The Ecological Effects of Micro(nano)plastics in the Water Environment
1. Introduction
2. Main Messages of the Special Issue
3. Conclusions
Conflicts of Interest
List of Contributions
- Bottari, T.; Mghili, B.; Gunasekaran, K.; Mancuso, M. Impact of Plastic Pollution on Marine Biodiversity in Italy. Water 2024, 16, 519. https://doi.org/10.3390/w16040519.
- Blinova, I.; Lukjanova, A.; Vija, H. Mortimer, M.; Heinlaan, M. Toxicity of Plastic Additive 1-Hydroxycyclohexyl Phenyl Ketone (1-HCHPK) to Freshwater Microcrustaceans in Natural Water. Water 2023, 15, 3213. https://doi.org/10.3390/w15183213.
- Aguirre-Martínez, G.; Carrizo, M.V.; Zenteno-Devaud, L. Microplastic Particles’ Effects on Aquatic Organisms and Their Role as Transporters of Organic Pollutants. Water 2023, 15, 2915. https://doi.org/10.3390/w15162915.
- Khosrovyan, A.; Melkonyan, H.; Rshtuni, L.; Gabrielyan, B.; Kahru, A. Polylactic Acid-Based Microplastic Particles Induced Oxidative Damage in Brain and Gills of Goldfish Carassius auratus. Water 2023, 15, 2133. https://doi.org/10.3390/w15112133.
- Ganzha, E.V.; Pavlov, E.D.; Dien, T.D. Risk of Expanded Polystyrene Ingestion by Climbing Perch Anabas testudineus. Water 2023, 15, 1294. https://doi.org/10.3390/w15071294.
- Morgalev, Y.; Dyomin, V.; Morgalev, S.; Davydova, A.; Morgaleva, T.; Kondratova, O.; Polovtsev, I.; Kirillov, N.; Olshukov, A. Environmental Contamination with Micro- and Nanoplastics Changes the Phototaxis of Euryhaline Zooplankton to Paired Photostimulation. Water 2022, 14, 3918. https://doi.org/10.3390/w14233918.
References
- Gabrielyan, B.; Khosrovyan, A.; Schultze, M. A review of anthropogenic stressors on Lake Sevan, Armenia. J. Limnol. 2022, 81, 1. [Google Scholar] [CrossRef]
- Häder, D.-P.; Banaszak, A.T.; Villafañe, V.E.; Narvarte, M.A.; González, R.A.; Helbling, E.W. Anthropogenic pollution of aquatic ecosystems: Emerging problems with global implications. Sci. Total Environ. 2020, 713, 136586. [Google Scholar] [CrossRef]
- Priya, A.K.; Muruganandam, M.; Rajamanickam, A.; Sivarethinamohan, S.; Gaddam, M.K.R.; Velusamy, P.; Gomathi, R.; Ravindiran, G.; Gurugubelli, T.R.; Muniasamy, S.K. Impact of climate change and anthropogenic activities on aquatic ecosystem—A review. Environ. Res. 2023, 238, 117233. [Google Scholar] [CrossRef]
- Shi, H.; Frias, J.; Sayed, A.E.H.; De-la-Torre, G.E.; Jong, M.-C.; Uddin, S.A.; Rajaram, R.; Chavanich, S.; Najii, A.; Fernández-Severini, M.D.; et al. Small plastic fragments: A bridge between large plastic debris and micro- & nano-plastics. TrAC Trends Anal. Chem. 2023, 168, 117308. [Google Scholar] [CrossRef]
- Andrady, A.L. The plastic in microplastics: A review. Mar. Pollut. Bull. 2017, 119, 12–22. [Google Scholar] [CrossRef] [PubMed]
- Lusher, A.L.; O’Donnell, C.; Officer, R.; O’Connor, I. Microplastic interactions with North Atlantic mesopelagic fish. ICES J. Mar. Sci. 2016, 73, 1214–1225. [Google Scholar] [CrossRef]
- Castañeda, R.A.; Avlijas, S.; Simard, M.A.; Ricciardi, A. Microplastic pollution in St. Lawrence River sediments. Can. J. Fish. Aquat. Sci. 2014, 71, 1767–1771. [Google Scholar] [CrossRef]
- De Sales-Ribeiro, C.; Brito-Casillas, Y.; Fernandez, A.; Caballero, M.J. An end to the controversy over the microscopic detection and effects of pristine microplastics in fish organs. Sci. Rep. 2020, 10, 12434. [Google Scholar] [CrossRef]
- Song, Y.K.; Hong, S.H.; Jang, M.; Han, G.M.; Jung, S.W.; Shim, W.J. Combined effects of UV exposure duration and mechanical abrasion on microplastic fragmentation by polymer type. Environ. Sci. Technol. 2017, 51, 4368–4376. [Google Scholar] [CrossRef]
- Lambert, S.; Wagner, M. Formation of microscopic particles during the degradation of different polymers. Chemosphere 2016, 161, 510–517. [Google Scholar] [CrossRef]
- Dawson, A.L. Turning microplastics into nanoplastics through digestive fragmentation by Antarctic krill. Nat. Commun. 2018, 9, 1001. [Google Scholar] [CrossRef] [PubMed]
- Khosrovyan, A.; Kahru, A. Virgin and UV-weathered polyamide microplastics posed no effect on the survival and reproduction of Daphnia magna. PeerJ 2022, 10, e13533. [Google Scholar] [CrossRef] [PubMed]
- Gigault, J.; El Hadri, H.; Nguyen, B.; Grassi, B.; Rowenczyk, L.; Tufenkji, L.; Feng, S.; Wiesner, M. Nanoplastics are neither microplastics nor engineered nanoparticles. Nat. Nanotechnol. 2021, 16, 501–507. [Google Scholar] [CrossRef] [PubMed]
- Silva, C.J.M.; Beleza, S.; Campos, D.; Soares, A.M.V.M.; Silva, A.L.P.; Pestana, J.L.T.; Gravato, C. Immune response triggered by the ingestion of polyethylene microplastics in the dipteran larvae Chironomus riparius. J. Hazard. Mater. 2021, 414, 125401. [Google Scholar] [CrossRef] [PubMed]
- Revel, M.; Lagarde, F.; Perrein-Ettajani, H.; Bruneau, M.; Akcha, F.; Sussarellu, R.; Rouxel, J.; Costil, K.; Decottignies, P.; Cognie, B.; et al. Tissue-specific biomarker responses in the blue mussel Mytilus spp. exposed to a mixture of microplastics at environmentally relevant concentrations. Front. Environ. Sci. 2019, 7, 33. [Google Scholar] [CrossRef]
- Silva, C.J.M.; Silva, A.L.P.; Campos, D.; Machado, A.L.; Pestana, J.L.T.; Gravato, C. Oxidative damage and decreased aerobic energy production due to ingestion of polyethylene microplastics by Chironomus riparius (Diptera) larvae. J. Hazard. Mater. 2021, 402, 123775. [Google Scholar] [CrossRef] [PubMed]
- Khosrovyan, A.; Doria, H.B.; Kahru, A.; Pfenninger, M. Polyamide microplastic exposure elicits rapid, strong and genome-wide evolutionary response in the freshwater non-biting midge Chironomus riparius. Chemosphere 2022, 299, 134452. [Google Scholar] [CrossRef]
- Tu, Q.; Deng, J.; Di, M.; Lin, X.; Chen, Z.; Li, B.; Tian, L.; Zhang, Y. Reproductive toxicity of polystyrene nanoplastics in Drosophila melanogaster under multi-generational exposure. Chemosphere 2023, 330, 138724. [Google Scholar] [CrossRef]
- Trestrail, C.; Nugegoda, D.; Shimeta, J. Invertebrate responses to microplastic ingestion: Reviewing the role of the antioxidant system. Sci. Total Environ. 2020, 734, 138559. [Google Scholar] [CrossRef]
- Liu, Z.; Cai, M.; Wu, D.; Yu, P.; Jiao, Y.; Jiang, Q.; Zhao, Y. Effects of nanoplastics at predicted environmental concentration on Daphnia pulex after exposure through multiple generation. Environ. Pollut. 2020, 256, 113506. [Google Scholar] [CrossRef]
- ECHA Database. Hydroxycyclohexyl Phenyl Ketone. Substance Identity. Available online: https://echa.europa.eu/registration-dossier/-/registered-dossier/1936 (accessed on 27 June 2024).
- Xiong, X.; Tu, Y.; Chen, X.; Jiang, X.; Shi, H.; Wu, C.; Elser, J.J. Ingestion and egestion of polyethylene microplastics by goldfish (Carassius auratus): Influence of color and morphological features. Heliyon 2019, 5, e03063. [Google Scholar] [CrossRef] [PubMed]
- De Felice, B.; Gazzotti, S.; Ortenzi, M.A.; Parolini, M. Multi-level toxicity assessment of polylactic acid (PLA) microplastics on the cladoceran Daphnia magna. Aquat. Toxicol. 2024, 272, 106966. [Google Scholar] [CrossRef] [PubMed]
- Zimmermann, L.; Bartosova, Z.; Braun, K.; Oehlmann, J.; Völker, C.; Wagner, M. Plastic products leach chemicals that induce in vitro toxicity under realistic use conditions. Environ. Sci. Technol. 2021, 55, 11814–11823. [Google Scholar] [CrossRef] [PubMed]
- Worischka, S.; Schmidt, S.I.; Hellmann, C.; Winkelmann, C. Selective predation by benthivorous fish on stream macroinvertebrates—The role of prey traits and prey abundance. Limnologica 2015, 52, 41–50. [Google Scholar] [CrossRef]
- Neves, D.; Sobral, P.; Ferreira, J.L.; Pereira, T. Ingestion of microplastics by commercial fish off the Portuguese coast. Mar. Pollut. Bull. 2015, 101, 119–126. [Google Scholar] [CrossRef] [PubMed]
- Wootton, N.; Reis-Santos, P.; Gillanders, B.M. Microplastic in fish—A global synthesis. Rev. Fish Biol. Fish. 2021, 31, 753–771. [Google Scholar] [CrossRef]
- Yuan, W.; Liu, X.; Wang, W.; Di, M.; Wang, J. Microplastic abundance, distribution and composition in water, sediments, and wild fish from Poyang Lake, China. Ecotoxicol. Environ. Saf. 2019, 170, 180–187. [Google Scholar] [CrossRef]
- Khosrovyan, A.; Gabrielyan, B.; Kahru, A. Ingestion and effects of virgin polyamide microplastics on Chironomus riparius adult larvae and adult zebrafish Danio rerio. Chemosphere 2020, 259, 127456. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Khosrovyan, A. The Ecological Effects of Micro(nano)plastics in the Water Environment. Water 2024, 16, 2020. https://doi.org/10.3390/w16142020
Khosrovyan A. The Ecological Effects of Micro(nano)plastics in the Water Environment. Water. 2024; 16(14):2020. https://doi.org/10.3390/w16142020
Chicago/Turabian StyleKhosrovyan, Alla. 2024. "The Ecological Effects of Micro(nano)plastics in the Water Environment" Water 16, no. 14: 2020. https://doi.org/10.3390/w16142020
APA StyleKhosrovyan, A. (2024). The Ecological Effects of Micro(nano)plastics in the Water Environment. Water, 16(14), 2020. https://doi.org/10.3390/w16142020