# Prediction of Sediment Yields Using a Data-Driven Radial M5 Tree Model

^{1}

^{2}

^{3}

^{4}

^{5}

^{6}

^{7}

^{8}

^{9}

^{10}

^{*}

## Abstract

**:**

^{2}), the root-mean-square error (RMSE) and the mean absolute percentage error (MAPE). The prediction accuracy of the RM5Tree model during the testing period was superior to the ANN, MARS, SVR, M5Tree, RSM and SRC models with the R

^{2}, RMSE and MAPE being 0.72, 0.51 tons/day and 11.99%, respectively. The RM5Tree model predicted suspended sediment peaks better, with 84.10% relative accuracy, in comparison to the MARS, ANN, SVR, M5Tree, RSM and SRC models, with 80.62, 77.86, 81.90, 80.20, 74.58 and 62.49% relative accuracies, respectively.

## 1. Introduction

#### Literature Review

## 2. Materials and Methods

#### 2.1. Study Area

^{2}drainage area at the Gilgit gauging station. The river originates from the Shandoor Plains in the North of Gilgit Baltistan, Pakistan, with a right tributary of Baha Lake and small tributaries of Ghizar, Ishkoman, Yasin and Phandar.

^{3}/s, with a sediment load of 448 mg/L. The snow starts to accumulate at the end of October, whereas the ablation period starts after the snow-melting process in July. About 75% of basin rainfall is received during April–October. The recorded mean annual is 670 mm in the basin. Similarly, the monthly basin mean temperature varies from −19.8 to 7.20 °C. The geographical features and hydrological characteristics of the Gilgit River catchment are also shown in Figure 1 and Figure 2.

Variable | Data Source | Interval | Period | Source |
---|---|---|---|---|

Q * | Mean daily discharge (m^{3}/s) | Daily | 1981–2010 | Water and Power Development Authority (WAPDA), Pakistan |

SSC * | Suspended sediment concentration (mg/L) | Intermittent weekdays | 1981–2010 | Water and Power Development Authority (WAPDA), Pakistan |

SCF | Snow cover fractions calculated from MODIS satellite data ranging from 0 to 1 | Weekly | 2000–2010 | https://nsidc.org/data/MOD10A2 accessed on 24 April 2020 |

T | Daily maximum, minimum and mean basin air temperature for a grid of 5 × 5 km in size (°C) | Daily | 1981–2010 | [59,60] |

P | Daily mean rainfall (mm/day) on a grid of 5 × 5 km in size | Daily | 1981–2010 | [59,60] |

Evap | Daily mean evapotranspiration (mm/day) on a grid of 5 × 5 km in size | Daily | 1981–2010 | [59,60] |

Input Variable | Description (Basin Average) | Log Q (m ^{3}/Day) | log SSY (tons/Day) | SCA (Fractions) | T_{avg}(°C) | P (mm) | Evap (mm/Day) |
---|---|---|---|---|---|---|---|

log Q | Logarithm of discharge | 1.000 | |||||

log SSY | Logarithm of sediment yields | 0.870 | 1.000 | ||||

SCA | Snow cover area | −0.850 | −0.740 | 1.000 | |||

T_{avg.} | Temperature | 0.870 | 0.790 | −0.880 | 1.000 | ||

P | Effective rainfall | 0.160 | 0.150 | 0.090 | 0.100 | 1.000 | |

Evap. | Evapotranspiration | 0.860 | 0.810 | −0.820 | 0.930 | 0.060 | 1.000 |

#### 2.2. Snow cover Estimation Using the Temperature Index Snow Model

_{RS}) temperature data were used to separate the amount of snow and liquid rainfall using the following equations:

_{p}is the precipitation factor, which is proportionate to temperature difference and is calculated using the following system of equations:

_{RS}(°C) was used to group precipitation into the rain or snow categories, while T

_{SM}was used to calculate the snow-melting process. The snow-melting process depends on several environmental factors, such as the river basin boundary conditions of temperature and air relative humidity.

_{snow}(mm/day)) was estimated as follows:

_{snow}is the snow-melting day degree factor (mm/day °C), T

_{mean}is the daily mean/average air temperature (°C) and T

_{SM}is the threshold temperature (°C).

#### 2.3. Artificial Neural Networks

#### 2.4. Multivariate Adaptive Regression Splines (MARS)

#### 2.5. Support Vector Regression

_{1}, x

_{2}, x

_{3}, …, x

_{n}) of the input layer, along with the kernel functions, i.e., $K\left(x,{x}_{i}\right)$ of the hidden layer.

#### 2.6. Response Surface Method (RSM)

#### 2.7. M5Tree Model

_{i}is the samples subset with the ith potential test result; and sd is the standard deviation, which is given below as

_{i}is the numerical targeted value of the ith attribute sample.

#### 2.8. Radial M5Tree Model

_{min}X

_{max}], are randomly selected based on the domain of datasets.

- Creation of a randomly selected center point of RBF datasets.
- Transformation of input datasets of layer 1 into a radial space using Equation (21) on the basis of the RBF center point as follows:

#### 2.9. Sediment Rating Curve (SRC)

^{3}/day), where both are log-transformed, and a and b are constants that depend on the river and catchment characteristics.

#### 2.10. Performance Metrics for Model Evaluation

^{2}):

_{io}is the actual sediment load, S

_{is}is the model-predicted sediment and $\overline{{S}_{is}}$ is the average estimated sediment load.

_{po}is the actual peak SSY value and S

_{ps}is the model-simulated peak SSY value.

#### 2.11. Application of the ANN, MARS, SVR, M5Tree, RM5Tree and RSM Models

^{2}and minimum RMSE and MAPE values as performance criteria. Out of various input combinations, the following best input scenarios (S

_{1}–S

_{8}) developed for predictions of sediment yields in this study are listed below:

- (a)
- Flows:

_{1}= SSC

_{t}= f (β

_{1}, β

_{2}, β

_{3}, β

_{4}, β

_{5}, Q

_{t}, Q

_{t−1}, Q

_{t−2}, Q

_{t−3}, Q

_{t−4},) + e

_{i}

- (b)
- Snow cover area and flows:

_{2}= SSC

_{t}= f (β

_{1}, β

_{6}, β

_{7}, β

_{8}, SCA

_{t}, SCA

_{t−1}, SCA

_{t−2}, Q

_{t},) + e

_{i}

- (c)
- Flow, snow cover area and effective rainfall:

_{3}= SSC

_{t}= f (β

_{1}, β

_{9}, β

_{6}, β

_{10}, R

_{t−1}, SCA

_{t}, SCA

_{t−4}, Q

_{t},) + e

_{i}

- (d)
- Flow, snow cover area, temperature and evapotranspiration:

_{4}= SSC

_{t}= f (β

_{1}, β

_{11}, β

_{12}, β

_{6}, β

_{10}, T

_{t−}

_{1}, Evap

_{t−}

_{1}, SCA

_{t}, SCA

_{t−}

_{4}, Q

_{t}) + e

_{i}

_{5}= SSC

_{t}= f (β

_{1}, β

_{2}, β

_{11}, β

_{12}, β

_{6}, T

_{t−}

_{1}, Evap

_{t−}

_{1}, SCA

_{t}, Q

_{t}, Q

_{t−1}) + e

_{i}

- (e)
- Mean basin air temperature:

_{6}= SSC

_{t}= f (β

_{13}, β

_{11}, β

_{14}, β

_{15}, β

_{16}, T

_{t}, T

_{t−1}, T

_{t−2}, T

_{t−3}, T

_{t−4}) + e

_{i}

- (f)
- Flow, snow cover area, temperature, rainfall and evapotranspiration:

_{7}= SSC

_{t}= f (β

_{1}, β

_{13}, β

_{12}, β

_{6}, β

_{9}, T

_{t}, Evap

_{t−1}, SCA

_{t}, R

_{t−1}, Q

_{t}) + e

_{i}

_{8}= SSC

_{t}= f (T

_{t−1}, Evap

_{t−1}, SCA

_{t}, R

_{t−1}, β

_{1}, β

_{11}, β

_{12}, β

_{6}, β

_{9}, Q

_{t},) + e

_{i}

## 3. Results and Discussions

#### 3.1. Simulation Results of Snow Melting and Snow Cover Area

_{snow}= 4.2 mm/day/°C [4] of the snowmelt model for the Gilgit Basin. The previous case studies in the regions of the Upper Indus Basin (UIB) [57,58,105,106,107,108] found that the value of K

_{snow}ranged from 3 to 7 mm/day/°C. Thus, the value of k

_{snow}= 4.2 mm/day/°C of the current study lay within the range of past studies carried out for the calibrations and validations of the snowmelt runoff model. The difference between the K

_{snow}values found during different case studies was due to the use of different periods and grid resolutions of input and output datasets, threshold temperatures for separation of rainfall and snowmelts, and Gilgit River basin characteristics.

^{2}value of 0.90 between the MODIS-extracted snow cover fraction and simulated snow cover fraction during calibrations and testing. A greater than 70% goodness of fit for the snowmelt model was obtained using three performance criteria of R

^{2}, MAPE and RMSE for satisfactory estimations of the snow cover area and snowmelt. The time series plot between MODIS-observed snow cover and snow-model-simulated snow cover area during model calibration (2000–2007) and validation (2008–2010) period is shown in the Figure 9.

#### 3.2. Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC Models

_{2}(SCA

_{t}− SCA

_{t−2}, Q

_{t}). The ANN model with input combination S

_{2}had the lowest RMSE value of 0.40 and the highest R

^{2}value of 0.67 during the testing period compared with the other input combinations for sediment load predictions. Similarly, Table 5 shows the results of different input scenarios when using the MARS algorithm for the Gilgit Basin during the training and testing phases. The MARS model performed the best using input scenario S

_{3}(SCA

_{t}, SCA

_{t−4}, Q

_{t}, R

_{t−1}). During the testing period, the best MARS model with scenario S

_{3}produced the lowest RMSE value of 0.53 and the highest R

^{2}value of 0.68.

_{4}(SCA

_{t}, SCA

_{t−4}, Q

_{t}, Evap

_{t−1}, T

_{t−1}). The best SVR algorithm with the S

_{4}scenario had the lowest value of RMSE (0.51) and the highest R

^{2}(0.70) during the testing period. As is apparent from Table 7, the input scenario of S

_{2}(SCA

_{t}, SCA

_{t−2}, Q

_{t}) gave the best performance of the M5Tree model for the prediction of sediment yields. The best M5Tree model provided the lowest RMSE value of 0.59 and the highest R

^{2}value of 0.63 during the testing period.

_{8}(SCA

_{t}, Q

_{t}, Evap

_{t−1}, R

_{t−1}, T

_{t−1}) performed the best compared with the other input scenarios during the testing period for the RM5Tree algorithm for predictions of suspended sediments for the Gilgit River basin. The RM5Tree model provided the lowest RMSE value of 0.44 and the highest R

^{2}value of 0.72.

_{8}(SCA

_{t}, Q

_{t}, Evap

_{t−1}, R

_{t−1}, T

_{t−1}) compared with the other input scenarios for the estimation of sediments. The best RSM model had the lowest RMSE value of 0.51 and the highest R

^{2}value of 0.68 during the testing phase.

^{2}= 0.72) after the introduction of snow cover and effective mean rainfall combination; additional input parameters included the flows, mean evapotranspiration and average air temperature of the Gilgit River basin.

^{2}value of 0.72 when testing the calibrated models.

^{2}value of 0.72 during testing, while M5Tree seemed to have the most scattered estimates.

#### 3.3. Discussions

^{2}ranged from 0.78 to 0.82 during the testing period. The accuracy of the ANN model was superior to the other models. Moreover, for the prediction of the peak sediment, the relative accuracy of models ranged from 66.33 to 81.31%.

^{2}ranges from 0.68 to 0.72 during the testing period using the ANN, MARS, SVR, M5 Tree, RM5 Tree, RSM and SRC models with a non-random sampling of the datasets. Moreover, during the prediction of the peak sediment, the relative accuracies also ranged from 62.49 to 84.10%. It was also found that the RM5Tree model performed superior compared with the M5Tree, ANN, MARS, SVR, RSM and SRC models for the prediction of sediment yields in the complex sediment generation processes in cold regions. Therefore, this suggests that soft computing models can be successfully used for the prediction of non-linear processes, such as sediment yields.

## 4. Conclusions

^{2}, RMSE and MAPE of 0.72, 0.51 tons/day and 11.99%, respectively. The limitation of the present research was the availability of scarce datasets, especially the lower frequency of sediment measurements. However, soft computing models can also help to bridge these data gaps with the selection of a suitable soft computing modeling approach. In future studies, predictions of flows should also be carried out using input parameters of the hydroclimate, snow cover and evapotranspiration to check the applicability of the RM5Tree model.

## Author Contributions

## Funding

## Data Availability Statement

## Acknowledgments

## Conflicts of Interest

## References

- Foster, G.R.; Meyer, L.D. A Closed-Form Soil Erosion Equation for Upland Areas. In Sedimentation Symposium; Einstein, H.A., Shen, H.W., Eds.; Colorado State University: Fort Collins, CO, USA, 1972; pp. 12–19. [Google Scholar]
- Knack, I.M.; Shen, H.T. A numerical model for sediment transport and bed change with river ice. J. Hydraul. Res.
**2018**, 56, 844–856. [Google Scholar] [CrossRef] - Yuan, X.; Chen, C.; Lei, X.; Yuan, Y.; Muhammad Adnan, R. Monthly runoff forecasting based on LSTM–ALO model. Stoch. Environ. Res. Risk Assess.
**2018**, 32, 2199–2212. [Google Scholar] [CrossRef] - Hussan, W.U.; Shahzad, M.K.; Seidel, F.; Nestmann, F. Application of Soft Computing Models with Input Vectors of Snow Cover Area in Addition to Hydro-Climatic Data to Predict the Sediment Loads. Water
**2020**, 12, 1481. [Google Scholar] [CrossRef] - Gomez, B. Bedload transport. Earth Sci. Rev.
**1991**, 31, 89–132. [Google Scholar] [CrossRef] - Parsons, A.J.; Cooper, J.; Wainwright, J. What is suspended sediment? Earth Surf. Process. Landforms
**2015**, 40, 1417–1420. [Google Scholar] [CrossRef] [Green Version] - Hussan, W.U.; Shahzad, M.K.; Seidel, F.; Costa, A.; Nestmann, F. Comparative Assessment of Spatial Variability and Trends of Flows and Sediments under the Impact of Climate Change in the Upper Indus Basin. Water
**2020**, 12, 730. [Google Scholar] [CrossRef] [Green Version] - Kemp, P.; Sear, D.; Collins, A.; Naden, P.; Jones, I. The impacts of fine sediment on riverine fish. Hydrol. Process.
**2011**, 25, 1800–1821. [Google Scholar] [CrossRef] - Mohammadi, B.; Guan, Y.; Moazenzadeh, R.; Safari, M.J.S. Implementation of hybrid particle swarm optimization-differential evolution algorithms coupled with multi-layer perceptron for suspended sediment load estimation. Catena
**2021**, 198, 105024. [Google Scholar] [CrossRef] - Jiang, B.; Liu, H.; Xing, Q.; Cai, J.; Zheng, X.; Li, L.; Liu, S.; Zheng, Z.; Xu, H.; Meng, L. Evaluating traditional empirical models and BPNN models in monitoring the concentrations of chlorophyll-A and total suspended particulate of eutrophic and turbid waters. Water
**2021**, 13, 650. [Google Scholar] [CrossRef] - Bashar, K.E.; ElTahir, E.O.; Fattah, S.A.; Ali, A.S.; Osman, M. Nile Basin Reservoir Sedimentation Prediction and Mitigation. Nile Basin Capacity Building Network Cairo Egypt. 2010. Available online: https://www.nbcbn.com/ctrl/images/img/uploads/4427_31104551.pdf (accessed on 4 March 2023).
- Ghernaout, R.; Remini, B. Impact of suspended sediment load on the silting of SMBA reservoir (Algeria). Environ. Earth Sci.
**2014**, 72, 915–929. [Google Scholar] [CrossRef] - Wisser, D.; Frolking, S.; Hagen, S.; Bierkens, M.F.P. Beyond peak reservoir storage? A global estimate of declining water storage capacity in large reservoirs. Water Resour. Res.
**2013**, 49, 5732–5739. [Google Scholar] [CrossRef] [Green Version] - Khan, N.M.; Tingsanchali, T. Optimization and simulation of reservoir operation with sediment evacuation: A case study of the Tarbela Dam, Pakistan. Hydrol. Process.
**2009**, 23, 730–747. [Google Scholar] [CrossRef] - Ackers, J.; Hieatt, M.; Molyneux, J.D. Mangla reservoir, Pakistan—Approaching 50 years of service. Dams Reserv.
**2016**, 26, 68–83. [Google Scholar] [CrossRef] - Adnan, R.M.; Yaseen, Z.M.; Heddam, S.; Shahid, S.; Sadeghi-Niaraki, A.; Kisi, O. Predictability performance enhancement for suspended sediment in rivers: Inspection of newly developed hybrid adaptive neuro-fuzzy system model. Int. J. Sediment Res.
**2022**, 37, 383–398. [Google Scholar] [CrossRef] - Muhammad, R.; Zhongmin, A.; Kulwinder, L.; Parmar, S.; Soni, K.; Kisi, O.; Adnan, R.M. Modeling monthly streamflow in mountainous basin by MARS, GMDH-NN and DENFIS using hydroclimatic data. Neural Comput. Appl.
**2020**, 33, 2853–2871. [Google Scholar] - Ahmad, N. Water Resources of Pakistan and Their Utilization; Shahid Nazir: Lahore, Pakistan, 1993; Available online: http://catalogue.nust.edu.pk/cgi-bin/koha/opac-detail.pl?biblionumber=695 (accessed on 21 May 2020).
- Pakistan Water Sector Strategy. In Executive Summary; Report; Ministry of Water and Power, Office of the Chief Engineering Advisor/Chairman Federal Flood Commission, Government of Pakistan: Islamabad, Pakistan, 2002; Volume 1.
- Faran Ali, K.; de Boer, D.H. Factors controlling specific sediment yield in the upper Indus River basin, Northern Pakistan. Hydrol. Process.
**2008**, 22, 3102–3114. [Google Scholar] [CrossRef] - Chen, X.Y.; Chau, K.W. A Hybrid Double Feedforward Neural Network for Suspended Sediment Load Estimation. Water Resour. Manag.
**2016**, 30, 2179–2194. [Google Scholar] [CrossRef] - Jain, S.K. Development of Integrated Sediment Rating Curves Using ANNs. J. Hydraul. Eng.
**2001**, 127, 30–37. [Google Scholar] [CrossRef] - Kerem Cigizoglu, H.; Kisi, Ö. Methods to improve the neural network performance in suspended sediment estimation. J. Hydrol.
**2006**, 317, 221–238. [Google Scholar] [CrossRef] - Rajaee, T.; Mirbagheri, S.A.; Zounemat-Kermani, M.; Nourani, V. Daily suspended sediment concentration simulation using ANN and neuro-fuzzy models. Sci. Total Environ.
**2009**, 407, 4916–4927. [Google Scholar] [CrossRef] - Melesse, A.M.; Ahmad, S.; McClain, M.E.; Wang, X.; Lim, Y.H. Suspended sediment load prediction of river systems: An artificial neural network approach. Agric. Water Manag.
**2011**, 98, 855–866. [Google Scholar] [CrossRef] - Taşar, B.; Kaya, Y.; Varçin, H.; Üneş, F.; Demirci, M. Forecasting of Suspended Sediment in Rivers Using Artificial Neural Networks Approach. Int. J. Adv. Eng. Res. Sci.
**2017**, 4, 79–84. [Google Scholar] [CrossRef] - Kumar, D.; Pandey, A.; Sharma, N.; Flügel, W.-A. Modeling Suspended Sediment Using Artificial Neural Networks and TRMM-3B42 Version 7 Rainfall Dataset. J. Hydrol. Eng.
**2015**, 20, C4014007. [Google Scholar] [CrossRef] - Cobaner, M.; Unal, B.; Kisi, O. Suspended sediment concentration estimation by an adaptive neuro-fuzzy and neural network approaches using hydro-meteorological data. J. Hydrol.
**2009**, 367, 52–61. [Google Scholar] [CrossRef] - Kisi, O.; Haktanir, T.; Ardiclioglu, M.; Ozturk, O.; Yalcin, E.; Uludag, S. Adaptive neuro-fuzzy computing technique for suspended sediment estimation. Adv. Eng. Softw.
**2009**, 40, 438–444. [Google Scholar] [CrossRef] - Kisi, O.; Shiri, J. River suspended sediment estimation by climatic variables implication: Comparative study among soft computing techniques. Comput. Geosci.
**2012**, 43, 73–82. [Google Scholar] [CrossRef] - Emamgholizadeh, S.; Demneh, R. The comparison of artificial intelligence models for the estimation of daily suspended sediment load: A case study on Telar and Kasilian Rivers in Iran. Water Sci. Technol. Water Supply
**2018**, 19, 165–178. [Google Scholar] [CrossRef] [Green Version] - Cimen, M. Estimation of daily suspended sediments using support vector machines. Hydrol. Sci. J.
**2008**, 53, 656–666. [Google Scholar] [CrossRef] - Buyukyildiz, M.; Kumcu, S.Y. An Estimation of the Suspended Sediment Load Using Adaptive Network Based Fuzzy Inference System, Support Vector Machine and Artificial Neural Network Models. Water Resour. Manag.
**2017**, 31, 1343–1359. [Google Scholar] [CrossRef] - Kakaei Lafdani, E.; Moghaddam Nia, A.; Ahmadi, A. Daily suspended sediment load prediction using artificial neural networks and support vector machines. J. Hydrol.
**2013**, 478, 50–62. [Google Scholar] [CrossRef] - Noori, R.; Ghiasi, B.; Salehi, S.; Esmaeili Bidhendi, M.; Raeisi, A.; Partani, S.; Meysami, R.; Mahdian, M.; Hosseinzadeh, M.; Abolfathi, S. An efficient data driven-based model for prediction of the total sediment load in rivers. Hydrology
**2022**, 9, 36. [Google Scholar] [CrossRef] - Rajaee, T. Wavelet and ANN combination model for prediction of daily suspended sediment load in rivers. Sci. Total Environ.
**2011**, 409, 2917–2928. [Google Scholar] [CrossRef] [PubMed] - Olyaie, E.; Banejad, H.; Chau, K.-W.; Melesse, A.M. A comparison of various artificial intelligence approaches performance for estimating suspended sediment load of river systems: A case study in United States. Environ. Monit. Assess.
**2015**, 187, 189. [Google Scholar] [CrossRef] - Khosravi, K.; Rezaie, F.; Cooper, J.R.; Kalantari, Z.; Abolfathi, S.; Hatamiafkoueieh, J. Soil water erosion susceptibility assessment using deep learning algorithms. J. Hydrol.
**2023**, 618, 129229. [Google Scholar] [CrossRef] - Nourani, V.; Andalib, G. Daily and Monthly Suspended Sediment Load Predictions Using Wavelet Based Artificial Intelligence Approaches. J. Mt. Sci.
**2015**, 12, 85–100. [Google Scholar] [CrossRef] - Alizamir, M.; Kisi, O.; Adnan, R.M.; Kuriqi, A. Modelling reference evapotranspiration by combining neuro-fuzzy and evolutionary strategies. Acta Geophys.
**2020**, 68, 1113–1126. [Google Scholar] [CrossRef] - Mostafa, R.R.; Kisi, O.; Adnan, R.M.; Sadeghifar, T.; Kuriqi, A. Modeling Potential Evapotranspiration by Improved Machine Learning Methods Using Limited Climatic Data. Water
**2023**, 15, 486. [Google Scholar] [CrossRef] - Ikram, R.M.A.; Mostafa, R.R.; Chen, Z.; Parmar, K.S.; Kisi, O.; Zounemat-Kermani, M. Water Temperature Prediction Using Improved Deep Learning Methods through Reptile Search Algorithm and Weighted Mean of Vectors Optimizer. J. Mar. Sci. Eng.
**2023**, 11, 259. [Google Scholar] [CrossRef] - Hild, C.; Bozdogan, H. The use of information-based model evaluation criteria in the GMDH algorithm. Syst. Anal. Model. Simul.
**1995**, 20, 29–50. [Google Scholar] - Ivakhnenko, A.G. The Group Method of Data of Handling; A rival of the method of stochastic approximation. Sov. Autom. Control
**1968**, 1, 43–55. [Google Scholar] - Yeganeh-Bakhtiary, A.; Eyvazoghli, H.; Shabakhty, N.; Kamranzad, B.; Abolfathi, S. Machine Learning as a Downscaling Approach for Prediction of Wind Characteristics under Future Climate Change Scenarios. Complexity
**2022**, 13, 8451812. [Google Scholar] [CrossRef] - Abolfathi, S.; Yeganeh-Bakhtiary, A.; Hamze-Ziabari, S.M.; Borzooei, S. Wave runup prediction using M5′ model tree algorithm. Ocean Eng.
**2016**, 112, 76–81. [Google Scholar] [CrossRef] - Rahgoshay, M.; Feiznia, S.; Arian, M.; Hashemi, S.A.A. Simulation of daily suspended sediment load using an improved model of support vector machine and genetic algorithms and particle swarm. Arab. J. Geosci.
**2019**, 12, 277. [Google Scholar] [CrossRef] - Malik, A.; Kumar, A.; Kisi, O.; Shiri, J. Evaluating the performance of four different heuristic approaches with Gamma test for daily suspended sediment concentration modeling. Environ. Sci. Pollut. Res. Int.
**2019**, 26, 22670–22687. [Google Scholar] [CrossRef] [PubMed] - Adnan, R.M.; Liang, Z.; Trajkovic, S.; Zounemat-Kermani, M.; Li, B.; Kisi, O. Daily streamflow prediction using optimally pruned extreme learning machine. J. Hydrol.
**2019**, 577, 123981. [Google Scholar] [CrossRef] - Adnan, R.M.; Liang, Z.; El-Shafie, A.; Zounemat-Kermani, M.; Kisi, O. Prediction of Suspended Sediment Load Using Data-Driven Models. Water
**2019**, 11, 2060. [Google Scholar] [CrossRef] [Green Version] - Yilmaz, B.; Aras, E.; Nacar, S.; Kankal, M. Estimating suspended sediment load with multivariate adaptive regression spline, teaching-learning based optimization, and artificial bee colony models. Sci. Total Environ.
**2018**, 639, 826–840. [Google Scholar] [CrossRef] - Chachi, J.; Taheri, S.M.; Pazhand, H.R. Suspended load estimation using L1-fuzzy regression, L2-fuzzy regression and MARS-fuzzy regression models. Hydrol. Sci. J.
**2016**, 61, 1489–1502. [Google Scholar] [CrossRef] [Green Version] - Janga Reddy, M.; Ghimire, B. Use of Model Tree and Gene Expression Programming to Predict the Suspended Sediment Load in Rivers. J. Intell. Syst.
**2009**, 18, 211–228. [Google Scholar] [CrossRef] - Goyal, M.K. Modeling of Sediment Yield Prediction Using M5 Model Tree Algorithm and Wavelet Regression. Water Resour. Manag.
**2014**, 28, 1991–2003. [Google Scholar] [CrossRef] - Senthil Kumar, A.R.; Ojha, C.S.P.; Goyal, M.K.; Singh, R.D.; Swamee, P.K. Modeling of Suspended Sediment Concentration at Kasol in India Using ANN, Fuzzy Logic, and Decision Tree Algorithms. J. Hydrol. Eng.
**2012**, 17, 394–404. [Google Scholar] [CrossRef] - Tao, H.; Keshtegar, B.; Yaseen, Z.M. The feasibility of integrative radial basis M5Tree predictive model for river suspended sediment load simulation. Water Resour. Manag.
**2019**, 33, 4471–4490. [Google Scholar] [CrossRef] - Tahir, A.A.; Chevallier, P.; Arnaud, Y.; Neppel, L.; Ahmad, B. Modeling snowmelt-runoff under climate scenarios in the Hunza River basin, Karakoram Range, Northern Pakistan. J. Hydrol.
**2011**, 409, 104–117. [Google Scholar] [CrossRef] - Adnan, M.; Nabi, G.; Saleem Poomee, M.; Ashraf, A. Snowmelt runoff prediction under changing climate in the Himalayan cryosphere: A case of Gilgit River Basin. Geosci. Front.
**2017**, 8, 941–949. [Google Scholar] [CrossRef] [Green Version] - Immerzeel, W.W.; Wanders, N.; Lutz, A.F.; Shea, J.M.; Bierkens, M.F.P. Reconciling high-altitude precipitation in the upper Indus basin with glacier mass balances and runoff. Hydrol. Earth Syst. Sci.
**2015**, 19, 4673–4687. [Google Scholar] [CrossRef] [Green Version] - Lutz, A.F.; Immerzeel, W.W. HI-AWARE Reference Climate Dataset for the Indus, Ganges and Brahmaputra River Basins; Future Water Report 146; CRDI: Wageningen, The Netherlands, 2015; Available online: https://www.futurewater.eu/wp-content/uploads/2015/10/Report_IGB_historical_climate_dataset.pdf (accessed on 21 May 2020).
- Shahin, M.A.; Maier, H.R.; Jaksa, M.B. Data Division for Developing Neural Networks Applied to Geotechnical Engineering. J. Comput. Civ. Eng.
**2004**, 18, 105–114. [Google Scholar] [CrossRef] - Hewitt, K. The Karakoram Anomaly? Glacier Expansion and the ‘Elevation Effect’, Karakoram Himalaya. Mt. Res. Dev.
**2005**, 25, 332–340. [Google Scholar] [CrossRef] [Green Version] - Hewitt, K. Tributary glacier surges: An exceptional concentration at Panmah Glacier, Karakoram Himalaya. J. Glaciol.
**2007**, 53, 181–188. [Google Scholar] [CrossRef] [Green Version] - Winiger, M.; Gumpert, M.; Yamout, H. Karakorum-Hindukush-western Himalaya: Assessing high-altitude water resources. Hydrol. Process.
**2005**, 19, 2329–2338. [Google Scholar] [CrossRef] - Hock, R. Temperature index melt modelling in mountain areas. J. Hydrol.
**2003**, 282, 104–115. [Google Scholar] [CrossRef] - Costa, A.; Molnar, P.; Stutenbecker, L.; Bakker, M.; Silva, T.A.; Schlunegger, F.; Lane, S.N.; Loizeau, J.-L.; Girardclos, S. Temperature signal in suspended sediment export from an Alpine catchment. Hydrol. Earth Syst. Sci.
**2018**, 22, 509–528. [Google Scholar] [CrossRef] [Green Version] - Govindaraju, R.S. Artificial Neural Networks in Hydrology. I: Preliminary Concepts. J. Hydrol. Eng.
**2000**, 5, 115–123. [Google Scholar] - Govindaraju, R.S. Artificial Neural Networks in Hydrology. II: Hydrologic Applications. J. Hydrol. Eng.
**2000**, 5, 124–137. [Google Scholar] - Haykin, S.S. Neural Networks. A Comprehensive Foundation/Simon Haykin, 2nd ed.; Prentice Hall: London, UK; Upper Saddle River, NJ, USA, 1999; ISBN 0132733501. [Google Scholar]
- Muhammad Adnan, R.; Yuan, X.; Kisi, O.; Yuan, Y.; Tayyab, M.; Lei, X. Application of soft computing models in streamflow forecasting. In Proceedings of the Institution of Civil Engineers-Water Management; Thomas Telford Ltd.: London, UK, 2019; Volume 172, pp. 123–134. [Google Scholar]
- Rumelhart, D.E.; Hinton, G.E.; Williams, R.J. Learning Internal Representations by Error Propagation: Parallel Distributed Processing: Explorations in the Microstructure of Cognition; Rumelhart, D.E., McClelland, J.L., PDP Research Group, Eds.; MIT Press: Cambridge, MA, USA, 1986; Volume 1, pp. 318–362. ISBN 0-262-68053-X. [Google Scholar]
- Minns, A.W.; Hall, M.J. Artificial neural networks as rainfall-runoff models. Hydrol. Sci. J.
**1996**, 41, 399–417. [Google Scholar] [CrossRef] - Ikram, R.M.A.; Ewees, A.A.; Parmar, K.S.; Yaseen, Z.M.; Shahid, S.; Kisi, O. The Viability of Extended Marine Predators Algorithm-Based Artificial Neural Networks for Streamflow Prediction. Appl. Soft Comput.
**2022**, 131, 109739. [Google Scholar] [CrossRef] - Kisi, O.; Keshtegar, B.; Zounemat-Kermani, M.; Heddam, S.; Trung, N.-T. Modeling reference evapotranspiration using a novel regression-based method: Radial Basis M5 Model Tree. Theor. Appl. Climatol.
**2021**, 145, 639–659. [Google Scholar] [CrossRef] - Friedman, J.H. Multivariate Adaptive Regression Splines. Ann. Stat.
**1991**, 19, 1–67. [Google Scholar] [CrossRef] - Adnan, R.M.; Liang, Z.; Heddam, S.; Zounemat-Kermani, M.; Kisi, O.; Li, B. Least square support vector machine and multivariate adaptive regression splines for streamflow prediction in mountainous basin using hydro-meteorological data as inputs. J. Hydrol.
**2020**, 586, 124371. [Google Scholar] [CrossRef] - Wang, L.; Kisi, O.; Zounemat-Kermani, M.; Gan, Y. Comparison of six different soft computing methods in modeling evaporation in different climates. Hydrol. Earth Syst. Sci. Discuss.
**2016**, 1–51. [Google Scholar] [CrossRef] - Jalali-Heravi, M.; Asadollahi-Baboli, M.; Mani-Varnosfaderani, A. Shuffling multivariate adaptive regression splines and adaptive neuro-fuzzy inference system as tools for QSAR study of SARS inhibitors. J. Pharm. Biomed. Anal.
**2009**, 50, 853–860. [Google Scholar] [CrossRef] - Zhang, J.; Gao, L.; Xiao, M. A new hybrid reliability-based design optimization method under random and interval uncertainties. Int. J. Numer. Methods Eng.
**2020**, 121, 4435–4457. [Google Scholar] [CrossRef] - Zhang, Y.; Gao, L.; Xiao, M. Maximizing natural frequencies of inhomogeneous cellular structures by kriging-assisted multiscale topology optimization. Comput. Struct.
**2020**, 230, 106197. [Google Scholar] [CrossRef] - Zhang, W.; Goh, A.T.C. Evaluating seismic liquefaction potential using multivariate adaptive regression splines and logistic regression. Geomech. Eng.
**2016**, 10, 269–284. [Google Scholar] [CrossRef] - Keshtegar, B.; Mert, C.; Kisi, O. Comparison of four heuristic regression techniques in solar radiation modeling: Kriging Method VS RSM, Mars and M5 Model Tree. Renew. Sustain. Energy Rev.
**2018**, 81, 330–341. [Google Scholar] [CrossRef] - Vapnik, V.N. The Nature of Statistical Learning Theory; Springer Science & Business Media: Berlin, Germany, 2013. [Google Scholar]
- Xiao, M.; Zhang, J.; Gao, L. A system active learning Kriging method for system reliability-based design optimization with a multiple response model. Reliab. Eng. Syst. Saf.
**2020**, 199, 106935. [Google Scholar] [CrossRef] - Zhang, J.; Xiao, M.; Gao, L.; Chu, S. Probability and interval hybrid reliability analysis based on adaptive local approximation of projection outlines using support vector machine. Comput. Aided Civ. Infrastruct. Eng.
**2019**, 34, 991–1009. [Google Scholar] [CrossRef] - Xiao, M.; Gao, L.; Xiong, H.; Luo, Z. An efficient method for reliability analysis under epistemic uncertainty based on evidence theory and support vector regression. J. Eng. Des.
**2015**, 26, 340–364. [Google Scholar] [CrossRef] - Fink, O.; Zio, E.; Weidmann, U. Predicting component reliability and level of degradation with complex-valued neural networks. Reliab. Eng. Syst. Saf.
**2014**, 121, 198–206. [Google Scholar] [CrossRef] [Green Version] - Gunn, S.R. Support Vector Machines for Classification and Regression; ISIS Technical Report; University of Southampton: Southampton, UK, 1998; Volume 14, pp. 5–16. [Google Scholar]
- Alamoudi, M.; Taylan, O.; Keshtegar, B.; Abusurrah, M.; Balubaid, M. Modeling sulphur dioxide (SO
_{2}) quality levels of Jeddah City using machine learning approaches with meteorological and chemical factors. Sustainability**2022**, 14, 16291. [Google Scholar] [CrossRef] - Hill, W.J.; Hunter, W.G. A review of response surface methodology: A literature survey. Technometrics
**1966**, 8, 571. [Google Scholar] [CrossRef] - Gunst, R.F. Response surface methodology: Process and product optimization using designed experiments. Technometrics
**1996**, 38, 284–286. [Google Scholar] [CrossRef] - Keshtegar, B.; El Amine Ben Seghier, M. Modified response surface method basis harmony search to predict the burst pressure of corroded pipelines. Eng. Fail. Anal.
**2018**, 89, 177–199. [Google Scholar] [CrossRef] - Keshtegar, B.; Heddam, S. Modeling daily dissolved oxygen concentration using modified response surface method and artificial neural network: A comparative study. Neural Comput. Appl.
**2017**, 30, 2995–3006. [Google Scholar] [CrossRef] - Ahmadi, A.A.; Arabbeiki, M.; Ali, H.M.; Goodarzi, M.; Safaei, M.R. Configuration and optimization of a minichannel using water–alumina nanofluid by non-dominated sorting genetic algorithm and response surface method. Nanomaterials
**2020**, 10, 901. [Google Scholar] [CrossRef] - Keshtegar, B.; Kisi, O. Modified response-surface method: New approach for modeling pan evaporation. J. Hydrol. Eng.
**2017**, 22, 04017045. [Google Scholar] [CrossRef] - Keshtegar, B.; Bagheri, M.; Fei, C.-W.; Lu, C.; Taylan, O.; Thai, D.-K. Multi-extremum-modified response basis model for nonlinear response prediction of Dynamic Turbine Blisk. Eng. Comput.
**2021**, 38, 1243–1254. [Google Scholar] [CrossRef] - Lu, C.; Fei, C.-W.; Liu, H.-T.; Li, H.; An, L.-Q. Moving extremum surrogate modeling strategy for dynamic reliability estimation of turbine blisk with multi-physics fields. Aerosp. Sci. Technol.
**2020**, 106, 106112. [Google Scholar] [CrossRef] - Solomatine, D.P.; Xue, Y. M5 model trees and neural networks: Application to flood forecasting in the upper reach of the Huai River in China. J. Hydrol. Eng.
**2004**, 9, 491–501. [Google Scholar] [CrossRef] - Adnan, R.M.; Petroselli, A.; Heddam, S.; Santos, C.A.G.; Kisi, O. Short term rainfall-runoff modelling using several machine learning methods and a conceptual event-based model. Stoch. Environ. Res. Risk Assess.
**2021**, 35, 597–616. [Google Scholar] [CrossRef] - Rahimikhoob, A. Comparison of M5 model tree and Artificial Neural Network’s methodologies in modelling daily reference evapotranspiration from NOAA satellite images. Water Resour. Manag.
**2016**, 30, 3063–3075. [Google Scholar] [CrossRef] - Zounemat-Kermani, M.; Keshtegar, B.; Kisi, O.; Scholz, M. Towards a comprehensive assessment of statistical versus soft computing models in hydrology: Application to monthly pan evaporation prediction. Water
**2021**, 13, 2451. [Google Scholar] [CrossRef] - Chen, S.; Cowan, C.F.N.; Grant, P.M. Orthogonal least squares learning algorithm for radial basis function networks. IEEE Trans. Neural Netw.
**1991**, 2, 302–309. [Google Scholar] [CrossRef] [PubMed] [Green Version] - Zhang, J.; Xiao, M.; Gao, L.; Chu, S. A combined projection-outline-based Active Learning Kriging and adaptive importance sampling method for hybrid reliability analysis with small failure probabilities. Comput. Methods Appl. Mech. Eng.
**2019**, 344, 13–33. [Google Scholar] [CrossRef] - Keshtegar, B.; Kisi, O. RM5Tree: Radial Basis M5 model tree for accurate structural reliability analysis. Reliab. Eng. Syst. Saf.
**2018**, 180, 49–61. [Google Scholar] [CrossRef] - Tahir, A.A.; Hakeem, S.A.; Hu, T.; Hayat, H.; Yasir, M. Simulation of snowmelt-runoff under climate change scenarios in a data-scarce mountain environment. Int. J. Digit. Earth
**2019**, 12, 910–930. [Google Scholar] [CrossRef] - Hayat, H.; Akbar, T.; Tahir, A.; Hassan, Q.; Dewan, A.; Irshad, M. Simulating Current and Future River-Flows in the Karakoram and Himalayan Regions of Pakistan Using Snowmelt-Runoff Model and RCP Scenarios. Water
**2019**, 11, 761. [Google Scholar] [CrossRef] [Green Version] - Lutz, A.F.; Immerzeel, W.W.; Kraaijenbrink, P.D.A.; Shrestha, A.B.; Bierkens, M.F.P. Climate Change Impacts on the Upper Indus Hydrology: Sources, Shifts and Extremes. PLoS ONE
**2016**, 11, e0165630. [Google Scholar] [CrossRef] [Green Version] - Adnan, M.; Nabi, G.; Kang, S.; Zhang, G.; Adnan, R.M.; Anjum, M.N.; Iqbal, M.; Ali, A.F. Snowmelt Runoff Modelling under Projected Climate Change Patterns in the Gilgit River Basin of Northern Pakistan. Pol. J. Environ. Stud.
**2017**, 26, 525–542. [Google Scholar] [CrossRef] - Tao, H.; Al-Khafaji, Z.S.; Qi, C.; Zounemat-Kermani, M.; Kisi, O.; Tiyasha, T.; Chau, K.-W.; Nourani, V.; Melesse, A.M.; Elhakeem, M.; et al. Artificial intelligence models for suspended river sediment prediction: State-of-the art, modeling framework appraisal, and proposed future research directions. Eng. Appl. Comput. Fluid Mech.
**2021**, 15, 1585–1612. [Google Scholar] [CrossRef] - Kisi, O.; Heddam, S.; Keshtegar, B.; Piri, J.; Adnan, R. Predicting daily streamflow in a cold climate using a novel data mining technique: Radial M5 Model Tree. Water
**2022**, 14, 1449. [Google Scholar] [CrossRef]

**Figure 1.**Map of the Gilgit River study area [4].

**Figure 2.**(

**a**) Mean temperature (T

_{mean}), discharge (Q) and SSC at the Gilgit gauge; (

**b**) snow-covered area (SCA), mean rainfall (R

_{mean}) and mean evapotranspiration (Evap

_{mean}) for the Gilgit Basin during 1981–2010.

**Figure 3.**MLPNN model structure with N input, M hidden and 1 output neurons [74].

**Figure 7.**Schematic diagram of a radial basis function transformation (

**K**) for $\mathit{C}$ = 0 and $\epsilon $ = 0.5.

**Figure 8.**Schematic diagram of a radial basis RM5 tree model [74].

**Figure 11.**Scatter plots of the observed and predicted SSYs that were found using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models.

**Figure 12.**Time series plots of the observed and predicted SSYs that were found using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models.

**Figure 13.**Time series plots of the best performance measures for the predictions of SSYs during high and low flow periods that were found using the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models in predictions of sediment yields for the Gilgit Rive basin.

**Table 3.**Statistical measurements for the accuracy of the temperature index snow model’s results that predicted snowmelt and snow fractions during the calibration (2000–2007) and validation (2008) periods.

k_{snow} = 4.2 mm/Day/°C | ||
---|---|---|

Calibration Period (2000–2007) | Validation Period (2008–2010) | |

R^{2} | 0.90 | 0.90 |

MAPE | 0.12 | 0.10 |

RMSE | 0.15 | 0.15 |

**Table 4.**Training and testing statistics of the ANN algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.86 | 0.62 | 0.40 | 0.61 | 9.89 | 12.90 |

S_{2} | SCA, _{t}SCA, _{t−2}Q_{t} | 0.86 | 0.67 | 0.40 | 0.54 | 9.94 | 12.45 |

S_{3} | SCA_{t}, SCA_{t−4}, Q_{t}, R_{t−1} | 0.86 | 0.64 | 0.40 | 0.58 | 9.83 | 12.74 |

S_{4} | SCA_{t}, SCA_{t−4}, Q_{t}, Evap_{t−1}, T_{t−1} | 0.85 | 0.64 | 0.40 | 0.57 | 9.93 | 13.17 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.86 | 0.64 | 0.40 | 0.60 | 9.68 | 14.21 |

S_{6} | T_{t} − T_{t−4} | 0.81 | 0.60 | 0.46 | 0.61 | 11.49 | 14.14 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.86 | 0.64 | 0.40 | 0.60 | 13.17 | 9.83 |

S_{8} | SCA_{t}, Q_{t}, Evap_{t−1}, R_{t−1}, T_{t−1} | 0.86 | 0.65 | 0.40 | 0.57 | 9.80 | 12.71 |

**Table 5.**Training and testing statistics of the MARS algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.84 | 0.64 | 0.42 | 0.58 | 10.69 | 12.97 |

S_{2} | SCA_{t}, SCA_{t−2}, Q_{t} | 0.82 | 0.67 | 0.44 | 0.54 | 10.65 | 12.03 |

S_{3} | SCA, _{t}SCA, _{t−4}Q, _{t}R_{t−1} | 0.83 | 0.68 | 0.44 | 0.53 | 10.79 | 11.71 |

S_{4} | SCA_{t}, SCA_{t−4}, Q_{t}, Evap_{t−1}, T_{t−1} | 0.85 | 0.64 | 0.40 | 0.55 | 10.03 | 12.21 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.84 | 0.66 | 0.42 | 0.55 | 10.38 | 12.24 |

S_{6} | T_{t} − T_{t−4} | 0.77 | 0.56 | 0.51 | 0.60 | 12.64 | 13.74 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.86 | 0.64 | 0.40 | 0.57 | 9.91 | 12.49 |

S_{8} | SCA_{t}, Q_{t}, Evap_{t−1}, R_{t−1}, T_{t−1} | 0.84 | 0.65 | 0.42 | 0.54 | 10.33 | 12.04 |

**Table 6.**Training and testing statistics of the SVR algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.82 | 0.69 | 0.45 | 0.53 | 10.79 | 11.94 |

S_{2} | SCA_{t}, SCA_{t−2}, Q_{t} | 0.86 | 0.69 | 0.40 | 0.57 | 9.37 | 11.80 |

S_{3} | SCA_{t}, SCA_{t−4}, Q_{t}, R_{t−1} | 0.83 | 0.69 | 0.43 | 0.51 | 10.35 | 11.30 |

S_{4} | SCA, _{t}SCA, _{t−4}Q, _{t}Evap, _{t−1}T_{t−1} | 0.84 | 0.70 | 0.42 | 0.51 | 9.81 | 10.92 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.85 | 0.62 | 0.41 | 0.60 | 9.76 | 12.38 |

S_{6} | T_{t} − T_{t-4} | 0.84 | 0.53 | 0.42 | 0.67 | 8.93 | 13.54 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.85 | 0.69 | 0.41 | 0.55 | 9.81 | 11.93 |

S_{8} | SCA_{t}, Q_{t}, Evap_{t−1}, R_{t−1}, T_{t−1} | 0.85 | 0.68 | 0.41 | 0.53 | 9.72 | 11.16 |

**Table 7.**Training and testing statistics of the M5Tree algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.94 | 0.62 | 0.25 | 0.64 | 5.02 | 15.13 |

S_{2} | SCA, _{t}SCA, _{t−2}Q_{t} | 0.95 | 0.63 | 0.24 | 0.59 | 4.71 | 14.07 |

S_{3} | SCA_{t}, SCA_{t−4}, Q_{t}, R_{t−1} | 0.95 | 0.52 | 0.24 | 0.72 | 5.08 | 16.06 |

S_{4} | SCA_{t}, SCA_{t−4}, Q_{t}, Evap_{t−1}, T_{t−1} | 0.95 | 0.56 | 0.23 | 0.65 | 5.11 | 15.64 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.96 | 0.59 | 0.21 | 0.63 | 4.66 | 15.14 |

S_{6} | T_{t} − T_{t−4} | 0.96 | 0.50 | 0.21 | 0.72 | 4.73 | 17.16 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.95 | 0.57 | 0.23 | 0.67 | 4.90 | 16.36 |

S_{8} | SCA_{t}, Q_{t}, Evap_{t−1}, R_{t−1}, T_{t−1} | 0.95 | 0.59 | 0.22 | 0.65 | 4.81 | 15.08 |

**Table 8.**Training and testing statistics of the RM5Tree algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.81 | 0.71 | 0.46 | 0.53 | 11.08 | 11.85 |

S_{2} | SCA_{t}, SCA_{t−2}, Q_{t} | 0.83 | 0.70 | 0.44 | 0.52 | 10.73 | 11.70 |

S_{3} | SCA_{t}, SCA_{t−4}, Q_{t}, R_{t−1} | 0.81 | 0.70 | 0.47 | 0.52 | 11.47 | 12.00 |

S_{4} | SCA_{t}, SCA_{t−4}, Q_{t}, Evap_{t−1}, T_{t−1} | 0.83 | 0.71 | 0.44 | 0.51 | 10.75 | 11.76 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.82 | 0.72 | 0.44 | 0.52 | 10.69 | 12.03 |

S_{6} | T_{t} − T_{t−4} | 0.76 | 0.60 | 0.51 | 0.58 | 12.92 | 13.67 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.83 | 0.71 | 0.44 | 0.54 | 10.66 | 12.36 |

S_{8} | SCA, _{t}Q, _{t}Evap, _{t−1}R, _{t−1}T_{t−1} | 0.83 | 0.72 | 0.44 | 0.51 | 10.76 | 11.99 |

**Table 9.**Training and testing statistics of the RSM algorithm using various input combinations for the Gilgit River basin.

Scenarios | Model Inputs | R^{2} | RMSE | MAPE (%) | |||
---|---|---|---|---|---|---|---|

Training | Testing | Training | Testing | Training | Testing | ||

S_{1} | Q_{t}, Q_{t−1} − Q_{t−4} | 0.82 | 0.66 | 0.45 | 0.59 | 10.90 | 13.07 |

S_{2} | SCA_{t}, SCA_{t−2}, Q_{t} | 0.83 | 0.66 | 0.43 | 0.55 | 10.56 | 12.36 |

S_{3} | SCA_{t}, SCA_{t−4}, Q_{t}, R_{t−1}, | 0.83 | 0.65 | 0.44 | 0.55 | 10.68 | 12.10 |

S_{4} | SCA_{t}, SCA_{t−4}, Q_{t}, Evap_{t−1}, T_{t−1} | 0.83 | 0.66 | 0.43 | 0.54 | 10.46 | 12.22 |

S_{5} | SCA_{t}, Q_{t}, Q_{t−1}, T_{t−1}, Evap_{t−1} | 0.84 | 0.67 | 0.42 | 0.53 | 10.46 | 11.75 |

S_{6} | T_{t} − T_{t−4} | 0.77 | 0.58 | 0.50 | 0.60 | 12.54 | 14.08 |

S_{7} | SCA_{t}, Evap_{t−1}, Q_{t}, R_{t−1}, T_{t} | 0.84 | 0.68 | 0.42 | 0.53 | 10.38 | 12.00 |

S_{8} | SCA, _{t}Q, _{t}Evap, _{t−1}R, _{t−1}T_{t−1} | 0.84 | 0.68 | 0.42 | 0.51 | 10.42 | 11.72 |

**Table 10.**Performance accuracy comparison between the SRC, ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SVR model results in the predictions of sediment yields in the Gilgit River basin.

Models | Results for Training Period | Results for Testing Period | ||||
---|---|---|---|---|---|---|

R^{2} | RMSE | MAPE (%) | R^{2} | RMSE | MAPE (%) | |

SRC | 0.80 | 0.49 | 13.29 | 0.71 | 0.60 | 13.82 |

ANN | 0.86 | 0.40 | 9.94 | 0.67 | 0.54 | 12.45 |

MARS | 0.83 | 0.44 | 10.79 | 0.68 | 0.53 | 11.71 |

SVR | 0.84 | 0.42 | 9.81 | 0.70 | 0.51 | 10.92 |

M5Tree | 0.95 | 0.24 | 4.71 | 0.63 | 0.59 | 14.07 |

RM5Tree | 0.83 | 0.44 | 10.76 | 0.72 | 0.51 | 11.99 |

RSM | 0.84 | 0.42 | 10.42 | 0.68 | 0.51 | 11.72 |

**Table 11.**Comparison of the ANN, MARS, SVR, M5Tree, RM5Tree, RSM and SRC models’ absolute sediment fluxes and relative accuracies (%) for the peak estimations of the SSY for the Gilgit gauging station.

Year | Peaks > 3200 [tons/Day] | ANN [tons/Day] | MARS [tons/Day] | SVR [tons/Day] | M5Tree [tons/Day] | RM5Tree [tons/Day] | RSM [tons/Day] | SRC [tons/Day] |
---|---|---|---|---|---|---|---|---|

1983 | 3901 | 4092 (95.09) | 3603 (89.81) | 4376 (93.07) | 3432 (87.99) | 3861 (98.99) | 4163 (93.28) | 5008 (71.62) |

1984 | 4955 | 3945 (79.61) | 3960 (79.93) | 2937 (74.46) | 4410 (89.01) | 3135 (63.28) | 3428 (69.19) | 4704 (94.93) |

1991 | 3256 | 3013 (92.52) | 2917 (89.57) | 2916 (96.80) | 3140 (96.43) | 3024 (92.87) | 3022 (92.80) | 4806 (52.40) |

2003 | 4057 | 3085 (76.03) | 2741 (67.57) | 2516 (81.56) | 3332 (82.12) | 2904 (71.57) | 2568 (63.29) | 4732 (83.38) |

2005 | 16,898 | 10,113 (59.85) | 10,585 (62.4) | 13,794 (63.60) | 7678 (45.44) | 17,961 (93.71) | 9184 (54.35) | 35,507 (10.12) |

Mean(Relative Accuracy %) | 6613 | 4849(80.62) | 4741(77.86) | 5308(81.90) | 4398(80.20) | 6177(84.10) | 4473(74.58) | 10,951(62.49) |

Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |

© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).

## Share and Cite

**MDPI and ACS Style**

Keshtegar, B.; Piri, J.; Hussan, W.U.; Ikram, K.; Yaseen, M.; Kisi, O.; Adnan, R.M.; Adnan, M.; Waseem, M.
Prediction of Sediment Yields Using a Data-Driven Radial M5 Tree Model. *Water* **2023**, *15*, 1437.
https://doi.org/10.3390/w15071437

**AMA Style**

Keshtegar B, Piri J, Hussan WU, Ikram K, Yaseen M, Kisi O, Adnan RM, Adnan M, Waseem M.
Prediction of Sediment Yields Using a Data-Driven Radial M5 Tree Model. *Water*. 2023; 15(7):1437.
https://doi.org/10.3390/w15071437

**Chicago/Turabian Style**

Keshtegar, Behrooz, Jamshid Piri, Waqas Ul Hussan, Kamran Ikram, Muhammad Yaseen, Ozgur Kisi, Rana Muhammad Adnan, Muhammad Adnan, and Muhammad Waseem.
2023. "Prediction of Sediment Yields Using a Data-Driven Radial M5 Tree Model" *Water* 15, no. 7: 1437.
https://doi.org/10.3390/w15071437