge. Water Res. 2023, 233, 119803. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Zaghloul, M.S.; Tay, J.H. Simultaneous organics and nutrients removal in side-stream aerobic granular sludge membrane bioreactor (AGMBR). J. Water Process Eng. 2018, 21, 127–132. [Google Scholar] [CrossRef]
- Ni, B.-J.; Xie, W.-M.; Liu, S.-G.; Yu, H.-Q.; Wang, Y.-Z.; Wang, G.; Dai, X.-L. Granulation of activated sludge in a pilot-scale sequencing batch reactor for the treatment of low-strength municipal wastewater. Water Res. 2009, 43, 751–761. [Google Scholar] [CrossRef]
- Nancharaiah, Y.; Reddy, G.K.K. Aerobic granular sludge technology: Mechanisms of granulation and biotechnological applications. Bioresour. Technol. 2018, 247, 1128–1143. [Google Scholar] [CrossRef]
- Show, K.-Y.; Lee, D.-J.; Tay, J.-H. Aerobic granulation: Advances and challenges. Appl. Biochem. Biotechnol. 2012, 167, 1622–1640. [Google Scholar] [CrossRef]
- de Kreuk, M.; van Loosdrecht, M. Selection of slow growing organisms as a means for improving aerobic granular sludge stability. Water Sci. Technol. 2004, 49, 9–17. [Google Scholar] [CrossRef]
- Corsino, S.F.; Di Trapani, D.; Torregrossa, M.; Viviani, G. Aerobic granular sludge treating high strength citrus wastewater: Analysis of pH and organic loading rate effect on kinetics, performance and stability. J. Environ. Manag. 2018, 214, 23–35. [Google Scholar] [CrossRef]
- Adav, S.S.; Lee, D.-J.; Lai, J.-Y. Functional consortium from aerobic granules under high organic loading rates. Bioresour. Technol. 2009, 100, 3465–3470. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Jiang, F. Membrane fouling in aerobic granular sludge (AGS)-membrane bioreactor (MBR): Effect of AGS size. Water Res. 2019, 157, 445–453. [Google Scholar] [CrossRef] [PubMed]
- Gurung, K.; Ncibi, M.C.; Fontmorin, J.-M.; Särkkä, H.; Sillanpää, M. Incorporating Submerged MBR in Conventional Activated Sludge Process for Municipal Wastewater Treatment: A Feasibility and Performance Assessment. J. Membr. Sci. Technol. 2016, 6, 3. [Google Scholar] [CrossRef]
- Le-Clech, P. Membrane bioreactors and their uses in wastewater treatments. Appl. Microbiol. Biotechnol. 2010, 88, 1253–1260. [Google Scholar] [CrossRef] [PubMed]
- Du, X.; Shi, Y.; Jegatheesan, V.; Haq, I.U. A Review on the Mechanism, Impacts and Control Methods of Membrane Fouling in MBR System. Membranes 2020, 10, 24. [Google Scholar] [CrossRef] [PubMed]
- Zhang, B.; Huang, D.; Shen, Y.; Yin, W.; Gao, X.; Zhang, B.; Shi, W. Treatment of municipal wastewater with aerobic granular sludge membrane bioreactor (AGMBR): Performance and membrane fouling. J. Clean. Prod. 2020, 273, 123124. [Google Scholar] [CrossRef]
- Iorhemen, O.T.; Hamza, R.A.; Zaghloul, M.S.; Tay, J.H. Aerobic granular sludge membrane bioreactor (AGMBR): Extracellular polymeric substances (EPS) analysis. Water Res. 2019, 156, 305–314. [Google Scholar] [CrossRef] [PubMed]
- Tay, J.H.; Yang, P.; Zhuang, W.Q.; Tay, S.T.L.; Pan, Z.H. Reactor performance and membrane filtration in aerobic granular sludge membrane bioreactor. J. Membr. Sci. 2007, 304, 24–32. [Google Scholar] [CrossRef]
- Tu, X.; Zhang, S.; Xu, L.; Zhang, M.; Zhu, J. Performance and fouling characteristics in a membrane sequence batch reactor (MSBR) system coupled with aerobic granular sludge. Desalination 2010, 261, 191–196. [Google Scholar] [CrossRef]
- Caluwé, M.; Dobbeleers, T.; Daens, D.; Geuens, L.; Blust, R.; Dries, J. SBR treatment of tank truck cleaning wastewater: Sludge characteristics, chemical and ecotoxicological effluent quality. Environ. Technol. 2018, 39, 2524–2533. [Google Scholar] [CrossRef]
- Manavi, N.; Kazemi, A.S.; Bonakdarpour, B. The development of aerobic granules from conventional activated sludge under anaerobic-aerobic cycles and their adaptation for treatment of dyeing wastewater. Chem. Eng. J. 2017, 312, 375–384. [Google Scholar] [CrossRef]
- Dobbeleers, T.; Daens, D.; Miele, S.; D’aes, J.; Caluwé, M.; Geuens, L.; Dries, J. Performance of aerobic nitrite granules treating an anaerobic pre-treated wastewater originating from the potato industry. Bioresour. Technol. 2017, 226, 211–219. [Google Scholar] [CrossRef] [PubMed]
- Corsino, S.F.; di Biase, A.; Devlin, T.R.; Munz, G.; Torregrossa, M.; Oleszkiewicz, J.A. Effect of extended famine conditions on aerobic granular sludge stability in the treatment of brewery wastewater. Bioresour. Technol. 2017, 226, 150–157. [Google Scholar] [CrossRef] [PubMed]
- Tsertou, E.; Caluwé, M.; Goossens, K.; Seguel Suazo, K.; Dries, J. Performance of an aerobic granular sludge membrane filtration in a full-scale industrial plant. Water Sci. Technol. 2023, 87, 3002–3016. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Zhong, C.; Huang, D.; Wang, Y.; Zhu, J. The membrane fouling characteristics of MBRs with different aerobic granular sludges at high flux. Bioresour. Technol. 2013, 136, 488–495. [Google Scholar] [CrossRef]
- Pronk, M.; Abbas, B.; Al-zuhairy, S.H.K.; Kraan, R.; Kleerebezem, R.; van Loosdrecht, M.C.M. Effect and behaviour of different substrates in relation to the formation of aerobic granular sludge. Appl. Microbiol. Biotechnol. 2015, 99, 5257–5268. [Google Scholar] [CrossRef] [PubMed]
- Toja Ortega, S.; Pronk, M.; de Kreuk, M.K. Effect of an Increased Particulate COD Load on the Aerobic Granular Sludge Process: A Full Scale Study. Processes 2021, 9, 1472. [Google Scholar] [CrossRef]
- Bagheri, M.; Mirbagheri, S.A.; Bagheri, Z.; Kamarkhani, A.M. Modeling and optimization of activated sludge bulking for a real wastewater treatment plant using hybrid artificial neural networks-genetic algorithm approach. Process Saf. Environ. Prot. 2015, 95, 12–25. [Google Scholar] [CrossRef]
- Wang, Q.; Wang, Z.; Wu, Z.; Han, X. Sludge reduction and process performance in a submerged membrane bioreactor with aquatic worms. Chem. Eng. J. 2011, 172, 929–935. [Google Scholar] [CrossRef]
- Karczmarczyk, A.; Kowalik, W. Combination of Microscopic Tests of the Activated Sludge and Effluent Quality for More Efficient On-Site Treatment. Water 2022, 14, 489. [Google Scholar] [CrossRef]
- Layer, M.; Adler, A.; Reynaert, E.; Hernandez, A.; Pagni, M.; Morgenroth, E.; Holliger, C.; Derlon, N. Organic substrate diffusibility governs microbial community composition, nutrient removal performance and kinetics of granulation of aerobic granular sludge. Water Res. X 2019, 4, 100033. [Google Scholar] [CrossRef] [PubMed]
- Müller, E.; Lind, G.; Lemmer, H.; Wilderer, P.A. Population structure and chemical EPS analyses of activated sludge and scum. Acta Hydrochim. Hydrobiol. 2005, 33, 189–196. [Google Scholar] [CrossRef]
- Kondrotaite, Z.; Valk, L.C.; Petriglieri, F.; Singleton, C.; Nierychlo, M.; Dueholm, M.K.D.; Nielsen, P.H. Diversity and Ecophysiology of the Genus OLB8 and Other Abundant Uncultured Saprospiraceae Genera in Global Wastewater Treatment Systems. Front. Microbiol. 2022, 13, 917553. [Google Scholar] [CrossRef] [PubMed]
- Lemaire, R.; Webb, R.I.; Yuan, Z. Micro-scale observations of the structure of aerobic microbial granules used for the treatment of nutrient-rich industrial wastewater. ISME J. 2008, 2, 528–541. [Google Scholar] [CrossRef] [PubMed]
- Seviour, T.W.; Lambert, L.K.; Pijuan, M.; Yuan, Z. Selectively inducing the synthesis of a key structural exopolysaccharide in aerobic granules by enriching for Candidatus “Competibacter phosphatis”. Appl. Microbiol. Biotechnol. 2011, 92, 1297–1305. [Google Scholar] [CrossRef] [PubMed]
- Oehmen, A.; Yuan, Z.; Blackall, L.L.; Keller, J. Comparison of acetate and propionate uptake by polyphosphate accumulating organisms and glycogen accumulating organisms. Biotechnol. Bioeng. 2005, 91, 162–168. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.A.; Batista, J.R. Impact of butyrate on microbial selection in enhanced biological phosphorus removal systems. Environ. Technol. 2014, 35, 2961–2972. [Google Scholar] [CrossRef] [PubMed]
- Schambeck, C.M.; Magnus, B.S.; de Souza, L.C.R.; Leite, W.R.M.; Derlon, N.; Guimarães, L.B.; da Costa, R.H.R. Biopolymers recovery: Dynamics and characterization of alginate-like exopolymers in an aerobic granular sludge system treating municipal wastewater without sludge inoculum. J. Environ. Manag. 2020, 263, 110394. [Google Scholar] [CrossRef]
- Li, D.; Yang, J.; Li, Y.; Zhang, J. Research on rapid cultivation of aerobic granular sludge (AGS) with different feast-famine strategies in continuous flow reactor and achieving high-level denitrification via utilization of soluble microbial product (SMP). Sci. Total Environ. 2021, 786, 147237. [Google Scholar] [CrossRef]
- Caluwé, M.; Dobbeleers, T.; D’aes, J.; Miele, S.; Akkermans, V.; Daens, D.; Geuens, L.; Kiekens, F.; Blust, R.; Dries, J. Formation of aerobic granular sludge during the treatment of petrochemical wastewater. Bioresour. Technol. 2017, 238, 559–567. [Google Scholar] [CrossRef] [PubMed]
- Burzio, C.; Ekholm, J.; Modin, O.; Falås, P.; Svahn, O.; Persson, F.; van Erp, T.; Gustavsson, D.J.I.; Wilén, B.-M. Removal of organic micropollutants from municipal wastewater by aerobic granular sludge and conventional activated sludge. J. Hazard. Mater. 2022, 438, 129528. [Google Scholar] [CrossRef] [PubMed]
- Begum, S.A.; Batista, J.R. Microbial selection on enhanced biological phosphorus removal systems fed exclusively with glucose. World J. Microbiol. Biotechnol. 2012, 28, 2181–2193. [Google Scholar] [CrossRef] [PubMed]
- Fernandes, C.S.; Bilad, M.R.; Nordin, N.A.H.M. Silica incorporated membrane for wastewater based filtration. AIP Conf. Proc. 2017, 1891, 020041. [Google Scholar] [CrossRef]
- De Vleeschauwer, F.; Caluwé, M.; Dobbeleers, T.; Stes, H.; Dockx, L.; Kiekens, F.; Copot, C.; Dries, J. A dynamically controlled anaerobic/aerobic granular sludge reactor efficiently treats brewery/bottling wastewater. Water Sci. Technol. 2021, 84, 3515–3527. [Google Scholar] [CrossRef] [PubMed]
- Stes, H.; Caluwé, M.; Dockx, L.; Cornelissen, R.; Langhe, P.; Smets, I.; Dries, J. Cultivation of aerobic granular sludge for the treatment of food-processing wastewater and the impact on membrane filtration properties. Water Sci. Technol. 2020, 83, 39–51. [Google Scholar] [CrossRef] [PubMed]
- Kim, H.-G.; Jang, H.-N.; Kim, H.-M.; Lee, D.-S.; Chung, T.-H. Effects of the sludge reduction system in MBR on the membrane permeability. Desalination 2010, 250, 601–604. [Google Scholar] [CrossRef]
- Li, J.; Liu, Y.; Li, X.; Cheng, F. Reactor performance and membrane fouling of a novel submerged aerobic granular sludge membrane bioreactor during long-term operation. J. Water Reuse Desalination 2019, 9, 1–9. [Google Scholar] [CrossRef]
- Truong, H.T.B.; Bui, H.M. Potential of aerobic granular sludge membrane bioreactor (AGMBR) in wastewater treatment. Bioengineered 2023, 14, 2260139. [Google Scholar] [CrossRef]
(a) | ||||||||
Genus/Day | 0 | 19 | 60 | 82 | 104 | 117 | 141 | 161 |
Defluviicoccus; Proteobacteria | 1.489 | 0.098 | 1.850 | 3.021 | 2.123 | 5.837 | 2.034 | 1.260 |
Candidatus_Competibacter; Proteobacteria | 0.405 | 0.000 | 6.018 | 4.401 | 3.934 | 4.173 | 3.437 | 1.680 |
Propionivibrio; Proteobacteria | 1.963 | 1.188 | 0.032 | 0.217 | 0.121 | 0.088 | 0.170 | 0.024 |
Micropruina; Actinobacteriota | 0.000 | 0.000 | 0.025 | 0.000 | 0.056 | 0.173 | 0.493 | 0.104 |
(b) | ||||||||
Genus/Day | 0 | 19 | 60 | 82 | 104 | 117 | 141 | 161 |
Candidatus Accumulibacter; Proteobacteria | 0.00 | 0.00 | 0.00 | 0.09 | 0.00 | 0.00 | 0.19 | 0.23 |
Tetrasphaera; Actinobacteriota | 0.02 | 0.00 | 0.08 | 0.00 | 0.08 | 0.05 | 0.03 | 0.00 |
(c) | ||||||||
Genus/Day | 0 | 19 | 60 | 82 | 104 | 117 | 141 | 161 |
Thiothrix; Proteobacteria | 0.00 | 0.00 | 0.00 | 0.07 | 0.01 | 0.06 | 6.73 | 9.81 |
Ca_Villigracilis; Chloroflexi | 0.00 | 0.00 | 0.13 | 0.33 | 0.27 | 0.80 | 0.22 | 0.29 |
Lewinella; Bacteroidota | 0.05 | 0.04 | 0.07 | 0.08 | 0.08 | 0.14 | 0.03 | 0.06 |
Kouleothrix; Chloroflexi | 0.00 | 0.00 | 0.02 | 0.00 | 0.04 | 0.04 | 0.28 | 0.10 |
Erysipelothrix; Firmicutes | 0.35 | 0.01 | 0.00 | 0.00 | 0.02 | 0.00 | 0.00 | 0.00 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Ahmed, M.; Goettert, D.; Vanherck, C.; Goossens, K.; Dries, J. Microbial Selection for the Densification of Activated Sludge Treating Variable and High-Strength Industrial Wastewater. Water 2024, 16, 2087. https://doi.org/10.3390/w16152087
Ahmed M, Goettert D, Vanherck C, Goossens K, Dries J. Microbial Selection for the Densification of Activated Sludge Treating Variable and High-Strength Industrial Wastewater. Water. 2024; 16(15):2087. https://doi.org/10.3390/w16152087
Chicago/Turabian StyleAhmed, Mukhtiar, Dorothee Goettert, Catharina Vanherck, Koen Goossens, and Jan Dries. 2024. "Microbial Selection for the Densification of Activated Sludge Treating Variable and High-Strength Industrial Wastewater" Water 16, no. 15: 2087. https://doi.org/10.3390/w16152087
APA StyleAhmed, M., Goettert, D., Vanherck, C., Goossens, K., & Dries, J. (2024). Microbial Selection for the Densification of Activated Sludge Treating Variable and High-Strength Industrial Wastewater. Water, 16(15), 2087. https://doi.org/10.3390/w16152087