An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Sample Collection
2.3. Irrigation Water Analysis
2.4. Irrigation Water Quality Indices (IWQIs)
- where is the maximum value of for the corresponding class (for instance of first q class 85–100);
- is the laboratory-measured value for the water quality parameter;
- is the corresponding value to the lower limit of the class to which the measured parameter belongs (for example in the case of first class of EC);
- is class amplitude (for instance of first q class 85–100);
- is the class amplitude to which the measured water parameter belongs (for example in the case of first X class of EC);
- In order to calculate the of the final class of each water parameter, the maximum laboratory-measured value of water quality parameters was used as the upper limit (for example in the case of final X class of EC).
qi | EC (µs/cm) | SAR | Na (meq/L) | Cl (meq/L) | HCO3 (meq/L) |
---|---|---|---|---|---|
85–100 | 200 ≤ EC < 750 | 2 ≤ SAR < 3 | 2 ≤ Na < 3 | 1 ≤ Cl < 4 | 1 ≤ HCO3 < 1.5 |
60–85 | 750 ≤ EC < 1500 | 3 ≤ SAR < 6 | 3 ≤ Na < 6 | 4 ≤ C l< 7 | 1.5 ≤ HCO3 < 4.5 |
35–60 | 1500 ≤ EC < 3000 | 6 ≤ SAR < 12 | 6 ≤ Na < 9 | 7 ≤ Cl < 10 | 4.5 ≤ HCO3 < 8.5 |
0–35 | EC < 200 or EC ≥ 3000 | SAR < 2 or SAR ≥ 12 | Na < 2 or Na ≥ 9 | Cl < 1 or Cl ≥ 10 | HCO3 < 1 or HCO3 ≥ 8.5 |
Wi (Sum = 1) | 0.211 | 0.189 | 0.204 | 0.194 | 0.202 |
3. Results and Discussion
3.1. Physio-Chemical Properties
3.2. Water Anions and Cations
3.3. Organic Matter Indices and Nutrients
3.4. Correlation between Irrigation Water Quality Variables
pH | TDS | Turb. | Cl2 | Cl | HCO3 | SO4 | Na | K | Ca | Mg | TH | DO | BOD | COD | NH4 | NO3 | PO4 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
pH | 1 | |||||||||||||||||
TDS | 0.05 | 1 | ||||||||||||||||
Turb. | 0.18 | −0.08 | 1 | |||||||||||||||
Cl2 | −0.01 | −0.06 | 0.08 | 1 | ||||||||||||||
Cl | 0.03 | 0.99 | −0.10 | −0.06 | 1 | |||||||||||||
HCO3 | 0.04 | 0.71 | 0.10 | −0.01 | 0.65 | 1 | ||||||||||||
SO4 | 0.08 | 0.90 | −0.03 | −0.05 | 0.86 | 0.82 | 1 | |||||||||||
Na | −0.01 | 0.98 | −0.08 | −0.04 | 0.98 | 0.68 | 0.86 | 1 | ||||||||||
K | 0.07 | 0.90 | −0.02 | −0.05 | 0.89 | 0.64 | 0.77 | 0.91 | 1 | |||||||||
Ca | 0.04 | 0.93 | −0.12 | −0.08 | 0.90 | 0.80 | 0.94 | 0.90 | 0.79 | 1 | ||||||||
Mg | 0.08 | 0.83 | 0.06 | −0.05 | 0.81 | 0.65 | 0.79 | 0.77 | 0.66 | 0.74 | 1 | |||||||
TH | 0.06 | 0.95 | −0.06 | −0.07 | 0.93 | 0.79 | 0.95 | 0.91 | 0.79 | 0.97 | 0.88 | 1 | ||||||
DO | 0.26 | −0.04 | 0.21 | 0.05 | −0.04 | −0.05 | −0.03 | −0.05 | −0.04 | −0.08 | 0.00 | −0.06 | 1 | |||||
BOD | 0.06 | −0.11 | 0.31 | −0.02 | −0.12 | 0.05 | −0.08 | −0.08 | −0.03 | −0.07 | −0.10 | −0.09 | 0.19 | 1 | ||||
COD | 0.12 | 0.32 | 0.20 | −0.15 | 0.30 | 0.35 | 0.40 | 0.33 | 0.36 | 0.31 | 0.23 | 0.30 | −0.03 | 0.03 | 1 | |||
NH4 | 0.15 | −0.18 | 0.62 | 0.12 | −0.19 | −0.04 | −0.12 | −0.18 | −0.15 | −0.19 | −0.08 | −0.16 | 0.16 | 0.22 | 0.02 | 1 | ||
NO3 | −0.23 | −0.13 | −0.29 | −0.11 | −0.10 | −0.38 | −0.22 | −0.12 | −0.15 | −0.17 | −0.16 | −0.18 | −0.12 | −0.06 | −0.11 | −0.28 | 1 | |
PO4 | −0.01 | −0.43 | 0.21 | 0.10 | −0.44 | −0.31 | −0.38 | −0.42 | −0.26 | −0.43 | −0.38 | −0.44 | −0.12 | 0.24 | 0.05 | 0.13 | 0.30 | 1 |
3.5. Irrigation Water Quality Indices (IWQIs)
3.6. Irrigation Water Overall Quality
4. Conclusions and Recommendations
- Improving the efficiency of sewage treatment plants by introducing advanced technologies such as nanofiltration, activated carbon adsorption, and UV disinfection along with continuous monitoring of their performance.
- Investigating the application of effective treatment and desalination techniques to treat agricultural drainage before reuse.
- Enhancing the coordinated collaboration between the Ministry of Environment, Water and Agriculture (MEWA), Saudi Irrigation Organization (SIO), relevant sectoral authorities, research centers, and universities for the irrigation water quality assessment, mitigation measures, and exchanges of water data.
- Proper monitoring and evaluation program of the available freshwater resources and their suitability for irrigation purposes.
- Applying efficient irrigation and drainage systems to reduce salinity hazards and achieve water security.
- Finally, further research is needed to investigate the consequences benefits/risks of long-term irrigation with renewable treated wastewater on soil fertility and plant productivity.
Supplementary Materials
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Karakus, C.; Yıldız, S. Evaluation for Irrigation Water Purposes of Groundwater Quality in the Vicinity of Sivas City Centre (Turkey) by Using Gis and an Irrigation Water Quality Index. Irrig. Drain. 2020, 69, 121–137. [Google Scholar] [CrossRef]
- Alghamdi, A.G.; Aly, A.A.; Aldhumri, S.A.; Al-Barakaha, F.N. Hydrochemical and Quality Assessment of Groundwater Resources in Al-Madinah City, Western Saudi Arabia. Sustainability 2020, 12, 3106. [Google Scholar] [CrossRef] [Green Version]
- Batarseh, M.; Imreizeeq, E.; Tilev, S.; Al Alaween, M.; Suleiman, W.; Al Remeithi, A.M.; Al Tamimi, M.K.; Al Alawneh, M. Assessment of groundwater quality for irrigation in the arid regions using irrigation water quality index (IWQI) and GIS-Zoning maps: Case study from Abu Dhabi Emirate, UAE. Groundw. Sustain. Dev. 2021, 14, 100611. [Google Scholar] [CrossRef]
- Robins, N.S. Groundwater quality in Scotland: Major ion chemistry of the key groundwater bodies. Sci. Total Environ. 2002, 294, 41–56. [Google Scholar] [CrossRef] [Green Version]
- Badr, E.-S.A.; Al-Naeem, A.A. Assessment of Drinking Water Purification Plant Efficiency in Al-Hassa, Eastern Region of Saudi Arabia. Sustainability 2021, 13, 6122. [Google Scholar] [CrossRef]
- Chojnacka, K.; Witek-Krowiak, A.; Moustakas, K.; Skrzypczak, D.; Mikula, K.; Loizidou, M. A transition from conventional irrigation to fertigation with reclaimed wastewater: Prospects and challenges. Renew. Sustain. Energy Rev. 2020, 130, 109959. [Google Scholar] [CrossRef]
- Alabdula’aly, A.I.; Al-Rehaili, A.M.; Al-Zarah, A.I.; Khan, M.A. Assessment of nitrate concentration in groundwater in Saudi Arabia. Environ. Monit. Assess. 2010, 161, 1–9. [Google Scholar] [CrossRef]
- Al Omran, A.M.; Falatah, A.M.; Matrud, S.S. Evaluation of irrigation well water quality in Riyadh region, Kingdom of Saudi Arabia. J. King Abdulaziz Univ. Meteorol. Environ. Arid Land Agric. Sci. 2005, 16, 23–40. [Google Scholar] [CrossRef]
- Al-Naeem, A.A.; Al-Barrak, K.M. Assessment and evaluation of hydro-chemical and elemental analysis for Ain Al-Khadoud, Al-Hassa Oasis, Eastern Province, Saudi Arabia. J. Soil Sci. Agric. Eng. Mansoura Univ. 2010, 1, 815–826. [Google Scholar]
- Ma, J.Z.; Ding, Z.Y.; Wei, G.X.; Zhao, H.; Huang, T.M. Sources of water pollution and evolution of water quality in the Wuwei basin of Shiyang river, Northwest China. J. Environ. Manag. 2009, 90, 1168–1177. [Google Scholar] [CrossRef]
- Al Omran, A.M.; El Maghraby, S.E.; Nadeem, M.E.A.; El Eter, A.M.; Al Mohani, H. Long term effect of irrigation with the treated sewage effluent on some soil properties of Al-Hassa Governorate, Saudi Arabia. J. Saudi Soc. Agric. Sci. 2012, 11, 15–18. [Google Scholar] [CrossRef] [Green Version]
- Yıldız, S.; Karakuş, C.B. Estimation of irrigation water quality index with development of an optimum model: A case study. Environ. Dev. Sustain. 2020, 22, 4771–4786. [Google Scholar] [CrossRef]
- Ayers, R.S.; Westcot, D.W. Water Quality for Agriculture; Food and Agriculture Organization of the United Nations: Rome, Italy, 1994; p. 174. [Google Scholar]
- Ghanim, A. Water-Resources-Crisis-in-Saudi-Arabia-Challenges-and-Possible-Management-Options-An-Analytic-Review. Int. J. Environ. Ecol. Eng. 2019, 13, 51–56. [Google Scholar] [CrossRef]
- Hussain, G.; Alquwaizany, A.; Al-Zarah, A. Guidelines for Irrigation Water Quality and Water Management in The Kingdom of Saudi Arabia: An Overview. J. Appl. Sci. 2010, 10, 79–96. [Google Scholar] [CrossRef] [Green Version]
- Al-Naeem, A.A. Monitoring of Groundwater Salinity for Water Resources Management in Irrigated Areas of Al-Jouf Region, Saudi Arabia. Res. J. Environ. Sci. 2015, 9, 256–269. [Google Scholar] [CrossRef] [Green Version]
- Al Garni, H.M.; Al Omran, A.M. Determination and evaluation of chemical compostion of sewage treated water in Riyadh Main Plant for irrigation. J. Saudi Soc. Agric. Sci. 2009, 9, 1–14. [Google Scholar]
- Hashem, M.S.; Qi, X. Treated Wastewater Irrigation—A Review. Water 2021, 13, 1527. [Google Scholar] [CrossRef]
- Santos, A.F.; Alvarenga, P.; Gando-Ferreira, L.M.; Quina, M.J. Urban Wastewater as a Source of Reclaimed Water for Irrigation: Barriers and Future Possibilities. Environments 2023, 10, 17. [Google Scholar] [CrossRef]
- Al-Saikhan, M.S.; Badr, E.A.; Babeker, M.Y. Study of Sewage Sludge Use for the Cultivation of Plants and its Effects on Soil Properties in Al Ahsa. Sci. J. King Faisal Univ. 2020, 21, 1–7. [Google Scholar] [CrossRef]
- Chen, W.; Lyu, S.; Weiling, Z.; Lili, Y.; Wentao, J. Ecological risks and sustainable utilization of reclaimed water and wastewater irrigation. Acta Ecol. Sin. 2014, 34, 163–172. [Google Scholar] [CrossRef]
- Shakir, E.; Zahraw, Z.; Al-Obaidy, A.H.M.J. Environmental and health risks associated with reuse of wastewater for irrigation. Egypt. J. Pet. 2017, 26, 95–102. [Google Scholar] [CrossRef] [Green Version]
- Drechsel, P.; Scott, C.A.; Raschid-Sally, L.; Redwood, M.; Bahri, A. Wastewater Irrigation and Health: Assessing and Mitigating Risk in Low-Income Countries; Routledge: London, UK, 2010. [Google Scholar]
- Falatah, A.M.; Al Omron, A.M.; Nadeem, M.E.A.; Mursi, M.M. Chemical composition of irrigation groundwater used in some agricultural regions of Saudi Arabia. Emir. J. Agric. Sci. 1999, 11, 1–23. [Google Scholar]
- Drechsel, P.; Qadir, M.; Galibourg, D. The WHO Guidelines for Safe Wastewater Use in Agriculture: A Review of Implementation Challenges and Possible Solutions in the Global South. Water 2022, 14, 864. [Google Scholar] [CrossRef]
- El Osta, M.; Masoud, M.; Alqarawy, A.; Elsayed, S.; Gad, M. Groundwater Suitability for Drinking and Irrigation Using Water Quality Indices and Multivariate Modeling in Makkah Al-Mukarramah Province, Saudi Arabia. Water 2022, 14, 483. [Google Scholar] [CrossRef]
- Al-Gossaibi, A.M.; Almadini, A.M. The assessment of irrigation water quality and its agricultural uses at Al-Hassa Oasis, KSA. Sci. J. King Faisal Univ. Basic Appl. Sci. 2000, 1, 87–102. [Google Scholar]
- Almadini, A.M.; Al-Safarjalani, A.M.; Al-Naeem, A.A. Spatial variations in chemical properties of irrigation groundwater at Al-Hassa Oasis, Kingdom of Saudi Arabia. Arab Gluf J. Sci. Res. 2007, 25, 207–218. [Google Scholar]
- Hussain, G.; Sadiq, M. Metal chemistry of irrigation and drainage waters of Al-Ahsa Oasis of Saudi Arabia and its effects on soil properties. Water Air Soil Pollut. 1991, 57, 773–783. [Google Scholar] [CrossRef]
- Ahmed, A.T. Water quality for irrigation and drinking water use of Aflaj in Oman. Water Supply 2014, 15, 421–428. [Google Scholar] [CrossRef]
- Ismail, A.I.H.; Hassaballa, A.A.; Almadini, A.M.; Daffalla, S. Analyzing the Spatial Correspondence between Different Date Fruit Cultivars and Farms’ Cultivated Areas, Case Study: Al-Ahsa Oasis, Kingdom of Saudi Arabia. Appl. Sci. 2022, 12, 5728. [Google Scholar]
- Almuhanna, E.A. Atmospheric aerosol characterization and element composition at Al-Ahsa Oasis of Saudi Arabia. Sci. J. King Faisal Univ. Basic Appl. Sci. 2017, 18, 35–74. [Google Scholar]
- Adams, V.D. Water and Wastewater Examination Manual; Lewis Publishers: Chelsea, MI, USA, 1990. [Google Scholar]
- APHA. Standard Methods for the Examination of Waters and Wastewaters, 20th ed.; Franson, M.A.H., Eaton, A.D., Clesceri, L.S., Greenberg, A.E., Eds.; American Public Health Association (APHA): Washington, DC, USA, 2005. [Google Scholar]
- Hanrahan, G.; Gardolinski, P.; Gledhill, M.; Worsfold, P. Environmental monitoring of nutrients. In Environmental Monitoring Handbook; Burden, F.R., Mckelvie, I.D., Forstner, U., Guenther, A., Eds.; McGraw-Hill: New York, NY, USA, 2002; pp. 8.1–8.16. [Google Scholar]
- Aly, A.A.; Al Omran, A.M.; Alharby, M.M. The water quality index and hydrochemical characterization of groundwater resources in Hafar Albatin, Saudi Arabia. Arab. J. Geosci. 2015, 8, 4177–4190. [Google Scholar] [CrossRef]
- MEWA. Standards and Specifications for Water Types; according to the water law and its implementing regulations; Ministry of Environment, Water and Agriculture (MEWA): Riyadh, Saudi Arabia, 2021.
- Al-Hawas, I.A. Irrigation Water Quality Evaluation of Al-Hassa Springs and its Predictive Effects on Soil Properties. Pak. J. Biol. Sci. 2002, 5, 651–655. [Google Scholar] [CrossRef] [Green Version]
- Zaman, M.; Shahid, S.A.; Heng, L. Irrigation Water Quality. In Guideline for Salinity Assessment, Mitigation and Adaptation Using Nuclear and Related Techniques; Zaman, M., Shahid, S.A., Heng, L., Eds.; Springer International Publishing: Cham, Switzerland, 2018; pp. 113–131. [Google Scholar] [CrossRef] [Green Version]
- Elsayed, S.; Hussein, H.; Moghanm, F.S.; Khedher, K.M.; Eid, E.M.; Gad, M. Application of Irrigation Water Quality Indices and Multivariate Statistical Techniques for Surface Water Quality Assessments in the Northern Nile Delta, Egypt. Water 2020, 12, 3300. [Google Scholar] [CrossRef]
- Abbasnia, A.; Radfard, M.; Mahvi, A.H.; Nabizadeh, R.; Yousefi, M.; Soleimani, H.; Alimohammadi, M. Groundwater quality assessment for irrigation purposes based on irrigation water quality index and its zoning with GIS in the villages of Chabahar, Sistan and Baluchistan, Iran. Data Brief 2018, 19, 623–631. [Google Scholar] [CrossRef]
- Richards, L.A. Diagnosis and Improvement of Saline and Alkali Soils; United States Department of Agriculture (USDA): Washington, DC, USA, 1954; Volume 60.
- Kelly, W.P. Adsorbed Sodium, cation exchange capacity and percentage sodium adsorption in alkali soils. Science 1957, 84, 473–477. [Google Scholar]
- Wilcox, L.V. Classification and Use of Irrigation Waters; United States Department of Agriculture (USDA): Washington, DC, USA, 1955; Volume 969.
- Doneen, L.D. Water Quality for Agriculture; Department of Irrigation, University of California: California, CA, USA, 1964. [Google Scholar]
- Paliwal, K.V. Irrigation with Saline Water; Water Technology Centre, Indian Agricultural Research Institute: New Delhi, India, 1972. [Google Scholar]
- Singh, S.; Ghosh, N.C.; Gurjar, S.; Krishan, G.; Kumar, S.; Berwal, P. Index-based assessment of suitability of water quality for irrigation purpose under Indian conditions. Environ. Monit. Assess. 2018, 190, 29. [Google Scholar] [CrossRef]
- Meireles, A.; Andrade, E.; Chaves, L.C.; Frischkorn, H.; Crisóstomo, L. A new proposal of the classification of irrigation water. Rev. Ciência Agronômica 2010, 41, 349–357. [Google Scholar] [CrossRef] [Green Version]
- Zahedi, S. Modification of expected conflicts between Drinking Water Quality Index and Irrigation Water Quality Index in water quality ranking of shared extraction wells using Multi Criteria Decision Making techniques. Ecol. Indic. 2017, 83, 368–379. [Google Scholar] [CrossRef]
- Zaidi, F.K.; Mogren, S.; Mukhopadhyay, M.; Ibrahim, E. Evaluation of groundwater chemistry and its impact on drinking and irrigation water quality in the eastern part of the Central Arabian graben and trough system, Saudi Arabia. J. Afr. Earth Sci. 2016, 120, 208–219. [Google Scholar] [CrossRef]
- WHO. Guidelines for Drinking Water Quality, 4th ed.; World Health Organization: Geneva, Switzerland, 2011. [Google Scholar]
- Badr, E.A. Spatio-temporal variability of dissolved organic nitrogen (DON), carbon (DOC), and nutrients in the Nile River, Egypt. Environ. Monit. Assess. 2016, 188, 580. [Google Scholar] [CrossRef]
- Badr, E.A.; El-Sonbati, M.A.; Nassef, H.M. Water Quality Assessment in the Nile River, Damietta Branch, Egypt. Int. J. Environ. Sci. CATRINA 2013, 8, 43–53. [Google Scholar] [CrossRef]
- Anwar Aly, A.A. Mohamed Alwabel, Abdullah Almahaini, Mohammed Alamari. Hydrochemical and quality of water resources in Saudi Arabia groundwater: A comparative study of Riyadh and Al-Ahsa regions. Proc. Int. Acad. Ecol. Environ. Sci. 2013, 3, 1. [Google Scholar]
- Al Omran, A.M. Long term effect of irrigation with the treated sewage effluent on some soil properties for date palms in Al-Hassa, Saudi Arabia. In Proceedings of the 19th Conference on Soil Science, Brisbane, Australia, 1–6 August 2010. [Google Scholar]
Indices | Formula | Reference |
---|---|---|
Sodium adsorption ratio (SAR) | [42] | |
Kelly’s ratio (KR) | [43] | |
Soluble sodium percentage (SSP) | [44] | |
Permeability index (PI%) | [45] | |
Residual sodium carbonate (RSC) | [42] | |
Magnesium hazard (MH%) | [46] |
Parameters | Oct. 2016 | Jan. 2017 | May 2017 | Sep. 2017 | All Data | ANOVA F Ratio | |||
---|---|---|---|---|---|---|---|---|---|
Average ± SD | Min–Max | F Site | F Time | F Resource | |||||
Temp. (°C) | 29.7 ± 2.17 | 21.9 ± 3.44 | 27.2 ± 2.98 | 33.2 ± 2.43 | 27.9 ± 4.97 | 16.1–38.0 | 0.47 | 106 | 0.97 |
pH | 7.49 ± 0.51 | 8.05 ± 0.41 | 7.77 ± 0.24 | 7.58 ± 0.38 | 7.72 ± 0.45 | 6.09–8.83 | 1.08 | 13.9 | 4.16 |
TDS × 103 (mg/L) | 2.36 ± 1.24 | 2.16 ± 1.12 | 2.31 ± 1.10 | 2.25 ± 1.08 | 2.27 ± 1.13 | 0.86–5.95 | 19.3 | 0.25 | 21.2 |
EC × 103 (µs/cm) | 3.95 ± 2.07 | 3.59 ± 1.85 | 3.84 ± 1.83 | 3.76 ± 1.81 | 3.79 ± 1.87 | 1.43–9.82 | 19.3 | 0.27 | 21.3 |
Turb. (NTU) | 0.48 ± 0.34 | 0.95 ± 0.72 | 1.18 ± 0.37 | 1.47 ± 0.63 | 1.02 ± 0.65 | 0.11–2.81 | 1.87 | 22.2 | 13.9 |
Cl2 (mg/L) | 0.09 ± 0.06 | 0.10 ± 0.06 | 0.09 ± 0.05 | 0.14 ± 0.16 | 0.11 ± 0.09 | 0.02–0.98 | 1.07 | 2.33 | 1.50 |
Cl (mg/L) | 935 ± 549 | 800 ± 495 | 902 ± 512 | 851 ± 453 | 872 ± 501 | 268–2500 | 17.9 | 0.57 | 18.4 |
HCO3 (mg/L) | 219 ± 86.4 | 215 ± 87.8 | 248 ± 97.5 | 227 ± 74.6 | 227 ± 87.0 | 78–552 | 8.34 | 1.05 | 20.5 |
SO4 (mg/L) | 605 ± 321 | 556 ± 301 | 636 ± 322 | 589 ± 307 | 596 ± 311 | 219–1489 | 16.3 | 0.41 | 29.5 |
Na (mg/L) | 644 ± 351 | 505 ± 290 | 630 ± 322 | 593 ± 301 | 593 ± 318 | 144–1541 | 16.3 | 1.50 | 18.4 |
K (mg/L) | 41.5 ± 30.1 | 37.1 ± 19.2 | 41.7 ± 21.2 | 34.9 ± 17.9 | 38.7 ± 22.6 | 4.64–185 | 8.58 | 0.82 | 14.0 |
Ca (mg/L) | 259 ± 127 | 224 ± 144 | 228 ± 106 | 223 ± 108 | 233 ± 122 | 80.1–673 | 17.5 | 1.04 | 22.7 |
Mg (mg/L) | 65.3 ± 39.5 | 74.2 ± 43.3 | 84.2 ± 41.1 | 83.7 ± 44.3 | 76.5 ± 42.4 | 24.7–221 | 7.08 | 1.55 | 17.9 |
Hardness (mg/L) | 942 ± 475 | 865 ± 521 | 944 ± 452 | 901 ± 442 | 908 ± 469 | 315–2368 | 20.5 | 0.18 | 25.1 |
DO (mg/L) | 7.36 ± 1.38 | 8.28 ± 1.13 | 8.04 ± 2.15 | 8.24 ± 2.38 | 7.98 ± 1.85 | 1.47–10.9 | 2.47 | 2.01 | 2.10 |
BOD (mg/L) | 3.03 ± 1.72 | 2.25 ± 2.12 | 2.70 ± 2.56 | 2.46 ± 2.20 | 2.61 ± 2.17 | 0.01–8.89 | 6.08 | 0.88 | 17.6 |
COD (mg/L) | 17.4 ± 8.98 | 15.4 ± 10.9 | 23.6 ± 12.2 | 17.6 ± 15.8 | 18.5 ± 12.5 | 1.0–51 | 1.62 | 3.15 | 5.46 |
NH4 (mg/L) | 0.21 ± 0.05 | 0.40 ± 0.30 | 0.30 ± 0.10 | 0.54 ± 0.42 | 0.36 ± 0.29 | 0.11–1.59 | 1.47 | 10.9 | 7.24 |
NO3 (mg/L) | 6.89 ± 3.71 | 4.25 ± 1.81 | 4.03 ± 2.18 | 4.32 ± 3.33 | 4.87 ± 3.07 | 0.46–15.1 | 2.00 | 8.22 | 4.69 |
PO4 (mg/L) | 0.89 ± 0.96 | 0.81 ± 0.80 | 0.75 ± 0.80 | 0.60 ± 0.78 | 0.76 ± 0.84 | 0.01–3.25 | 12.3 | 0.77 | 84.5 |
Parameters | Rank | Water Classification | Number of Samples (n = 148) | Percentage (%) |
---|---|---|---|---|
EC (µS/cm) | <250 | Excellent | 0 | 0% |
250–750 | Good | 0 | 0% | |
750–2000 | Permissible | 24 | 16.2% | |
2000–3000 | Doubtful | 46 | 31.1% | |
>3000 | Unsuitable | 78 | 52.7% | |
TDS (mg/L) | 0–1000 | Fresh water | 4 | 2.7% |
>1000 | Brackish water | 144 | 97.3% | |
TH (mg/L) | 0–75 | Soft | 0 | 0% |
75–150 | Moderately hard | 0 | 0% | |
150–300 | Hard | 0 | 0% | |
>300 | Very hard | 148 | 100% | |
SAR | 0–6 | Good | 31 | 20.9% |
6–9 | Doubtful | 65 | 43.9% | |
>9 | Unsuitable | 52 | 35.2% | |
KR | <1 | Suitable | 9 | 6.1% |
>1 | Unsuitable | 139 | 93.9% | |
SSP | <20 | Excellent | 0 | 0% |
20–40 | Good | 0 | 0% | |
40–60 | Permissible | 121 | 81.8% | |
60–80 | Doubtful | 27 | 18.2% | |
>80 | Unsuitable | 0 | 0% | |
PI (%) | >75 | Good | 0 | 0% |
25–75 | Suitable | 148 | 100% | |
<25 | Unsuitable | 0 | 0% | |
RSC (meq/L) | <1.25 | Good | 148 | 100% |
1.25–2.5 | Doubtful | 0 | 0% | |
>2.5 | Unsuitable | 0 | 0% | |
MH (%) | <50 | Suitable | 148 | 100% |
>50 | Unsuitable | 0 | 0% |
IWQI | Water Use Restrictions | Water Classification | Number of Samples | Percentage (%) |
---|---|---|---|---|
85–100 | No restriction (NR) | Excellent | 0 | 0% |
70–85 | Low restriction (LR) | Very good | 0 | 0% |
55–70 | Moderate restriction (MR) | Good | 6 | 4.1% |
40–55 | High restrictions (HR) | Satisfactory | 92 | 62.1% |
0–40 | Severe restrictions (SR) | Unsuitable | 50 | 33.8% |
Low | Medium | High | Very High | ||
---|---|---|---|---|---|
C1 | C2 | C3 | C4 | ||
Low | S1 | - | - | 5 (3.4%) | - |
Medium | S2 | - | - | 35 (23.6%) | 32 (21.6%) |
High | S3 | - | - | - | 51 (34.5%) |
Very high | S4 | - | - | - | 25 (16.9%) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Badr, E.-S.A.; Tawfik, R.T.; Alomran, M.S. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water 2023, 15, 2488. https://doi.org/10.3390/w15132488
Badr E-SA, Tawfik RT, Alomran MS. An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water. 2023; 15(13):2488. https://doi.org/10.3390/w15132488
Chicago/Turabian StyleBadr, El-Sayed A., Rady T. Tawfik, and Mortada S. Alomran. 2023. "An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia" Water 15, no. 13: 2488. https://doi.org/10.3390/w15132488
APA StyleBadr, E.-S. A., Tawfik, R. T., & Alomran, M. S. (2023). An Assessment of Irrigation Water Quality with Respect to the Reuse of Treated Wastewater in Al-Ahsa Oasis, Saudi Arabia. Water, 15(13), 2488. https://doi.org/10.3390/w15132488