Streamflow Predictions in Ungauged Basins Using Recurrent Neural Network and Decision Tree-Based Algorithm: Application to the Southern Region of the Korean Peninsula
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Watersheds and Data
2.2. Methods
3. Results
3.1. Predictions in Ungagued Basins Using Meteorological Data and LSTM+RF Combination
3.2. Comparison of Scheme M and MG
3.3. Comparison between Algorithms of Scheme MG
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Schulla, J. LModel Description WaSiM (Water Balance Simulation Model), Completely Revised Version 2012. Last Change: 19 June 2012. 2012. Available online: http://www.wasim.ch/downloads/doku/wasim/wasim_2012_ed2_en.pdf (accessed on 1 March 2022).
- Hengl, T.; Mendes de Jesus, J.; Heuvelink, G.; Ruiperez Gonzalez, M.; Kilibarda, M.; Blagotic, A.; Shangguan, W.; Wright, M.; Geng, X.; Bauer-Marschallinger, B.; et al. SoilGrids250m: Global gridded soil information based on machine learning. PLoS ONE 2017, 12, e0169748. [Google Scholar] [CrossRef] [PubMed]
- Wood, E.; Roundy, J.; Troy, T.; van Beek, L.; Bierkens, M.; Blyth, E.; de Roo, A.; Döll, P.; Ek, M.; Famiglietti, J.; et al. Hyper resolution global land surface modeling: Meeting a grand challenge for monitoring Earth’s terrestrial water. Water Resour. Res. 2011, 47, W05301. [Google Scholar] [CrossRef]
- Worldbank. Assessment of the State of Hydrological Services in Developing Countries. 2018. Available online: https://www.gfdrr.org/sites/default/files/publication/state-of-hydrological-services_web.pdf (accessed on 1 March 2022).
- USGS. Streamgage History. 2018. Available online: https://water.usgs.gov/nsip/history.html (accessed on 1 March 2022).
- Fekete, B.; Robarts, R.; Kumagai, M.; Nachtnebel, H.; Odada, E.; Zhulidov, A. Time for in situ renaissance. Science 2015, 349, 685–686. [Google Scholar] [CrossRef] [PubMed]
- Hrachowitz, M.; Savenije, H.; Blöschl, G.; McDonnell, J.; Sivapalan, M.; Pomeroy, J.; Arheimer, B.; Blume, T.; Clark, M.; Ehret, U. A decade of predictions in ungauged basins (pub)—A review. Hydrol. Sci. J. 2013, 58, 1198–1255. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, Y.; Zhang, L.; Wang, Z. Regionalization of hydrological modeling for predicting streamflow in ungauged catchments: A comprehensive review. WIREs Water 2021, 8, e1487. [Google Scholar] [CrossRef]
- Young, P.; Beven, K. Data-based mechanistic modelling and the rainfall-flow non-linearity. Environmetrics 1994, 5, 335–363. [Google Scholar] [CrossRef]
- Remesan, R.; Mathew, J. Hydrological Data Driven Modelling: A Case Study Approach; Springer International Publishing: New York, NY, USA, 2014; Volume 1. [Google Scholar]
- Halff, A.; Halff, H.; Azmoodeh, M. Predicting Runoff from Rainfall Using Neural Networks. In Engineering Hydrology; ASCE: Reston, VA, USA, 1993; pp. 760–765. [Google Scholar]
- Rumelhart, D.; Hinton, G.; Williams, R. Learning Internal Representations by Error Propagation (No. ICS-8506); California University of San Diego, La Jolla Institute for Cognitive Science: San Diego, CA, USA, 1986. [Google Scholar]
- Carriere, P.; Mohaghegh, S.; Gaskar, R. Performance of a Virtual Runoff Hydrographic System. Water Resour. Plan. Manag. 1996, 122, 120–125. [Google Scholar]
- Hochreiter, S.; Schmidhuber, J. Long Short-Term Memory. Neural Comput. 2017, 9, 1735–1780. [Google Scholar] [CrossRef]
- Cho, K.; van Merrienboer, B.; Bahdanau, D.; Bougares, F.; Schwenk, H.; Bengio, Y. Learning Phrase Representations using RNN Encoder-Decoder for Statistical Machine Translation. arXiv 2014, arXiv:1406.1078. [Google Scholar] [CrossRef]
- Shi, X.; Chen, Z.; Wang, H.; Yeung, D.; Wong, W.; Woo, W. Convolutional LSTM Network: A Machine Learning Approach for Precipitation Nowcasting. In Advances in Neural Information Processing Systems; MIT Press: Cambridge, MA, USA, 2015; Volume 28, pp. 802–810. [Google Scholar]
- Tao, Y.; Gao, X.; Hsu, K.; Sorooshian, S.; Ihler, A. A Deep Neural Network Modeling Framework to Reduce Bias in Satellite Precipitation Products. J. Hydrometeoroly 2016, 17, 931–945. [Google Scholar] [CrossRef]
- Fang, K.; Shen, C.; Kifer, D.; Yang, X. Prolongation of SMAP to Spatiotemporally Seamless Coverage of Continental U.S. Using a Deep Learning Neural Network. Geophys. Res. Lett. 2017, 44, 11030–11039. [Google Scholar] [CrossRef]
- Assem, H.; Ghariba, S.; Makrai, G.; Johnston, P.; Gill, L.; Pilla, F. Urban Water Flow and Water Level Prediction Based on Deep Learning. In ECML PKDD 2017: Machine Learning and Knowledge Discovery in Databases; Springer: Cham, Switzerland, 2017; pp. 317–329. [Google Scholar]
- Zhang, J.; Zhu, Y.; Zhang, X.; Ye, M.; Yang, J. Developing a Long Short-Term Memory (LSTM) based model for predicting water table depth in agricultural areas. J. Hydrol. 2018, 561, 918–929. [Google Scholar] [CrossRef]
- Granata, F.; Di Nunno, F.; de Marinis, G. Stacked machine learning algorithms and bidirectional long short-term memory networks for multi-step ahead streamfow forecasting: A comparative study. J. Hydrol. 2022, 613, 128431. [Google Scholar] [CrossRef]
- Di Nunno, F.; de Marinis, G.; Granata, F. Short-term forecasts of streamflow in the UK based on a novel hybrid artificial intelligence algorithm. Sci. Rep. 2023, 13, 7036. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Brenner, C.; Schulz, K.; Herrnegger, M. Rainfall–runoff modelling using Long Short-Term Memory (LSTM) networks. Hydrol. Earth Syst. Sci. 2018, 22, 6005–6022. [Google Scholar] [CrossRef]
- Arsenault, R.; Martel, J.; Brunet, F.; Brissette, F.; Mai, J. Continuous streamflow prediction in ungauged basins: Long short-term memory neural networks clearly outperform traditional hydrological models. Hydrol. Earth Syst. Sci. 2023, 27, 139–157. [Google Scholar] [CrossRef]
- Choi, J.; Won, J.; Jang, S.; Kim, S. Learning enhancement method of Long short-term memory network and its applicability in hydrological time series prediction. Water 2022, 14, 2910. [Google Scholar] [CrossRef]
- Ayzel, G.; Kurochkina, L.; Abramov, D.; Zhuravlev, S. Development of a Regional Gridded Runoff Dataset Using Long Short-Term Memory (LSTM) Networks. Hydrology 2021, 8, 6. [Google Scholar] [CrossRef]
- Kratzert, F.; Gauch, M.; Nearing, G.; Klotz, D. Neural Hydrology–A Python library for Deep Learning. J. Open Source Softw. 2022, 7, 4050. [Google Scholar] [CrossRef]
- Kratzert, F.; Klotz, D.; Herrnegger, M.; Sampson, A.; Hochreiter, S.; Nearing, G. Toward improved predictions in ungauged basins: Exploiting the power of machine learning. Water Resour. Res. 2019, 55, 11344–11354. [Google Scholar] [CrossRef]
- Li, X.; Khandelwal, A.; Jia, X.; Cutler, K.; Ghosh, R.; Renganathan, A.; Xu, S.; Tayal, K.; Nieber, J.; Duffy, C.; et al. Regionalization in a global hydrologic deep learning model: From physical descriptors to random vectors. Water Resour. Res. 2022, 58, e2021WR031794. [Google Scholar] [CrossRef]
- Choi, J.; Lee, J.; Kim, S. Utilization of the Long Short-Term Memory network for predicting streamflow in ungauged basins in Korea. Ecol. Eng. 2022, 182, 106699. [Google Scholar] [CrossRef]
- Allen, R.; Pereira, L.; Raes, D.; Smith, M. Crop Evapotranspiration-Guidelines for Computing Crop Water Requirements-FAO Irrigation and Drainage Paper 56; FAO: Rome, Italy, 1998; Volume 300, p. D05109. [Google Scholar]
- Won, J.; Kim, S. Future drought analysis using SPI and EDDI to consider climate change in South Korea. Water Supply 2020, 20, 3266–3280. [Google Scholar] [CrossRef]
- Schmidhuber, J. Deep learning in neural networks: An overview. Neural Netw. 2015, 61, 85–117. [Google Scholar] [CrossRef]
- Srivastave, N.; Hinton, G.; Krizhevsky, A.; Sutskever, I.; Salakhutdinov, R. Dropout: A simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 2014, 15, 1929–1958. [Google Scholar]
- Turkyilmazoglu, M. Accelerating the convergence of Adomian decomposition method (ADM). J. Comput. Sci. 2019, 31, 54–59. [Google Scholar] [CrossRef]
- Nash, J.; Sutcliffe, J. River flow forecasting through conceptual models. part I—A discussion of principles. J. Hydrol. 1970, 10, 282–290. [Google Scholar] [CrossRef]
- Ritter, A.; Munoz-Carpena, R. Performance evaluation of hydrological models: Statistical significance for reducing subjectivity in goodness-of-fit assessments. J. Hydrol. 2013, 480, 33–45. [Google Scholar] [CrossRef]
- Kim, R.; Won, J.; Choi, J.; Lee, O.; Kim, S. Application of Bayesian approach to parameter estimation of TANK model: Comparison of MCMC and GLUE methods. J. Korean Soc. Water Environ. 2020, 36, 300–313. [Google Scholar]
- Ruiz-Perez, G.; Gonzalez-Sanchis, M.; Del Campo, A.; Frances, F. Can a parsimonious model implemented with satellite data be used for modelling the vegetation dynamics and water cycle in water-controlled environments? Ecol. Model. 2016, 324, 45–53. [Google Scholar] [CrossRef]
- Choi, J.; Won, J.; Lee, O.; Kim, S. Usefulness of global root zone soil moisture product for streamflow prediction of ungauged basins. Remote Sens. 2021, 13, 756. [Google Scholar] [CrossRef]
ID | Name | Area (km2) | CN | Ks (mm/d) | IMP | P (mm/yr) | PET (mm/yr) | PET/P |
---|---|---|---|---|---|---|---|---|
1 | SJG | 763 | 67.10 | 133.8 | 0.0750 | 1354 | 1006 | 0.7428 |
2 | NGD | 2282 | 63.03 | 156.4 | 0.0582 | 1487 | 1077 | 0.7240 |
3 | ADD | 1591 | 59.08 | 177.5 | 0.0579 | 1104 | 1020 | 0.9244 |
4 | GSD | 677 | 67.19 | 132.5 | 0.0464 | 1315 | 1043 | 0.7934 |
5 | HCD | 929 | 56.73 | 191.8 | 0.0629 | 1259 | 1054 | 0.8369 |
6 | GDD | 121 | 68.95 | 127.7 | 0.0362 | 1250 | 934 | 0.7472 |
7 | UMD | 302 | 66.84 | 134.4 | 0.0516 | 1155 | 1136 | 0.9842 |
8 | YJ | 520 | 61.92 | 179.9 | 0.0807 | 1188 | 1048 | 0.8825 |
9 | DJ | 609 | 60.39 | 176.9 | 0.1312 | 1295 | 1023 | 0.7901 |
10 | OC | 491 | 63.12 | 168.1 | 0.0564 | 1362 | 1023 | 0.7513 |
11 | HS | 411 | 62.09 | 153.1 | 0.0646 | 1403 | 1032 | 0.7359 |
12 | NYJ | 202 | 60.41 | 178.3 | 0.0878 | 1219 | 1045 | 0.8572 |
13 | YS | 221 | 70.02 | 129.1 | 0.0919 | 1235 | 1088 | 0.8808 |
14 | BR | 162 | 55.90 | 187.1 | 0.0729 | 1065 | 952 | 0.8933 |
15 | HP | 115 | 71.65 | 115.8 | 0.0879 | 1034 | 895 | 0.8659 |
16 | YW | 1616 | 59.71 | 171.4 | 0.0417 | 1151 | 1024 | 0.8900 |
17 | MG | 612 | 61.85 | 162.7 | 0.0473 | 1328 | 1129 | 0.8504 |
18 | BY | 209 | 61.72 | 161.7 | 0.0571 | 1228 | 992 | 0.8074 |
19 | CJ | 168 | 65.50 | 158.9 | 0.1220 | 1186 | 1079 | 0.9103 |
20 | JH | 152 | 64.68 | 153.6 | 0.0707 | 1399 | 1026 | 0.7331 |
21 | YD | 930 | 61.29 | 174.6 | 0.0784 | 1449 | 1010 | 0.6969 |
22 | HS | 208 | 51.85 | 216.7 | 0.0458 | 1159 | 1025 | 0.8845 |
23 | BY | 156 | 67.60 | 122.4 | 0.0768 | 1247 | 1000 | 0.8020 |
24 | SYG | 2694 | 50.87 | 208.0 | 0.0586 | 1231 | 1038 | 0.8426 |
25 | CJD | 6661 | 62.37 | 156.5 | 0.0491 | 1205 | 1040 | 0.8638 |
Segment | Hydrological Condition Class | Flow Exceedance Probability Range |
---|---|---|
Segment H | High flow condition | [0, 0.33] |
Segment N | Normal flow condition | [0.33, 0.67] |
Segment L | Low flow condition | [0.67, 1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Won, J.; Seo, J.; Lee, J.; Choi, J.; Park, Y.; Lee, O.; Kim, S. Streamflow Predictions in Ungauged Basins Using Recurrent Neural Network and Decision Tree-Based Algorithm: Application to the Southern Region of the Korean Peninsula. Water 2023, 15, 2485. https://doi.org/10.3390/w15132485
Won J, Seo J, Lee J, Choi J, Park Y, Lee O, Kim S. Streamflow Predictions in Ungauged Basins Using Recurrent Neural Network and Decision Tree-Based Algorithm: Application to the Southern Region of the Korean Peninsula. Water. 2023; 15(13):2485. https://doi.org/10.3390/w15132485
Chicago/Turabian StyleWon, Jeongeun, Jiyu Seo, Jeonghoon Lee, Jeonghyeon Choi, Yoonkyung Park, Okjeong Lee, and Sangdan Kim. 2023. "Streamflow Predictions in Ungauged Basins Using Recurrent Neural Network and Decision Tree-Based Algorithm: Application to the Southern Region of the Korean Peninsula" Water 15, no. 13: 2485. https://doi.org/10.3390/w15132485
APA StyleWon, J., Seo, J., Lee, J., Choi, J., Park, Y., Lee, O., & Kim, S. (2023). Streamflow Predictions in Ungauged Basins Using Recurrent Neural Network and Decision Tree-Based Algorithm: Application to the Southern Region of the Korean Peninsula. Water, 15(13), 2485. https://doi.org/10.3390/w15132485