Reactive and Hydraulic Behavior of Granular Mixtures Composed of Zero Valent Iron
Abstract
1. Introduction
2. Materials and Methods
3. Results and Discussion
4. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Thakur, A.K.; Vithanage, M.; Das, D.B.; Kumar, M. A review on design, material selection, mechanism, and modelling of permeable reactive barrier for community-scale groundwater treatment. Environ. Technol. Innov. 2020, 19, 100917. [Google Scholar] [CrossRef]
- Elder, C.R.; Benson, C.H. Performance and economic comparison of PRB types in heterogeneous aquifers. Environ. Geotech. 2018, 6, 214–224. [Google Scholar] [CrossRef]
- Moraci, N.; Bilardi, S.; Calabrò, P.S. Critical aspects related to Fe0 and Fe0/pumice PRB design. Environ. Geotech. 2016, 3, 114–124. [Google Scholar] [CrossRef]
- Faisal, A.A.H.; Sulaymon, A.H.; Khaliefa, Q.M. A review of permeable reactive barrier as passive sustainable technology for groundwater remediation. Int. J. Environ. Sci. Technol. 2018, 15, 1123–1138. [Google Scholar] [CrossRef]
- Vogan, J.L.; Focht, R.M.; Clark, D.K.; Graham, S.L. Performance evaluation of a permeable reactive barrier for remediation of dissolved chlorinated solvents in groundwater. J. Hazard. Mater. 1999, 68, 97–108. [Google Scholar] [CrossRef]
- Phillips, D.H.; Van Nooten, T.; Bastiaens, L.; Russell, M.I.; Dickson, K.; Plant, S.; Ahad, J.M.E.; Newton, T.; Elliot, T.; Kalin, R.M. Ten Year Performance Evaluation of a Field-Scale Zero-Valent Iron Permeable Reactive Barrier Installed to Remediate Trichloroethene Contaminated Groundwater. Environ. Sci. Technol. 2010, 44, 3861–3869. [Google Scholar] [CrossRef]
- Gandhi, S.; Oh, B.-T.T.; Schnoor, J.L.; Alvarez, P.J.J. Degradation of TCE, Cr(VI), sulfate, and nitrate mixtures by granular iron in flow-through columns under different microbial conditions. Water Res. 2002, 36, 1973–1982. [Google Scholar] [CrossRef]
- Liu, Y.; Wang, J. Reduction of nitrate by zero valent iron (ZVI)-based materials: A review. Sci. Total Environ. 2019, 671, 388–403. [Google Scholar] [CrossRef]
- Guan, Q.; Li, F.; Chen, X.; Tian, C.; Liu, C.; Liu, D. Assessment of the use of a zero-valent iron permeable reactive barrier for nitrate removal from groundwater in the alluvial plain of the Dagu River, China. Environ. Earth Sci. 2019, 78, 244. [Google Scholar] [CrossRef]
- Lee, K.J.; Lee, Y.; Yoon, J.; Kamala-Kannan, S.; Park, S.M.; Oh, B.T. Assessment of zero-valent iron as a permeable reactive barrier for long-term removal of arsenic compounds from synthetic water. Environ. Technol. 2009, 30, 1425–1434. [Google Scholar] [CrossRef]
- Statham, T.M.; Stark, S.C.; Snape, I.; Stevens, G.W.; Mumford, K.A. A permeable reactive barrier (PRB) media sequence for the remediation of heavy metal and hydrocarbon contaminated water: A field assessment at Casey Station, Antarctica. Chemosphere 2016, 147, 368–375. [Google Scholar] [CrossRef] [PubMed]
- Ludwig, R.D.; Smyth, D.J.A.; Blowes, D.W.; Spink, L.E.; Wilkin, R.T.; Jewett, D.G.; Weisener, C.J. Treatment of Arsenic, Heavy Metals, and Acidity Using a Mixed ZVI-Compost PRB. Environ. Sci. Technol. 2009, 43, 1970–1976. [Google Scholar] [CrossRef] [PubMed]
- Cao, V.; Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Noubactep, C. The mechanism of contaminant removal in Fe(0)/H2O systems: The burden of a poor literature review. Chemosphere 2021, 280, 130614. [Google Scholar] [CrossRef]
- Hu, R.; Gwenzi, W.; Sipowo-Tala, V.R.; Noubactep, C. Water Treatment Using Metallic Iron: A Tutorial Review. Processes 2019, 7, 622. [Google Scholar] [CrossRef]
- Hu, R.; Noubactep, C. Redirecting Research on Fe0 for Environmental Remediation: The Search for Synergy. Int. J. Environ. Res. Public Health 2019, 16, 4465. [Google Scholar] [CrossRef]
- Hu, R.; Yang, H.; Tao, R.; Cui, X.; Xiao, M.; Amoah, B.K.; Cao, V.; Lufingo, M.; Soppa-Sangue, N.P.; Ndé-Tchoupé, A.I.; et al. Metallic Iron for Environmental Remediation: Starting an Overdue Progress in Knowledge. Water 2020, 12, 641. [Google Scholar] [CrossRef]
- Moraci, N.; Ielo, D.; Bilardi, S.; Calabrò, P.S. Modelling long-term hydraulic conductivity behaviour of zero valent iron column tests for permeable reactive barrier design. Can. Geotech. J. 2016, 53, 946–961. [Google Scholar] [CrossRef]
- Henderson, A.D.; Demond, A.H. Impact of Solids Formation and Gas Production on the Permeability of ZVI PRBs. J. Environ. Eng. 2011, 137, 689–696. [Google Scholar] [CrossRef]
- Guan, X.; Sun, Y.; Qin, H.; Li, J.; Lo, I.M.C.; He, D.; Dong, H. The limitations of applying zero-valent iron technology in contaminants sequestration and the corresponding countermeasures: The development in zero-valent iron technology in the last two decades (1994–2014). Water Res. 2015, 75, 224–248. [Google Scholar] [CrossRef]
- Noubactep, C. Relevant Reducing Agents in Remediation Fe0/H2O Systems. CLEAN—Soil Air Water 2013, 41, 493–502. [Google Scholar] [CrossRef]
- Hu, R.; Cui, X.; Gwenzi, W.; Wu, S.; Noubactep, C. Fe0/H2O Systems for Environmental Remediation: The Scientific History and Future Research Directions. Water 2018, 10, 1739. [Google Scholar] [CrossRef]
- Yang, H.; Hu, R.; Ruppert, H.; Noubactep, C. Modeling porosity loss in Fe0-based permeable reactive barriers with Faraday’s law. Sci. Rep. 2021, 11, 16998. [Google Scholar] [CrossRef] [PubMed]
- Bilardi, S.; Calabrò, P.S.; Caré, S.; Moraci, N.; Noubactep, C. Effect of pumice and sand on the sustainability of granular iron beds for the aqueous removal of CuII, NiII, and ZnII. Clean—Soil Air Water 2013, 41, 835–843. [Google Scholar] [CrossRef]
- Henderson, A.D.; Demond, A.H. Long-Term Performance of Zero-Valent Iron Permeable Reactive Barriers: A Critical Review. Environ. Eng. Sci. 2007, 24, 401–423. [Google Scholar] [CrossRef]
- Liang, L.; Moline, G.R.; Kamolpornwijit, W.; West, O.R. Influence of hydrogeochemical processes on zero-valent iron reactive barrier performance: A field investigation. J. Contam. Hydrol. 2005, 80, 71–91. [Google Scholar] [CrossRef]
- Wilkin, R.T.; Lee, T.R.; Sexton, M.R.; Acree, S.D.; Puls, R.W.; Blowes, D.W.; Kalinowski, C.; Tilton, J.M.; Woods, L.L. Geochemical and Isotope Study of Trichloroethene Degradation in a Zero-Valent Iron Permeable Reactive Barrier: A Twenty-Two-Year Performance Evaluation. Environ. Sci. Technol. 2019, 53, 296–306. [Google Scholar] [CrossRef]
- Mackenzie, P.D.; Horney, D.P.; Sivavec, T.M. Mineral precipitation and porosity losses in granular iron columns. J. Hazard. Mater. 1999, 68, 1–17. [Google Scholar] [CrossRef]
- Jun, D.; Yongsheng, Z.; Weihong, Z.; Mei, H. Laboratory study on sequenced permeable reactive barrier remediation for landfill leachate-contaminated groundwater. J. Hazard. Mater. 2009, 161, 224–230. [Google Scholar] [CrossRef]
- Klausen, J.; Ranke, J.; Schwarzenbach, R.P. Influence of solution composition and column aging on the reduction of nitroaromatic compounds by zero-valent iron. Chemosphere 2001, 44, 511–517. [Google Scholar] [CrossRef]
- Liu, T.; Lo, I.M.C. Influences of Humic Acid on Cr(VI) Removal by Zero-Valent Iron From Groundwater with Various Constituents: Implication for Long-Term PRB Performance. Water Air Soil Pollut. 2011, 216, 473–483. [Google Scholar] [CrossRef]
- Moraci, N.; Bilardi, S.; Calabrò, P.S. Design of permeable reactive barriers for remediation of groundwater contaminated by heavy metals. Riv. Ital. di Geotec. 2015, 49, 59–86. [Google Scholar]
- Bilardi, S.; Calabrò, P.S.; Moraci, N.; Madaffari, M.G.; Ranjbar, E. A comparison between Fe0 /pumice and Fe0 /lapillus mixtures in permeable reactive barriers. Environ. Geotech. 2020, 7, 524–539. [Google Scholar] [CrossRef]
- Ruhl, A.S.; Jekel, M. Degassing, gas retention and release in Fe(0) permeable reactive barriers. J. Contam. Hydrol. 2014, 159, 11–19. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; Benson, C.H. Evaluation of five strategies to limit the impact of fouling in permeable reactive barriers. J. Hazard. Mater. 2010, 181, 170–180. [Google Scholar] [CrossRef]
- Bilardi, S.; Amos, R.T.; Blowes, D.W.; Calabrò, P.S.; Moraci, N. Reactive Transport Modeling of ZVI Column Experiments for Nickel Remediation. Groundw. Monit. Remediat. 2013, 33, 97–104. [Google Scholar] [CrossRef]
- Bilardi, S.; Calabrò, P.S.; Moraci, N. The removal efficiency and long-term hydraulic behaviour of zero valent iron/lapillus mixtures for the simultaneous removal of Cu2+, Ni2+ and Zn2+. Sci. Total Environ. 2019, 675, 490–500. [Google Scholar] [CrossRef]
- Calabrò, P.S.; Bilardi, S.; Moraci, N. Advancements in the use of filtration materials for the removal of heavy metals from multicontaminated solutions. Curr. Opin. Environ. Sci. Health 2021, 20, 100241. [Google Scholar] [CrossRef]
- Noubactep, C. Should the term ‘metallic iron’ appear in the title of a research paper? Chemosphere 2022, 287, 132314. [Google Scholar] [CrossRef]
- Cao, V.; Yang, H.; Ndé-Tchoupé, A.I.; Hu, R.; Gwenzi, W.; Noubactep, C. Tracing the Scientific History of Fe0-Based Environmental Remediation Prior to the Advent of Permeable Reactive Barriers. Processes 2020, 8, 977. [Google Scholar] [CrossRef]
- Bilardi, S.; Calabró, P.S.; Moraci, N. Simultaneous removal of CU II, NI II and ZN II by a granular mixture of zero-valent iron and pumice in column systems. Desalin. Water Treat. 2015, 55, 767–776. [Google Scholar] [CrossRef]
- Madaffari, M.G.; Bilardi, S.; Calabrò, P.S.; Moraci, N. Nickel removal by zero valent iron/lapillus mixtures in column systems. Soils Found. 2017, 57, 745–759. [Google Scholar] [CrossRef]
- Moraci, N.; Bilardi, S.; Mandaglio, M.C. Factors affecting geotextile filter long-term behaviour and their relevance in design. Geosynth. Int. 2022, 29, 19–42. [Google Scholar] [CrossRef]
- Noubactep, C. Research on metallic iron for environmental remediation: Stopping growing sloppy science. Chemosphere 2016, 153, 528–530. [Google Scholar] [CrossRef] [PubMed]
- Moraci, N.; Bilardi, S.; Calabrò, P.S. Fe0/pumice mixtures: From laboratory tests to permeable reactive barrier design. Environ. Geotech. 2017, 4, 245–256. [Google Scholar] [CrossRef]
Reactive Medium | Contaminant- Concentration [mg/L] | Q [mL/min] | L [cm] | Test Duration [days] | References |
---|---|---|---|---|---|
ZVI/pumice 30:70 | Zn-50 | 0.5 | 50 | 87 | [40] |
ZVI/lapillus 30:70 | Zn-50 | 0.5 | 50 | 108 | [32] |
ZVI/lapillus 50:50 | Zn-50 | 0.5 | 50 | 394 | New test |
ZVI | Zn-50 | 0.5 | 3 | 84 | [40] |
ZVI/pumice 30:70 | Ni-95 | 0.1 | 50 | 104 | [31] |
ZVI/pumice 30:70 | Ni-95 | 2.5 | 50 | 27 | |
ZVI | Ni-95 | 2.5 | 22.5 | 52 | |
ZVI/pumice 30:70 | Ni-40 | 0.1 | 50 | 541 | |
ZVI/pumice 30:70 | Ni-40 | 2.5 | 50 | 35 | |
ZVI | Ni-40 | 0.1 | 22.5 | 375 | |
ZVI | Ni-40 | 2.5 | 22.5 | 32 | |
ZVI/pumice 30:70 | Ni-8 | 2.5 | 50 | 87 | |
ZVI | Ni-8 | 2.5 | 50 | 18 | |
ZVI/pumice 30:70 | Cu-500/Ni-50/Zn-50 | 0.5 | 50 | 87 | [40] |
ZVI | Cu-500/Ni-50/Zn-50 | 0.5 | 3 | 25 | |
ZVI/lapillus 30:70 | Cu-500/Ni-50/Zn-50 | 0.5 | 50 | 192 | [36] |
ZVI/lapillus 50:50 | Cu-500/Ni-50/Zn-50 | 0.5 | 50 | 140 | |
ZVI/lapillus 10:90 | Ni-50 | 0.5 | 50 | 216 | [41] |
ZVI/lapillus 30:70 | Ni-50 | 0.5 | 50 | 250 | |
ZVI/lapillus 50:50 | Ni-50 | 0.5 | 50 | 222 | |
ZVI/lapillus 30:70 | Ni-50 | 0.1 | 50 | 1223 | |
ZVI/lapillus 30:70 | Ni-50 | 2.5 | 50 | 35 | |
ZVI/lapillus 30:70 | Ni-10 | 0.5 | 50 | 502 | |
ZVI/lapillus 30:70 | Ni-100 | 0.5 | 50 | 120 |
Reactive Medium | Concentration [mg/L] | Q [mL/min] | Rf | Kr | |
---|---|---|---|---|---|
Zn | ZVI/pumice 30:70 | 50 | 0.5 | 35.86 | 1 |
ZVI/lapillus 30:70 | 50 | 0.5 | 97.95 | 1 | |
ZVI/lapillus 50:50 | 50 | 0.5 | 159.51 | 1.08 × 10−1 | |
ZVI | 50 | 0.5 | 506.67 | 8.52 × 10−5 | |
Ni | ZVI/pumice 30:70 | 95 | 0.1 | 5.61 | 7.45 × 10−1 |
ZVI/pumice 30:70 | 95 | 2.5 | 4.00 | 9.32 × 10−1 | |
ZVI | 95 | 2.5 | 20.53 | 4.29 × 10−2 | |
ZVI/pumice 30:70 | 40 | 0.1 | 37.96 | 1.08 × 10−3 | |
ZVI/pumice 30:70 | 40 | 2.5 | 12.05 | 4.59 × 10−1 | |
ZVI | 40 | 0.1 | 142.12 | 1.07 × 10−5 | |
ZVI | 40 | 2.5 | 26.43 | 1.45 × 10−3 | |
ZVI/pumice 30:70 | 8 | 2.5 | 54.84 | 1.55 × 10−3 | |
ZVI | 8 | 2.5 | 676.99 | 1.86 × 10−5 | |
ZVI/lapillus 10:90 | 50 | 0.5 | 44.03 | 4.13 × 10−1 | |
ZVI/lapillus 30:70 | 50 | 0.5 | 59.74 | 2.82 × 10−1 | |
ZVI/lapillus 50:50 | 50 | 0.5 | 156.67 | 3.51 × 10−2 | |
ZVI/lapillus 30:70 | 50 | 0.1 | 59.16 | 1.94 × 10−1 | |
ZVI/lapillus 30:70 | 50 | 2.5 | 10.58 | 9.27 × 10−1 | |
ZVI/lapillus 30:70 | 10 | 0.5 | 1171.18 | 4.13 × 10−3 | |
ZVI/lapillus 30:70 | 100 | 0.5 | 7.34 | 8.57 × 10−1 | |
Cu | ZVI/pumice 30:70 | 500 | 0.5 | 11.46 | 9.19 × 10−1 |
Ni | 50 | 9.24 | |||
Zn | 50 | 2.37 | |||
Cu | ZVI | 500 | 0.5 | - | 4.51 × 10−4 |
Ni | 50 | 4.44 | |||
Zn | 50 | 30.55 | |||
Cu | ZVI/lapillus 30:70 | 500 | 0.5 | 706.66 | 3.92 × 10−2 |
Ni | 50 | 17.04 | |||
Zn | 50 | 42.26 | |||
Cu | ZVI/lapillus 50:50 | 500 | 0.5 | - | 7.00 × 10−5 |
Ni | 50 | 46.98 | |||
Zn | 50 | 92.84 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bilardi, S.; Calabrò, P.S.; Moraci, N. Reactive and Hydraulic Behavior of Granular Mixtures Composed of Zero Valent Iron. Water 2022, 14, 3613. https://doi.org/10.3390/w14223613
Bilardi S, Calabrò PS, Moraci N. Reactive and Hydraulic Behavior of Granular Mixtures Composed of Zero Valent Iron. Water. 2022; 14(22):3613. https://doi.org/10.3390/w14223613
Chicago/Turabian StyleBilardi, Stefania, Paolo S. Calabrò, and Nicola Moraci. 2022. "Reactive and Hydraulic Behavior of Granular Mixtures Composed of Zero Valent Iron" Water 14, no. 22: 3613. https://doi.org/10.3390/w14223613
APA StyleBilardi, S., Calabrò, P. S., & Moraci, N. (2022). Reactive and Hydraulic Behavior of Granular Mixtures Composed of Zero Valent Iron. Water, 14(22), 3613. https://doi.org/10.3390/w14223613