Urban Stormwater Quality in Arequipa, Southern Peru: An Initial Assessment
Abstract
:1. Introduction
2. Material and Methods
3. Results
4. Discussion
4.1. Stormwater Pollution in Arequipa
4.2. Global Perspective
5. Conclusions
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hoornweg, D.; Pope, K. Population predictions for the world’s largest cities in the 21st century. Environ. Urban. 2017, 29, 195–216. [Google Scholar] [CrossRef]
- Tuholske, C.; Caylor, K.; Funk, C.; Verdin, A.; Sweeney, S.; Grace, K.; Peterson, P.; Evans, T. Global urban population exposure to extreme heat. Proc. Natl. Acad. Sci. USA 2021, 118, e2024792118. [Google Scholar] [CrossRef] [PubMed]
- Moudon, A.V. Real noise from the urban environment: How ambient community noise affects health and what can be done about it. Am. J. Prev. Med. 2009, 37, 167–171. [Google Scholar] [CrossRef] [PubMed]
- Al Bakri, D.; Rahman, S.; Bowling, L. Sources and management of urban stormwater pollution in rural catchments, Australia. J. Hydrol. 2008, 356, 299–311. [Google Scholar] [CrossRef]
- Gao, Z.; Zhang, Q.; Li, J.; Wang, Y.; Dzakpasu, M.; Wang, X.C. First flush stormwater pollution in urban catchments: A review of its characterization and quantification towards optimization of control measures. J. Environ. Manag. 2023, 340, 117976. [Google Scholar] [CrossRef] [PubMed]
- Zgheib, S.; Moilleron, R.; Chebbo, G. Priority pollutants in urban stormwater: Part 1—Case of separate storm sewers. Water Res. 2012, 46, 6683–6692. [Google Scholar] [CrossRef] [PubMed]
- Vaze, J.; Chiew, F.H. Nutrient loads associated with different sediment sizes in urban stormwater and surface pollutants. J. Environ. Eng. 2004, 130, 391–396. [Google Scholar] [CrossRef]
- Tuomela, C.; Sillanpää, N.; Koivusalo, H. Assessment of stormwater pollutant loads and source area contributions with storm water management model (SWMM). J. Environ. Manag. 2019, 233, 719–727. [Google Scholar] [CrossRef]
- Gustafson, K.R.; Garcia-Chevesich, P.; Slinski, K.; Sharp, J.; McCray, J. Quantifying the Effects of Residential Infill Redevelopment on Urban Stormwater Quality in Denver, Colorado. Water 2021, 13, 988. [Google Scholar] [CrossRef]
- Kuster, A.C.; Pilgrim, K.M.; Kuster, A.T.; Huser, B.J. Field Application of Spent Lime Water Treatment Residual for the Removal of Phosphorus and other Pollutants in Urban Stormwater Runoff. Water 2022, 14, 2135. [Google Scholar] [CrossRef]
- Herzog, S.P.; Eisenstein, W.A.; Halpin, B.N.; Portmann, A.C.; Fitzgerald, N.J.M.; Ward, A.S.; Higgins, C.P.; McCray, J.E. Co-Design of Engineered Hyporheic Zones to Improve In-Stream Stormwater Treatment and Facilitate Regulatory Approval. Water 2019, 11, 2543. [Google Scholar] [CrossRef]
- Spahr, K.M.; Smith, J.; McCray, J.; Hogue, T. Reading the Green Landscape: Public Attitudes toward Green Stormwater Infrastructure and the Perceived Nonmonetary Value of Its Co-Benefits in Three US Cities. J. Sustain. Water Built Environ. 2021, 7, 04021017. [Google Scholar] [CrossRef]
- Wible, B. The Clean Water Act actually cleans water. Sci. Am. Assoc. Adv. Sci. 2018, 362, 555–556. [Google Scholar] [CrossRef]
- Floriano, C.E. Propuesta de Drenaje Pluvial en la Urbanización Praderas III Etapa, del Distrito de Nuevo Chimbote–Santa–Ancash. Professional Thesis, National University of Santa, Chimbote, Peru, 2019. Available online: https://hdl.handle.net/20.500.14278/3400 (accessed on 12 September 2023).
- Sanchez, A.; Pérez, K. Análisis y Evaluación del Comportamiento Hidráulico con Aliviaderos de Tormentas en el Sistema de Alcantarillado Sanitario del Casco Urbano de la Ciudad de Pucallpa. Professional Thesis, National University of Ucayali, Pucallpa, Peru, 2022. Available online: http://repositorio.unu.edu.pe/handle/UNU/6047 (accessed on 13 September 2023).
- Ferreyros, J.E.; Vela, K.M. Análisis y Evaluación del Sistema de Drenaje Pluvial en Zonas I, II, III y IV de la Ciudad de Pucallpa-Coronel Portillo–Ucayali. Professional Thesis, National University of Ucayali, Pucallpa, Peru, 2020. Available online: http://repositorio.unu.edu.pe/handle/UNU/4521 (accessed on 12 September 2023).
- Cuti, K. Drenaje Pluvial Urbano en la Localidad de Espinar, Provincia de Espinar, Región Cusco. Professional Thesis, National University of San Agustín, Arequipa, Peru, 2018. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/5759 (accessed on 14 September 2023).
- Lima, M.; Quispe, L. Evacuación de Aguas Pluviales Aplicando Técnicas de Drenaje Urbano Sostenible en la Localidad de Alto Libertad. Professional Thesis, National University of San Agustín, Arequipa, Peru, 2018. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/5784 (accessed on 13 September 2023).
- Ticona, W. Propuesta de Diseño de la Captación de agua de Lluvia Mediante Coberturas en las Viviendas Rurales, Con Fines de Consumo Doméstico en la Comunidad Pucarani Tiraccollo–Ilave. Professional Thesis, National University of Altiplano, Puno, Peru, 2017. Available online: https://tesis.unap.edu.pe/handle/20.500.14082/12440 (accessed on 12 September 2023).
- Muñoz, R. Evaluación de la Calidad de Aguas de Lluvias en los Distritos de Chaupimarca, Yanacancha y Simón Bolívar de Rancas–Provincia de Pasco. Professional Thesis, National University of Daniel Alcides Carrión, Cerro de Pasco, Peru, 2019. Available online: http://repositorio.undac.edu.pe/handle/undac/1491 (accessed on 13 September 2023).
- Casas, S.; Fachin, A.; Panduro, E. Evaluación del Aprovechamiento de Agua de Lluvia Para Uso Doméstico en Moyobamba-San Martín. Professional Thesis, National University of San Martín, Tarapoto, Peru, 2005. Available online: http://hdl.handle.net/11458/1054 (accessed on 15 September 2023).
- Grandez, P. Aprovechamiento de Agua de Lluvia, Para Optimizar el Uso de Agua Potable Residencial. Master’s Thesis, National University of Engineering, Lima, Peru, 2015. Available online: http://cybertesis.uni.edu.pe/handle/uni/2515 (accessed on 14 September 2023).
- Velasquez, J. Sistema de Captación y Tratamiento de Agua de Lluvia por Canaletas en Coberturas Impermeables de Viviendas Rurales en el Centro Poblado de Inchupalla. Professional Thesis, National University of Altiplano, Puno, Peru, 2021. Available online: https://tesis.unap.edu.pe/handle/20.500.14082/15337 (accessed on 16 September 2023).
- Chalco, G. Evaluación, Análisis y Diseño de un Sistema de Captación de Agua de Lluvia en Viviendas Rurales en Molino–Juli. Professional Thesis, National University of Altiplano, Puno, Peru, 2016. Available online: http://repositorio.unap.edu.pe/handle/UNAP/4620 (accessed on 12 September 2023).
- Chino, M. Evaluación y Propuesta de Diseño de Captación de Agua de Lluvia en Viviendas Rurales de la Comunidad Vilca Maquera–Pilcuyo. Professional Thesis, National University of Altiplano, Puno, Peru, 2013. Available online: http://tesis.unap.edu.pe/handle/20.500.14082/4509 (accessed on 11 September 2023).
- Guerra, K.P. Evaluación de Metales Pesados (Cr, Al, Fe) en Aguas de Escorrentía Pluvial en las Cunetas y su Impacto en Cultivos de Arroz-Marona. Professional Thesis, Universidad Nacional de San Martín, Tarapoto, Peru, 2018; 96p. [Google Scholar]
- Apaza, R. Impacto de la Contaminación Ambiental en la Salud de la Población de Arequipa Metropolitana. Professional Thesis, National University of San Agustin, Arequipa, Peru, 2018. Available online: https://repositorio.unsa.edu.pe/items/9f522cb9-aa1e-468d-b1f2-e1843c912ed1 (accessed on 10 September 2023).
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; FAO Irrigation and Drainage Paper 29 Rev: Rome, Italy, 1984; Volume 29, p. 174. Available online: https://www.fao.org/3/t0234e/T0234E00.htm (accessed on 18 September 2023).
- National Vegetable Extension Network. Irrigation Water Quality for Vegetables. Available online: http://www.ausvegvic.com.au/wp-content/uploads/2018/04/Factsheet_Irrigation-water-quality_v4.pdf (accessed on 2 August 2023).
- Environmental Protection Agency. Ambient Water Quality Criteria for Tallium. Available online: https://www.epa.gov/sites/default/files/2019-03/documents/ambient-wqc-thalllium-1980.pdf (accessed on 3 August 2023).
- Rowe, D.R.; Abdel-Magid, I.M. Irrigation Water Quality Standards and Salinity Management Strategies. Texas A&M Agrilife Extensión, 1995, Inc., 550. Available online: https://twon.tamu.edu/wp-content/uploads/sites/3/2021/06/irrigation-water-quality-standards-and-salinity-management-strategies-1.pdf (accessed on 20 September 2023).
- May, D.B.; Sivakumar, M. Prediction of heavy metal concentrations in urban stormwater. Water Environ. J. 2009, 23, 247–254. [Google Scholar] [CrossRef]
- Lee, C.; Chen, J.; Chang, W.; Shiah, I. Effect of pH on the solubilities of divalent and trivalent amino acids in water at 298.15 K. Fluid Phase Equilibria 2013, 343, 30–35. [Google Scholar] [CrossRef]
- Doria, C. Heavy metals (Cd, Cu, V, Pb) in rainwater in the most influence area of the coal mine in La Guajira, Colombia. Rev. Colomb. Quim. 2017, 46, 37–44. [Google Scholar] [CrossRef]
- Müller, A.; Österlund, H.; Marsalek, J.; Viklander, M. The pollution conveyed by urban runoff: A review of sources. Sci. Total Environ. 2020, 709, 136125. [Google Scholar] [CrossRef] [PubMed]
- Langmuir, D. Aqueous Environmental Geochemistry; Prentice Hall: Upper Saddle River, NJ, USA, 1997. [Google Scholar]
- Brinkmann, W.L.F. Urban Stormwater Pollutants: Sources and Loadings. GeoJournal 1985, 11, 277–283. [Google Scholar] [CrossRef]
- U.S. Geological Survey. Water Density. Available online: https://www.usgs.gov/special-topics/water-science-school/science/water-density (accessed on 30 September 2023).
- Hayashi, M. Temperature-Electrical Conductivity Relation of Water for Environmental Monitoring and Geophysical Data Inversion. Environ. Monit. Assess. 2004, 96, 119–128. [Google Scholar] [CrossRef]
- Ruiz, O.; Vásquez, M.; Duarte, N.; Jácome, A. Influencia de la variabilidad climática de la temperatura sobre los índices de calidad de agua. In III Congreso Internacional de Tecnologías Limpias, IV Seminario Internacional de Saneamiento, Ambiente y Desarrollo; Distrital University Francisco José de Caldas: Bogotá, Colombia, 2021. [Google Scholar]
- Adamiec, E.; Jarosz-Krzemińska, E.; Wieszała, R. Heavy metals from non-exhaust vehicle emissions in urban and motorway road dusts. Environ. Monit. Assess. 2016, 188, 369. [Google Scholar] [CrossRef]
- Oorts, K. Copper. In Heavy Metals in Soils; Alloway, B., Ed.; Springer: Dordrecht, The Netherlands, 2013; Volume 22. [Google Scholar] [CrossRef]
- Napier, F.; D’Arcy, B.; Jefferies, C. A review of vehicle related metals and polycyclic aromatic hydrocarbons in the UK environment. Desalination 2008, 226, 143–150. [Google Scholar] [CrossRef]
- Barałkiewicz, D.; Chudzińska, M.; Szpakowska, B.; Świerk, D.; Gołdyn, R.; Dondajewska, R. Storm water contamination and its effect on the quality of urban surface waters. Environ. Monit. Assess. 2014, 186, 6789–6803. [Google Scholar] [CrossRef] [PubMed]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Thallium: Health Effects. 1992. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp54.pdf (accessed on 20 May 2023).
- Genchi, G.; Carocci, A.; Lauria, G.; Sinicropi, M.S.; Catalano, A. Thallium Use, toxicity, and Detoxification therapy: An Overview. Appl. Sci. 2021, 11, 8322. [Google Scholar] [CrossRef]
- Yang, C.-H.; Tan, S.; Cheng, C.; Chen, P. Revealing the toxicity of monovalent and trivalent thallium to medaka fish in controlled exposure conditions. Aquat. Toxicol. 2022, 250, 106258. [Google Scholar] [CrossRef] [PubMed]
- Vidal Lopez, C.M. Mitigación de Riesgos Físicos Causados por la Expansividad y Capilaridad de las Aguas Dulces Y Salobres en el Sector Sur de los Pantanos de Villa, Caso Base y Cima del Cerro la Corvina-Lima. Master’s Thesis, National University Mayor de San Marcos, Lima, Peru, 2023. Available online: https://hdl.handle.net/20.500.12672/19194 (accessed on 28 September 2023).
- Liu, J.; Wang, J.; Chen, Y.; Xie, X.; Qi, J.; Lippold, H.; Luo, D.; Wang, C.; Long-Xiao, S.; He, L.; et al. Thallium transformation and partitioning during PB–ZN smelting and environmental implications. Environ. Pollut. 2016, 212, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Weih, M.; Hamnér, K.; Pourazari, F. Analyzing plant nutrient uptake and utilization efficiencies: Comparison between crops and approaches. Plant Soil 2018, 430, 7–21. [Google Scholar] [CrossRef]
- Hrytsyniak, I.; Yanovych, D.; Shvets, T. Biological role and toxic influence of Molybdenum in aquatic ecosystems (a review). Ribogospodarsʹka Nauka Ukraïni 2016, 3, 32–46. [Google Scholar] [CrossRef]
- Hébert, M. Lake salinization drives consistent losses of zooplankton abundance and diversity across coordinated mesocosm experiments. Limnol. Oceanogr. Lett. 2023, 8, 19–29. [Google Scholar] [CrossRef]
- Leite, T.; Branco, P.; Ferreira, M.; Santos, J. Activity, boldness and schooling in freshwater fish are affected by river salinization. Sci. Total Environ. 2022, 819, 153046. [Google Scholar] [CrossRef]
- Tejada-Meza, K.; Arenazas, A.; Garcia-Chevesich, P.; Flores, C.; Morales, L.; Romero, G.; Ticona, J.; Vanzin, G.; Sharp, J. Acute Ecotoxicity Potential of Untreated Tannery Wastewater Release in Arequipa, Southern Peru. Sustainability 2023, 15, 15240. [Google Scholar] [CrossRef]
- Landi, M.; Margaritopoulou, T.; Papadakis, I.; Araniti, F. Boron toxicity in higher plants: An update. Planta 2019, 250, 1011–1032. [Google Scholar] [CrossRef] [PubMed]
- Shaw, G. Blockade by fertilisers of caesium and stronium uptake into crops: Effects on the root uptake process. Sci. Total Environ. 1993, 137, 119–133. [Google Scholar] [CrossRef]
- Acuña, A.M. Los suelos como fuente de boro para las plantas. Rev. Científica UDO Agrícola 2005, 5, 10–26. [Google Scholar]
- Pizarro Rabanal, J.C. Estudio de Remoción de Boro del Agua Destinada Para la Agricultura en el Distrito de Ite–Tacna Utilizando una Resina Selectiva al Boro y Propuesta de Diseño de una Columna de Intercambio Iónico. Professional Thesis, National University Jorge Basadre Grohmann, Tacna, Peru, 2021. Available online: http://repositorio.unjbg.edu.pe/handle/UNJBG/4223 (accessed on 18 September 2023).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Boron: Health Effects. 2010. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp26.pdf (accessed on 20 May 2023).
- Hulskotte, J.; Roskam, G.; Van Der Gon, H.D. Elemental composition of current automotive braking materials and derived air emission factors. Atmos. Environ. 2014, 99, 436–445. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Cupper: Health Effects. 2022. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp132.pdf (accessed on 20 May 2023).
- Polo Bravo, C.; Sulca Quispe, L. Metales pesados: Fuentes y su toxicidad sobre la salud humana. Ciencias 2019, 2, 20–36. [Google Scholar] [CrossRef]
- Gertler, A.; Abu-Allaban, M.; Coulombe, W.; Gillies, J.; Pierson, W.; Rogers, C.; Sagebiel, J.; Tarnay, L.; Cahill, T. Measurements of Mobile Source Particulate Emissions in a Highway Tunnel. Int. J. Veh. Des. 2002, 27, 86–93. [Google Scholar] [CrossRef]
- Amatrain, M. Efectos del exceso de hierro sobre la salud. Med. Natur. 2000, 2, 92–95. [Google Scholar]
- Cuellar, J.; Navarro, J. Niveles de contaminantes que afectan la calidad de aguas del Rio Huaura en su cuenca baja. Infinitum 2016, 6, 80–89. [Google Scholar] [CrossRef]
- Jeong, C.; Wang, J.M.; Hilker, N.; Debosz, J.; Sofowote, U.M.; Su, Y.; Noble, M.; Healy, R.M.; Munoz, T.; Da̧bek-Złotorzyńska, E.; et al. Temporal and spatial variability of traffic-related PM2.5 sources: Comparison of exhaust and non-exhaust emissions. Atmos. Environ. 2019, 198, 55–69. [Google Scholar] [CrossRef]
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Zinc: Health Effects. 2005. Available online: https://www.atsdr.cdc.gov/toxprofiles/tp60.pdf (accessed on 20 May 2023).
- Agency for Toxic Substances and Disease Registry. Toxicological Profile for Manganesse: Health Effects. 2012. Available online: https://www.atsdr.cdc.gov/ToxProfiles/tp151.pdf (accessed on 20 May 2023).
- O’Neal, S.L.; Zheng, W. Manganese Toxicity Upon Overexposure: A Decade in Review. Curr. Environ. Health Rep. 2015, 2, 315–328. [Google Scholar] [CrossRef]
- Hernández Avilés, D. Metales Pesados en el Agua Lluvia. Master’s Thesis, Colombia Engineering School Julio Garavito, Bogotá, Colombia, 2017. Available online: https://repositorio.escuelaing.edu.co/handle/001/528 (accessed on 17 September 2023).
- Aguilar, B.; Martin, K. Revisión Sistemática: Tipos de Bioindicadores Para la Identificación de la Calidad de Ecosistemas Acuáticos. Professional Thesis, University César Vallejo, Lima, Peru, 2021. Available online: https://hdl.handle.net/20.500.12692/83655 (accessed on 14 September 2023).
- Dotsika, E.; Poutoukis, D.; Michelot, J.; Kloppmann, W. Stable isotope and chloride, boron study for tracing sources of boron contamination in groundwater; boron contents in fresh and thermal water in different areas in Greece. Water Air Soil Pollut. 2006, 174, 19–32. [Google Scholar] [CrossRef]
- Mielke, H.W.; Laidlaw, M.; Gonzales, C. Lead (Pb) legacy from vehicle traffic in eight California urbanized areas: Continuing influence of lead dust on children’s health. Sci. Total Environ. 2010, 408, 3965–3975. [Google Scholar] [CrossRef] [PubMed]
- Diario Gestión. Available online: https://gestion.pe/mundo/internacional/eliminacion-del-uso-de-la-gasolina-con-plomo-es-un-hito-para-la-salud-y-el-medio-ambiente-onu-noticia/ (accessed on 14 October 2023).
- Reyes, J. Cuantificación y Evaluación del Contenido de Pb y Cd en el Material Particulado PM 2.5 por Técnica Voltamperométrica a la que Esta Expuesta la Población del Área de Ingenierías de la UNSA. Professional Thesis, National University of de San Agustín, Arequipa, Peru, 2019. Available online: http://repositorio.unsa.edu.pe/handle/UNSA/10989 (accessed on 19 September 2023).
- Wijesiri, B.; Liu, A.; Gunawardana, C.; Hong, N.; Zhu, P.; Guan, Y.; Goonetilleke, A. Influence of urbanisation characteristics on the variability of particle-bound heavy metals build-up: A comparative study between China and Australia. Environ. Pollut. 2018, 242, 1067–1077. [Google Scholar] [CrossRef] [PubMed]
- McDonald, S.; Holland, A.; Simpson, S.; Gadd, J.; Bennett, W.; Walker, G.; Keough, M.; Cresswel, T.; Hassell, K. Metal forms and dynamics in urban stormwater runoff: New insights from diffusive gradients in thin-films (DGT) measurements. Water Res. 2022, 209, 117967. [Google Scholar] [CrossRef] [PubMed]
- Egodawatta, P.; Ziyath, A.; Goonetilleke, A. Characterising metal build-up on urban road surfaces. Environ. Pollut. 2013, 176, 87–91. [Google Scholar] [CrossRef] [PubMed]
- Song, H.; Qin, T.; Wang, J.; Wong, T. Characteristics of Stormwater Quality in Singapore Catchments in 9 Different Types of Land Use. Water 2019, 11, 1089. [Google Scholar] [CrossRef]
- Soltaninia, S.; Taghavi, L.; Hosseini, S.; Motamedvaziri, B.; Eslamian, S. The effect of land-use type and climatic conditions on heavy metal pollutants in urban runoff in a semi-arid region. J. Water Reuse Desalination 2022, 12, 384–402. [Google Scholar] [CrossRef]
- Simpson, I.M.; Winston, R.; Brooker, M. Corrigendum to “Effects of land use, climate, and imperviousness on urban stormwater quality: A meta-analysis” [Sci. Total Environ. 809 (2022)/152206]. Sci. Total Environ. 2022, 823, 153683. [Google Scholar] [CrossRef]
- Hu, W.; Zhao, C.; Hu, H.; Yin, S. Food Sources of Selenium and Its Relationship with Chronic Diseases. Nutrients 2021, 13, 1739. [Google Scholar] [CrossRef]
- Garcia-Chevesich, P. Erosion Control and Land Restoration; Outskirts Press: Denver, CO, USA, 2016; 486p. [Google Scholar]
- Garcia-Chevesich, P.; Alvarado, S.; Neary, D.; Valdes, R.; Valdes, J.; Aguirre, J.; Mena, M.; Pizarro, R.; Jofré, P.; Vera, M.; et al. Respiratory disease and particulate air pollution in Santiago Chile: Contribution of erosion particles from fine sediments. J. Environ. Pollut. 2014, 187, 202–205. [Google Scholar] [CrossRef]
- Dill, J. Estimating emissions reductions from accelerated vehicle retirement programs: Transportation research. Part D Transp. Environ. 2004, 9, 87–106. [Google Scholar] [CrossRef]
- Arela-Bobadilla, R.; Riesco-Lind, G.; Chávez, G. Una Mirada a la Expansión de la Ciudad de Arequipa en los Últimos 40 Años; Informe del Centro de Estudios en Economía y Empresa; Universidad Católica San Pablo: Arequipa, Peru, 2021; 29p, Available online: https://ucsp.edu.pe/una-mirada-a-la-expansion-de-la-ciudad-de-arequipa-en-los-ultimos-40-anos/ (accessed on 28 August 2023).
- Turkez, H.; Geyikoglu, F.; Tatar, A.; Keles, M.; Kaplan, İ. The effects of some boron compounds against heavy metal toxicity in human blood: Experimental and toxicologic pathology. Off. J. Ges. Für Toxikol. Pathol. 2012, 64, 93–101. [Google Scholar] [CrossRef]
- Kurwadkar, S.; Dane, J.; Kanel, S.; Nadagouda, M.; Cawdrey, R.; Ambade, B.; Struckhoff, G.; Wilkin, R. Per- and polyfluoroalkyl substances in water and wastewater: A critical review of their global occurrence and distribution. Sci. Total. Environ. 2022, 809, 151003. [Google Scholar] [CrossRef] [PubMed]
- Rochfort, Q.; Exall, K.; Jonathan, P.; Shi, V.; Stevanovic-briatico, V.; Kok, S.; Marsalek, J. Street Sweeping as a Method of Source Control for Urban Stormwater Pollution Street Sweeping as a Method of Source Control for Urban Stormwater Pollution. Water Qual. Res. J. 2009, 44, 48–58. [Google Scholar] [CrossRef]
- Nichols, K.; Moncur, K.; Howe, J. Hydrodynamic Separators as Stormwater Best Management Practices. Final Report Prepared for: Utah Department of Transportation Research and Development Division Submitted by: Stantec Consulting Inc. Authored by: Karen Nichols. 2005. Available online: https://rosap.ntl.bts.gov/view/dot/38802 (accessed on 27 September 2023).
- Zafra-Mejía, C.; González, J.; Tejero, J. Contaminación por escorrentía superficial urbana: Metales pesados acumulados sobre la superficie de una vía. Ing. E Investig. 2007, 27, 4–10. [Google Scholar]
- Zafra-Mejía, C.; González, J.; Tejero, J. Evaluación de la contaminación por escorrentía urbana: Sedimentos depositados sobre la superficie de una vía. Ing. E Investig. 2009, 29, 101–108. [Google Scholar]
- Zafra, C.A.; Luengas, E.; Temprano, J. Influencia del tráfico en la acumulación de metales pesados sobre vías urbanas: Torrelavega (España)-Soacha (Colombia). Rev. Fac. Ing. 2013, 67, 146–160. [Google Scholar]
- Zafra-Mejia, C.; Santamaria-Galindo, D.; Torres-Galindo, C. Climatic analysis of heavy metal concentration associated with urban road-deposited sediment/Analisis climatico de la concentracion de metales pesados asociados al sedimento depositado sobre vias urbanas. Rev. Salud Pública 2015, 17, 351. [Google Scholar] [CrossRef]
- Zafra-Mejia, C.; Rondon-Quintana, H.; Gutierrez-Malaxechebarria, A. Heavy metal contribution by runoff in a high-altitude megacity; a method based on the road-deposited sediment characterization. Dyna 2018, 85, 85–94. [Google Scholar] [CrossRef]
- Yang, Z.; Acker, S.; Brady, A.; Rodríguez, A.; Paredes, L.; Ticona, J.; Mariscal, G.; Vanzin, G.; Ranville, J.; Sharp, J. Heavy metal removal by the photosynthetic microbial biomat found within shallow unit process open water constructed wetlands. Sci. Total Environ. 2023, 876, 162478. [Google Scholar] [CrossRef]
- Romero, G.; Garcia-Chevesich, P.; Morales, L.; Arenazas, A.; Ticona, J.; Vanzin, G.; Sharp, J. Peruvian Wetlands: National Survey, Diagnosis, and Further Steps toward Their Protection. Sustainability 2023, 15, 8255. [Google Scholar] [CrossRef]
- Wong, T.; Fletcher, T.; Duncan, H.; Jenkins, G. Modelling urban stormwater treatment—A unified approach. Ecol. Eng. 2006, 27, 58–70. [Google Scholar] [CrossRef]
- Riveros, H.G.; Cabrera, E.; Ovalle, P. Vehicle inspection and maintenance, and air pollution in Mexico City: Transportation research. Part D Transp. Environ. 2002, 7, 73–80. [Google Scholar] [CrossRef]
- Ehrler, V.; Hebes, P. Electromobility for city logistics–The solution to urban transport collapse? An analysis beyond theory. Procedia-Soc. Behav. Sci. 2012, 48, 786–795. [Google Scholar] [CrossRef]
- Leal Filho, W.; Abubakar, I.R.; Kotter, R.; Grindsted, T.S.; Balogun, A.L.; Salvia, A.L.; Aina, Y.A.; Wolf, F. Framing Electric Mobility for Urban Sustainability in a Circular Economy Context: An Overview of the Literature. Sustainability 2021, 13, 7786. [Google Scholar] [CrossRef]
- Chana, J.L. Efectos de la Contaminación Atmosférica en el Clima Urbano y Calidad Ambiental de Arequipa. Professional Thesis, National University of San Agustín, Arequipa, Peru, 2004. [Google Scholar]
- Tejada, T.; Garcia-Chevesich, P.; Morales, L.; Romero, G.; Arenazas, A.; Ticona, J.; Martinez, G.; Martinez, K.; Sharp, J.; McCray, J. Heavy Metal Bioaccumulation in Peruvian Food/Medicinal Products: A Review. 2023; under review. [Google Scholar]
- Romero, M.d.P.; Pinilla, R.; Zafra, C. Evaluación temporal de la concentración de metales pesados (Pb y Cu) asociada con el sedimento vial: Fontibón-Barrios Unidos (Bogotá D. C., Colombia). Ing. Y Univ. 2015, 19, 315–333. [Google Scholar] [CrossRef]
- Wakida, F.T.; Martinez, S.; Garcia, E.; Piñon, T.D.; Espinoza, H.; Ames, A. Pollutant association with suspended solids in stormwater in Tijuana, Mexico. Int. J. Environ. Sci. Technol. 2014, 11, 319–326. [Google Scholar] [CrossRef]
- Mijangos-Montiel, J.L.; Wakida, F.; Temores, J. Stormwater Quality from Gas Stations in Tijuana, Mexico. Int. J. Environ. Res. 2010, 4, 777–784. [Google Scholar]
- Ortiz-Hernández, J.; Lucho, C.; Lizárraga, L.; Beltrán, R.; Coronel, C.; Vázquez, G. Quality of urban runoff in wet and dry seasons: A case study in a semi-arid zone. Environ. Sci. Pollut. Res. Int. 2016, 23, 25156–25168. [Google Scholar] [CrossRef]
- Mosquera, M.; Morales, L.F. Caracterización de Agua de Escorrentía Pluvial Para Diferentes Usos del Suelo en Bogotá. Professional Thesis, University of the Andes, Bogotá, Colombia, 2018. Available online: https://repositorio.uniandes.edu.co/entities/publication/6b9bd106-93a0-4220-b49f-d48376379510 (accessed on 25 September 2023).
- Shubo, T.; Maranhão, A.; Ferreira, F.; de Silva e Mouta Júnior, S.; de Pedrosa Macena, L.; do Rosário Vaz Morgado, C.; Warish, A.; Sidhu, J.; Miagostovich, M. Microbiological characterization of stormwater in a high-income neighborhood in Rio de Janeiro, Brazil. Environ. Monit. Assess. 2022, 194, 51. [Google Scholar] [CrossRef]
- Da Silva, E.; Filho, N.; Pereira, J.; Martins Formiga, K. Temporal variation and risk assessment of heavy metals and nutrients from water and sediment in a stormwater pond, Brazil: Water science & technology. Water Supply 2023, 23, 206–221. [Google Scholar] [CrossRef]
- Mannina, G.; Viviani, G. An urban drainage stormwater quality model; model development and uncertainty quantification. J. Hydrol. 2010, 381, 248–265. [Google Scholar] [CrossRef]
- Popick, H.; Brinknn, M.; McPhedran, K. Assessment of stormwater discharge contamination and toxicity for a cold-climate urban landscape. Environ. Sci. Eur. 2022, 34, 43. [Google Scholar] [CrossRef] [PubMed]
- McKee, L.J.; Gilbreath, A. Concentrations and loads of suspended sediment and trace element pollutants in a small semi-arid urban tributary, San Francisco Bay, California. Environ. Monit. Assess. 2015, 187, 499. [Google Scholar] [CrossRef]
Analyte | MPL (mg/L) | Number of Samples above MPLs | Type of Norm |
---|---|---|---|
Ca | No limits for irrigation | ||
K | No limits for irrigation | ||
Mo | 0.01 | 14 | Irrigation water quality [28] |
Na | 100 | 8 | Australian irrigation water quality standard [29] |
P | 0.25 | 22 | Australian irrigation water quality standard [29] |
S | No limits for irrigation | ||
Si | No limits for irrigation | ||
Sr | No limits for irrigation | ||
Ti | No limits for irrigation | ||
Tl | 0.04 | 0 | EPA standard for aquatic ecosystems [30] |
V | 0.1 | 0 | Texas irrigation water quality standard [31] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Martínez, G.; García-Chevesich, P.A.; Guillen, M.; Tejada-Purizaca, T.R.; Martinez, K.; Ticona, S.; Novoa, H.M.; Crespo, J.; Holley, E.A.; McCray, J.E. Urban Stormwater Quality in Arequipa, Southern Peru: An Initial Assessment. Water 2024, 16, 108. https://doi.org/10.3390/w16010108
Martínez G, García-Chevesich PA, Guillen M, Tejada-Purizaca TR, Martinez K, Ticona S, Novoa HM, Crespo J, Holley EA, McCray JE. Urban Stormwater Quality in Arequipa, Southern Peru: An Initial Assessment. Water. 2024; 16(1):108. https://doi.org/10.3390/w16010108
Chicago/Turabian StyleMartínez, Gisella, Pablo A. García-Chevesich, Madeleine Guillen, Teresa R. Tejada-Purizaca, Kattia Martinez, Sergio Ticona, Héctor M. Novoa, Jorge Crespo, Elizabeth A. Holley, and John E. McCray. 2024. "Urban Stormwater Quality in Arequipa, Southern Peru: An Initial Assessment" Water 16, no. 1: 108. https://doi.org/10.3390/w16010108
APA StyleMartínez, G., García-Chevesich, P. A., Guillen, M., Tejada-Purizaca, T. R., Martinez, K., Ticona, S., Novoa, H. M., Crespo, J., Holley, E. A., & McCray, J. E. (2024). Urban Stormwater Quality in Arequipa, Southern Peru: An Initial Assessment. Water, 16(1), 108. https://doi.org/10.3390/w16010108