Challenges in Interpreting Geochemical Data: An Appraisal of Analytical Techniques Applied to a Karstic Lake Sediment Record
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Lake Sediment Record
2.2. Interpretation of Major Elements Found in Lake Ighiel Sediments
2.3. Geochemical Analyses
2.3.1. XRF Core Scanning (XRF-CS)
2.3.2. Field Portable XRF Measurements (FPXRF)
2.3.3. ICP-OES Analyses
2.4. Data Processing
3. Results
4. Discussion
4.1. Implications of Analytical Method Choice and Impediments to Proxy Interpretation
4.2. Preparation Steps
4.3. Method Efficiency and Optimal Use
4.4. A Case Study of the Lake Ighiel Paleorecord Based on Multiple Geochemical Datasets
5. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Dearing, J.A. Climate-human-environment interactions: Resolving our past. Clim. Past 2006, 2, 187–203. [Google Scholar] [CrossRef]
- Francus, P.; Lamb, H.; Nakagawa, T.; Marshall, M.; Brown, E.; Suigetsu 2006 Project Members. The potential of high-resolution X-ray fluorescence core scanning: Applications in paleolimnology. PAGES News 2009, 17, 93–95. [Google Scholar] [CrossRef]
- Zolitschka, B.; Francus, P.; Ojala, A.E.K.; Schimmelmann, A. Varves in lake sediments—A review. Quat. Sci. Rev. 2015, 117, 1–41. [Google Scholar] [CrossRef]
- Olsen, J.; Anderson, N.J.; Knudsen, M.F. Variability of the North Atlantic Oscillation over the past 5200 years. Nat. Geosci. 2012, 5, 808–812. [Google Scholar] [CrossRef]
- Haliuc, A.; Buczkó, K.; Hutchinson, S.M.; Ács, É.; Magyari, E.K.; Korponai, J.; Begy, R.C.; Vasilache, D.; Zak, M.; Veres, D. Climate and Land-Use as the Main Drivers of Recent Environmental Change in a Mid-Altitude Mountain Lake, Romanian Carpathians. PLoS ONE 2020, 15, e0239209. [Google Scholar] [CrossRef] [PubMed]
- Renberg, I.; Korsman, T.; Birks, H.J.B. Prehistoric increases in the pH of acid-sensitive Swedish lakes caused by land-use changes. Nature 1993, 362, 824–827. [Google Scholar] [CrossRef]
- Arnaud, F.; Révillon, S.; Debret, M.; Revel, M.; Chapron, E.; Jacob, J.; Giguet-Covex, C.; Poulenard, J.; Magny, M. Lake Bourget regional erosion patterns reconstruction reveals Holocene NW European Alps soil evolution and paleohydrology. Quat. Sci. Rev. 2012, 51, 81–92. [Google Scholar] [CrossRef]
- Arnaud, F.; Giguet-Covex, C.; Wilhelm, B.; Fouinat, L.; Doyen, E.; Chapron, E.; Vanniere, B. Erosion under climate and human pressures: An alpine lake sediment perspective. Quat. Sci. Rev. 2016, 152, 1–18. [Google Scholar] [CrossRef]
- Bonk, A.; Kinder, M.; Enters, D.; Grosjean, M.; Meyer-Jacob, C.; Tylmann, W. Sedimentological and geochemical responses of Lake Żabińskie (north-eastern Poland) to erosion changes during the last millennium. J. Paleolimnol. 2016, 56, 239–252. [Google Scholar] [CrossRef]
- Jenny, J.P.; Koirala, S.; Gregory-Eaves, I.; Francus, P.; Niemann, C.; Ahrens, B.; Brovkin, V.; Baud, A.; Ojala, A.E.K.; Normandeau, A.; et al. Human and climate global-scale imprint on sediment transfer during the Holocene. Proc. Natl. Acad. Sci. USA 2019, 116, 22972–22976. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Ersek, V.; Haliuc, A.; Wennrich, V. Runoff events and related rainfall variability in the Southern Carpathians during the last 2000 years. Sci. Rep. 2019, 9, 5334. [Google Scholar] [CrossRef]
- Sabatier, P.; Wilhelm, B.; Ficetola, F.; Moiroux, F.; Poulenard, J.; Develle, A.-L.; Bichet, A.; Chen, W.; Pignol, C.; Reyss, J.-L.; et al. 6-Kyr Record of Flood Frequency and Intensity in the Western Mediterranean Alps e Interplay of Solar and Temperature Forcing. Quat. Sci. Rev. 2016, 170, 121–135. [Google Scholar] [CrossRef]
- Czymzik, M.; Brauer, A.; Dulski, P.; Plessen, B.; Naumann, R.; Von Grafenstein, U.; Scheffler, R. Orbital and solar forcing of shifts in Mid- to Late Holocene flood intensity from varved sediments of pre-alpine Lake Ammersee (southern Germany). Quat. Sci. Rev. 2013, 61, 96–110. [Google Scholar] [CrossRef]
- Battarbee, R.W.; Anderson, N.J.; Bennion, H.; Simpson, G.L. Combining limnological and palaeolimnological data to disentangle the effects of nutrient pollution and climate change on lake ecosystems: Problems and potential. Freshw. Biol. 2012, 57, 2091–2106. [Google Scholar] [CrossRef]
- Dearing, J.A.; Battarbee, R.W.; Dikau, R.; Larocque, I.; Oldfield, F. Human–environment interactions: Learning from the past. Reg. Environ. Chang. 2006, 6, 1–16. [Google Scholar] [CrossRef]
- Dubois, N.; Saulnier-Talbot, É.; Mills, K.; Gell, P.; Battarbee, R.; Bennion, H.; Chawchai, S.; Dong, X.; Francus, P.; Flower, R.; et al. First human impacts and responses of aquatic systems: A review of palaeolimnological records from around the world. Anthr. Rev. 2017, 5, 28–68. [Google Scholar] [CrossRef]
- Poraj-Górska, A.I.; Bonk, A.; Żarczyński, M.; Kinder, M.; Tylmann, W. Varved lake sediments as indicators of recent cultural eutrophication and hypolimnetic hypoxia in lakes. Anthropocene 2021, 36, 100311. [Google Scholar] [CrossRef]
- Krachler, M.; Mohl, C.; Emons, H.; Shotyk, W. Influence of digestion procedures on the determination of rare earth elements in peat and plant samples by USN-ICP-MS. J. Anal. At. Spectrom. 2002, 17, 844–851. [Google Scholar] [CrossRef]
- Croudace, I.W.; Löwemark, L.; Tjallingii, R.; Zolitschka, B. High resolution XRF core scanners: A key tool for the environmental and palaeoclimate sciences. Quater. Int. 2019, 514, 1–4. [Google Scholar] [CrossRef]
- Jansen, J.H.F.; Van Der Gaast, S.J.; Koster, B.; Vaars, A.J. CORTEX, a shipboard XRF-scanner for element analyses in split sediment cores. Mar. Geol. 1998, 151, 143–153. [Google Scholar] [CrossRef]
- Richter, T.O.; Van Der Gaast, S.; Koster, B.; Vaars, A.; Gieles, R.; De Stigter, H.C.; De Haas, H.; Van Weering, T.C.E. The Avaatech XRF Core Scanner: Technical description and applications to NE Atlantic sediments. In New Techniques in Sediment Core Analysis; Rothwell, R.G., Ed.; Special Publications; Geological Society: London, UK, 2006. [Google Scholar] [CrossRef]
- Rothwell, R.G.; Croudace, I.W. Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 25–35. [Google Scholar] [CrossRef]
- Weltje, G.J.; Tjallingii, R. Calibration of XRF core scanners for quantitative geochemical logging of sediment cores: Theory and application. Earth Planet. Sci. Lett. 2008, 274, 423–438. [Google Scholar] [CrossRef]
- Kylander, M.E.; Ampel, L.; Wohlfarth, B.; Veres, D. High-resolution X-ray fluorescence core scanning analysis of Les Echets (France) sedimentary sequence: New insights from chemical proxies. J. Quat. Sci. 2011, 26, 109–117. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Wennrich, V. Utilisation of XRF core scanning on peat and other highly organic sediments. Quatern. Int. 2019, 514, 85–96. [Google Scholar] [CrossRef]
- Poto, L.; Gabrieli, J.; Crowhurst, S.; Agostinelli, C.; Spolaor, A.; Cairns, W.R.L.; Cozzi, G.; Barbante, C. Cross calibration between XRF and ICP-MS for high spatial resolution analysis of ombrotrophic peat cores for palaeoclimatic studies. Anal. Bioanal. Chem. 2015, 407, 379–385. [Google Scholar] [CrossRef]
- Argyraki, A.; Ramsey, M.H.; Potts, P.J. Evaluation of portable X-ray fluorescence instrumentation for in situ measurements of lead on contaminated land. Analyst 1997, 122, 743–749. [Google Scholar] [CrossRef]
- Boyle, J.F.; Chiverell, C.; Schillereff, D. Approaches to water content correction and calibration for µXRF core scanning: Comparing X-ray scattering with simper regression of element concentrations. In Micro-XRF Studies of Sediment Cores Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 373–393. [Google Scholar] [CrossRef]
- Hennekam, R.; De Lange, G. X-ray fluorescence core scanning of wet marine sediments: Methods to improve quality and reproducibility of high-resolution paleoenvironmental records. Limnol. Oceanogr. Meth. 2012, 10, 991–1003. [Google Scholar] [CrossRef]
- Kilbride, C.; Poole, J.; Hutchings, T.R. A comparison of Cu, Pb, As, Cd, Zn, Fe, Ni and Mn determined by acid extraction/ICP-OES and ex situ field portable X-ray fluorescence analyses. Environ. Pollut. 2006, 143, 16–23. [Google Scholar] [CrossRef] [PubMed]
- Löwemark, L.; Chen, H.-F.; Yang, T.-N.; Kylander, M.; Yu, E.-F.; Hsu, Y.-W.; Lee, T.-Q.; Song, S.-R.; Jarvis, S. Normalizing XRF-scanner data: A cautionary note on the interpretation of high-resolution records from organic-rich lakes. J. Asian Earth Sci. 2011, 40, 1250–1256. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Ersek, V.; Salzmann, U.; Hubay, K.; Bormann, M.; Wennrich, V.; Schäbitz, F. Periodic input of dust over the Eastern Carpathians during the Holocene linked with Saharan desertification and human impact. Clim. Past 2017, 13, 897–917. [Google Scholar] [CrossRef]
- Löwemark, L.; Bloemsma, M.; Croudace, I.; Daly, J.S.; Edwards, R.J.; Francus, P.; Galloway, J.M.; Gregory, B.R.; Huang, J.J.S.; Jones, A.F.; et al. Practical guidelines and recent advances in the Itrax XRF core-scanning procedure. Quatern. Int. 2019, 514, 16–29. [Google Scholar] [CrossRef]
- Potts, P.J. X-ray fluorescence analysis: Principles and practice of wavelength dispersive spectrometry. In A Handbook of Silicate Rock Analysis; Potts, P.J., Ed.; Springer: Dordrecht, The Netherlands, 1987; pp. 226–285. [Google Scholar] [CrossRef]
- Thompson, M.; Walsh, N. Handbook of Inductively Coupled Plasma Spectrometry; Springer: Boston, MA, USA, 1989. [Google Scholar] [CrossRef]
- Johnson, T.C.; Brown, E.T.; Shi, J. Biogenic silica deposition in Lake Malawi, East Africa over the past 150,000 years. Palaeogeogr. Palaeocl. 2011, 303, 103–109. [Google Scholar] [CrossRef]
- Wilhelms-Dick, D.; Westerhold, T.; Röhl, U.; Wilhelms, F.; Vogt, C.; Hanebuth, T.J.; Römmermann, H.; Kriews, M.; Kasten, S. A comparison of mm scale resolution techniques for element analysis in sediment cores. J. Anal. At. Spectrom. 2012, 27, 1574–1584. [Google Scholar] [CrossRef]
- Gregory, B.R.B.; Patterson, R.T.; Reinhardt, E.G.; Galloway, J.M.; Roe, H.M. An evaluation of methodologies for calibrating Itrax X-ray fluorescence counts with ICP-MS concentration data for discrete sediment samples. Chem. Geol. 2019, 521, 12–27. [Google Scholar] [CrossRef]
- Finné, M.; Kylander, M.; Boyd, M.; Sundqvist, H.; Löwemark, L. Can XRF scanning of speleothems be used as a non-destructive method to identify paleoflood events in caves? Int. J. Speleol. 2015, 44, 17–23. [Google Scholar] [CrossRef][Green Version]
- Kern, O.A.; Koutsodendris, A.; Mächtle, B.; Christanis, K.; Schukraft, G.; Scholz, C.; Kotthoff, U.; Pross, J. XRF core scanning yields reliable semiquantitative data on the elemental composition of highly organic-rich sediments: Evidence from the Füramoos peat bog (Southern Germany). Sci. Total Environ. 2019, 697, 134110. [Google Scholar] [CrossRef]
- Haliuc, A.; Veres, D.; Brauer, A.; Hubay, K.; Hutchinson, S.M.; Begy, R. Palaeohydrological changes over mid and late Holocene in the Carpathian area, central-eastern Europe. Glob. Planet. Chang. 2017, 152, 99–114. [Google Scholar] [CrossRef]
- Blaauw, M.; Christen, J.A. Bacon Manual—v2.2. 2013. Available online: https://chrono.qub.ac.uk/blaauw/manualBacon_2.3.pdf (accessed on 26 February 2022).
- Ramsey, Ã.C.B. Deposition models for chronological records. Quat. Sci. Rev. 2008, 27, 42–60. [Google Scholar] [CrossRef]
- Croudace, I.W.; Rindby, A.; Rothwell, R.G. ITRAX: Description and Evaluation of a New Multi-Function X-ray Core Scanner; Special Publications; Geological Society: London, UK, 2006; Volume 267, pp. 51–63. [Google Scholar] [CrossRef]
- Cohen, A.S. Paleolimnology: The History and Evolution of Lake Systems, 1st ed.; Oxford University Press: Oxford, UK, 2003. [Google Scholar]
- Koinig, K.; Shotyk, W.; Lotter, A.; Ohlendorf, C. 9000 Years of Geochemical Evolution of Lithogenic Major and Trace Elements in the Sediment of an alpine lake. J. Paleolimnol. 2003, 4, 307–320. [Google Scholar] [CrossRef]
- Kylander, M.E.; Klaminder, J.; Wohlfarth, B.; Löwemark, L. Geochemical responses to paleoclimatic changes in southern Sweden since the late glacial: The Hässeldala Port lake sediment record. J. Paleolimnol. 2013, 50, 57–70. [Google Scholar] [CrossRef]
- Martin-Puertas, C.; Tjallingii, R.; Bloemsma, M.; Brauer, A. Varved sediment responses to early Holocene climate and environmental changes in Lake Meerfelder Maar (Germany) obtained from multivariate analyses of micro X-ray fluorescence core scanning data. J. Quat. Sci. 2017, 32, 427–436. [Google Scholar] [CrossRef]
- Naeher, S.; Gilli, A.; North, R.P.; Hamann, Y.; Schubert, C.J. Tracing bottom water oxygenation with sedimentary Mn/Fe ratios in Lake Zurich, Switzerland. Chem. Geol. 2013, 352, 125–133. [Google Scholar] [CrossRef]
- Cuven, S.; Francus, P.; Lamoureux, S.F. Estimation of grain size variability with micro X-ray fluorescence in laminated lacustrine sediments, Cape Bounty, Canadian High Arctic. J. Paleolimnol. 2010, 44, 803–817. [Google Scholar] [CrossRef]
- Dietze, E.; Słowiński, M.; Zawiska, I.; Veh, G.; Brauer, A. Multiple drivers of Holocene lake level changes at a lowland lake in northeastern Germany. Boreas 2016, 45, 828–845. [Google Scholar] [CrossRef]
- Rothwell, R.G.; Croudace, I.W. Micro-XRF Studies of Sediment Cores: A perspective on Capability and Application in the Environmental Sciences. In Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 1–21. [Google Scholar] [CrossRef]
- Ge, L.; Lai, W.; Lin, Y. Influence of and correction for moisture in rocks, soils and sediments on in situ XRF analysis. X-ray Spectrom. 2005, 34, 28–34. [Google Scholar] [CrossRef]
- Jarvis, S.; Croudace, I.W.; Rothwell, G. Parameter optimisation for the ITRAX Core Scanner. In Micro-XRF Studies of Sediment Cores: Applications of a Non-Destructive Tool for the Environmental Sciences; Croudace, I.W., Rothwell, R.G., Eds.; Springer: Dordrecht, The Netherlands, 2015; pp. 535–563. [Google Scholar] [CrossRef]
- Tjallingii, R.; Röhl, U.; Kölling, M.; Bickert, T. Influence of the water content on X-ray fluorescence corescanning measurements in soft marine sediments. Geochem. Geophy. Geosy. 2007, 8, 1–12. [Google Scholar] [CrossRef]
- Falciani, R.; Novaro, E.; Marchesini, M.; Gucciardi, M. Multi-element analysis of soil and sediment by ICP-MS after a microwave assisted digestion method. J. Anal. At. Spectrom. 2000, 15, 561–565. [Google Scholar] [CrossRef]
- Longman, J.; Veres, D.; Finsinger, W.; Ersek, V. Exceptionally high levels of lead pollution in the Balkans from the Early Bronze Age to the Industrial Revolution. Proc. Natl. Acad. Sci. USA 2018, 115, 5661–5668. [Google Scholar] [CrossRef] [PubMed]
- Augustsson, A.; Gaillard, M.-J.; Peltola, P.; Mazier, F.; Bergbäck, B.; Saarinen, T. Effects of land use and climate change on erosion intensity and sediment geochemistry at Lake Lehmilampi, Finland. Holocene 2013, 23, 1247–1259. [Google Scholar] [CrossRef]
- Bork, H.R.; Lang, A.A. Quantification of past soil erosion and land use/land cover changes in Germany. In Long Term Hillslope and Fluvial System Modelling: Concepts and Case Studies from the Rhine River Catchment—Lecture Notes in Earth Sciences; Lang, A., Heinrich, K., Dikau, R., Eds.; Springer: Heidelberg, Germany, 2003; pp. 232–239. [Google Scholar]
- Ionita, M.; Scholz, P.; Chelcea, S. Assessment of droughts in Romania using the Standardized Precipitation Index. Nat. Hazards 2016, 81, 1483–1498. [Google Scholar] [CrossRef]
- Doufexi, M.; Gamvroula, D.E.; Alexakis, D.E. Elements’ Content in Stream Sediment and Wildfire Ash of Suburban Areas in West Attica (Greece). Water 2022, 14, 310. [Google Scholar] [CrossRef]
- Arienzo, M.; Ferrara, L.; Trifuoggi, M.; Toscanesi, M. Advances in the Fate of Rare Earth Elements, REE, in Transitional Environments: Coasts and Estuaries. Water 2022, 14, 401. [Google Scholar] [CrossRef]
FPXRF | ICP-OES | XRF-CS | |
---|---|---|---|
Pre-treatment steps | Sampling, drying, homogenization, packing | Sampling, homogenization, digestion | Core surface cleaning, covering with film |
Highest resolution | ~0.5–1 cm | ~0.5–1 cm | ≥0.1 mm |
Preparation time per samples | ~10–15 min (excluding drying time) | Dry overnight, followed by 2 h per batch in a microwave, or a couple of days, if digesting bench-top | ~30 min/100 cm |
Analysis time per sample | 1 sample/240 s | Multiple days | Position/15 s |
Type of results | Qualitative | Quantitative | Qualitative |
Advantages | Low cost, less preparation steps, homogenised sediments, rapid analysis | Quantitative results, homogenised sediments, low LOD | High-resolution, high-speed/rapid analysis, non-destructive |
Disadvantages | Destructive, high LOD | Destructive, laborious, low speed | High costs, not homogenised, high LOD |
FPXRF | p-Value | ICP-OES | p-Value | ICP-OES | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
XRF-CS | Ti | 0.60 * | <0.001 | 0.26 | 0.057 | FPXRF | Ti | 0.18 | 0.185 |
K | 0.45 ** | <0.001 | 0.37 ** | 0.006 | K | 0.60 * | <0.001 | ||
Fe | 0.68 * | <0.001 | 0.17 | 0.222 | Fe | 0.40 ** | 0.003 | ||
Ca | 0.68 * | <0.001 | 0.26 | 0.061 | Ca | 0.30 ** | 0.028 |
FPXRF | p-Value | ICP-OES | p-Value | ICP-OES | p-Value | ||||
---|---|---|---|---|---|---|---|---|---|
XRF-CS (log-transformed) | Ti | 0.14 | 0.316 | −0.24 | 0.079 | FPXRF | Ti | 0.18 | 0.185 |
K | 0.23 | 0.091 | 0.33 ** | 0.016 | K | 0.60 * | <0.001 | ||
Fe | 0.50 * | <0.001 | 0.22 | 0.119 | Fe | 0.40 ** | 0.003 | ||
Ca | 0.75 * | <0.001 | 0.30 ** | 0.031 | Ca | 0.30 ** | 0.028 |
Descriptive Statistics | ||||||||
---|---|---|---|---|---|---|---|---|
Element | Method | Mean | Maximum | Minimum | Median | Kurtosis | Skewness | N |
Ti | XRF-CS | 9722 | 17,087 | 6356 | 9380 | 2.8 | 1.15 | 55 |
FPXRF | 2353 | 4319 | 1698 | 2293 | 4.5 | 1.6 | 55 | |
ICP-OES | 1253 | 2340 | 1288 | −0.007 | −0.3 | 53 | ||
K | XRF-CS | 18,152 | 25,969 | 10,894 | 17,960 | −0.4 | 0.2 | 55 |
FPXRF | 20,671 | 24,736 | 16,617 | 20,894 | 0.3 | −0.3 | 55 | |
ICP-OES | 22,980 | 39,746 | 6135 | 23,686 | 2.6 | −0.3 | 53 | |
Fe | XRF-CS | 43,838 | 64,224 | 27,455 | 42,145 | −0.79 | 0.31 | 55 |
FPXRF | 38,212 | 57,370 | 21,466 | 39,963 | −0.49 | −0.03 | 55 | |
ICP-OES | 27,889 | 38,537 | 28,497 | 4.4 | −1.8 | 53 | ||
Ca | XRF-CS | 131,072 | 237,772 | 50,711 | 122,396 | 0.02 | 0.43 | 55 |
FPXRF | 105,790 | 149,785 | 32,201 | 106,312 | 0.5 | −0.64 | 55 | |
ICP-OES | 10,370 | 177,280 | 8640 | 115,080 | −0.02 | −0.78 | 53 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Haliuc, A.; Bonk, A.; Longman, J.; Hutchinson, S.M.; Zak, M.; Veres, D. Challenges in Interpreting Geochemical Data: An Appraisal of Analytical Techniques Applied to a Karstic Lake Sediment Record. Water 2022, 14, 806. https://doi.org/10.3390/w14050806
Haliuc A, Bonk A, Longman J, Hutchinson SM, Zak M, Veres D. Challenges in Interpreting Geochemical Data: An Appraisal of Analytical Techniques Applied to a Karstic Lake Sediment Record. Water. 2022; 14(5):806. https://doi.org/10.3390/w14050806
Chicago/Turabian StyleHaliuc, Aritina, Alicja Bonk, Jack Longman, Simon M. Hutchinson, Michal Zak, and Daniel Veres. 2022. "Challenges in Interpreting Geochemical Data: An Appraisal of Analytical Techniques Applied to a Karstic Lake Sediment Record" Water 14, no. 5: 806. https://doi.org/10.3390/w14050806
APA StyleHaliuc, A., Bonk, A., Longman, J., Hutchinson, S. M., Zak, M., & Veres, D. (2022). Challenges in Interpreting Geochemical Data: An Appraisal of Analytical Techniques Applied to a Karstic Lake Sediment Record. Water, 14(5), 806. https://doi.org/10.3390/w14050806