Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. Experimental Design and Field Management
2.3. Sampling and Measurement Methods
2.4. Plant Growth Measurements
2.5. Statistical Analysis
3. Results
3.1. Soil Water Content
3.2. Salt Content
3.3. Soil Physical Properties
3.4. Soil Nutrients
3.5. Plant Height
3.6. Biomass and Grain Yield
4. Discussion
4.1. Soil Water and Salt Content
4.2. Soil Properties
4.3. Plant Growth and Yield
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Rath, K.M.; Fierer, N.; Murphy, D.V.; Rousk, J. Linking bacterial community composition to soil salinity along environmental gradients. ISME J. 2019, 13, 836–846. [Google Scholar] [CrossRef] [PubMed]
- Li, J.G.; Pu, L.J.; Zhu, M.; Zhang, J.; Li, P.; Dai, X.Q.; Xu, Y.; Liu, L.L. Evolution of soil properties following reclamation in coastal areas: A review. Geoderma 2014, 226, 130–139. [Google Scholar] [CrossRef]
- Kong, D.X.; Miao, C.Y.; Borthwick, A.G.L.; Duan, Q.Y.; Liu, H.; Sun, Q.H.; Ye, A.Z.; Di, Z.H.; Gong, W. Evolution of the Yellow River Delta and its relationship with runoff and sediment load from 1983 to 2011. J. Hydrol. 2015, 520, 157–167. [Google Scholar]
- Lakhdar, A.; Rabhi, M.; Ghnaya, T.; Montemurro, F.; Jedidi, N.; Abdelly, C. Effectiveness of compost use in salt-affected soil. J. Hazard. Mater. 2009, 171, 29–37. [Google Scholar] [CrossRef]
- Stagg, C.L.; Baustian, M.M.; Perry, C.L.; Carruthers, T.J.B.; Hall, C.T. Direct and indirect controls on organic matter decomposition in four coastal wetland communities along a landscape salinity gradient. J. Ecol. 2018, 106, 655–670. [Google Scholar] [CrossRef]
- Zhang, J.B.; Yang, J.S.; Yao, R.J.; Yu, S.P.; Li, F.R.; Hou, X.J. The effects of farmyard manure and mulch on soil physical properties in a reclaimed coastal tidal flat salt-affected soil. J. Integr. Agric. 2014, 13, 1782–1790. [Google Scholar] [CrossRef]
- Xiao, L.; Yuan, G.D.; Feng, L.R.; Bi, D.X.; Wei, J. Soil properties and the growth of wheat (Triticum aestivum L.) and maize (Zea mays L.) in response to reed (phragmites communis) biochar use in a salt-affected soil in the Yellow River Delta. Agr. Ecosyst. Environ. 2020, 303, 107–124. [Google Scholar] [CrossRef]
- Chen, M.M.; Zhang, S.R.; Liu, L.; Wu, L.P.; Ding, X.D. Combined organic amendments and mineral fertilizer application increase rice yield by improving soil structure, P availability and root growth in saline-alkaline soil. Soil. Tillage Res. 2021, 212, 105060. [Google Scholar] [CrossRef]
- Tan, J.L.; Kang, Y.H. Changes in soil properties under the influences of cropping and drip irrigation during the reclamation of severe salt-affected soils. Agric. Sci. China 2009, 8, 1228–1237. [Google Scholar] [CrossRef]
- Lu, H.F.; Lashari, M.S.; Liu, X.Y.; Ji, H.; Li, L.Q.; Zheng, J.F.; Kibue, G.W.; Joseph, S.; Pan, G.X. Changes in soil microbial community structure and enzyme activity with amendment of biochar-manure compost and pyroligneous solution in a saline soil from Central China. Eur. J. Soil Biol. 2015, 70, 67–76. [Google Scholar] [CrossRef]
- Wu, L.P.; Zhang, S.R.; Ma, R.H.; Chen, M.M.; Wei, W.L.; Ding, X.D. Carbon sequestration under different organic amendments in saline-alkaline soils. Catena 2021, 196, 104882. [Google Scholar] [CrossRef]
- Han, J.Q.; Dong, Y.Y.; Zhang, M. Chemical fertilizer reduction with organic fertilizer effectively improve soil fertility and microbial community from newly cultivated land in the Loess Plateau of China. Appl. Soil Ecol. 2021, 165, 103966. [Google Scholar] [CrossRef]
- Cao, N.; Wang, J.; Pang, J.; Hu, W.; Bai, H.; Zhou, Z.; Meng, Y.; Wang, Y. Straw retention coupled with mineral phosphorus fertilizer for reducing phosphorus fertilizer input and improving cotton yield in coastal saline soils. Field Crop Res. 2021, 274, 108309. [Google Scholar] [CrossRef]
- Bu, L.D.; Liu, J.L.; Zhu, L.; Luo, S.S.; Chen, X.P.; Li, S.Q.; Hill, R.L.; Zhao, Y. The effects of mulching on maize growth, yield and water use in a semi-arid region. Agri. Water Manag. 2013, 123, 71–78. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Pang, H.C.; Wang, J.; Hou, L.; Li, Y.Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crop. Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Ramadhan, M.N. Yield and yield components of maize and soil physical properties as affected by tillage practices and organic mulching. Saudi J Biol Sci. 2021, 28, 7152–7159. [Google Scholar] [CrossRef]
- Wang, Y.J.; Xie, Z.K.; Malhi, S.S.; Vera, C.L.; Zhang, Y.B.; Guo, Z.H. Effects of gravel–sand mulch, plastic mulch and ridge and furrow rainfall harvesting system combinations on water use efficiency, soil temperature and watermelon yield in a semi-arid Loess plateau, china. Agri. Water Manag. 2011, 96, 374–382. [Google Scholar] [CrossRef]
- Li, S.X.; Wang, Z.H.; Li, S.Q.; Gao, Y.J.; Tian, X.H. Effect of plastic sheet mulch, wheat straw mulch, and maize growth on water loss by evaporation in dryland areas of China. Agri. Water Manag. 2013, 116, 39–49. [Google Scholar] [CrossRef]
- Pang, H.C.; Li, Y.Y.; Yang, J.S.; Liang, Y.S. Effect of brackish water irrigation and straw mulching on soil salinity and crop yields under monsoonal climatic conditions. Agri. Water Manag. 2010, 97, 1971–1977. [Google Scholar] [CrossRef]
- Zamir, S.I.; Asif, M.; Ihtisham-ul-haq, U.A.; Hussain, S. Maize phenology, yield and its quality is affected by organic mulches and various irrigation regimes. Int. J. Mod. Agric. 2014, 3, 56–59. [Google Scholar]
- Qin, X.L.; Huang, T.T.; Lu, C.; Dang, P.F. Benefits and limitations of straw mulching and incorporation on maize yield, water use efficiency, and nitrogen use efficiency. Agri. Water Manag. 2021, 256, 107128. [Google Scholar] [CrossRef]
- Li, S.Y.; Li, Y.; Lin, H.X.; Feng, H.; Dyck, M. Effects of different mulching technologies on evapotranspiration and summer maize growth. Agri. Water Manag. 2018, 201, 309–318. [Google Scholar] [CrossRef]
- Ding, D.; Feng, H.; Zhao, Y.; Hill, R.L.; Yan, H.; Chen, H.; Hou, H.J.; Chu, J.C.; Liu, J.C.; Wang, N.J.; et al. Effects of continuous plastic mulching on crop growth in a winter wheat-summer maize rotation system on the loess plateau of china. Agr. Forest Meteorol. 2019, 271, 385–397. [Google Scholar] [CrossRef]
- Duan, C.X.; Chen, J.F.; Li, J.B.; Feng, H.; Wu, S.F.; Meng, Q.T.; Siddique, K.H.M. Effects of organic amendments and ridge–furrow mulching system on soil properties and economic benefits of wolfberry orchards on the Tibetan Plateau. Sci. Total Environ. 2022, 827, 154317. [Google Scholar] [CrossRef] [PubMed]
- Gong, Z.T.; Zhang, G.L.; Chen, Z.C. Development of soil classification in China. In Soil Classification: A GlobalDesk Reference; Eswaran, H.R.T., Ahrens, R., Stewart, B.A., Eds.; CRC Press: Boca Raton, FL, USA, 2003; pp. 110–125. [Google Scholar]
- Chuang, C.H.; Zhou, R.Z.; Xu, G.W. Creation of spartina plantations for reclaiming Dongtai, China, tidal flats and offshore sands. Ecol. Eng. 2004, 23, 135–150. [Google Scholar] [CrossRef]
- Wang, Y.P.; Gao, S.; Jia, J.J.; Thompson, C.E.L.; Gao, J.H.; Yang, Y. Sediment transport over an accretional intertidal flat with influences of reclamation, Jiangsu coast, China. Mar. Geol. 2012, 291–294, 147–161. [Google Scholar] [CrossRef]
- Lu, R.K. Analytical Methods for Soil and Agricultural Chemistry; China Agricultural Science and Technology Press: Beijing, China, 1999; pp. 107–108, 147–148, 150–152, 180–181, 269–271. (In Chinese) [Google Scholar]
- Shao, M.A.; Wang, Q.J.; Huang, M.B. Soil Physics; Higher Education Press: Beijing, China, 2006; pp. 37–38, 84. (In Chinese) [Google Scholar]
- Zhang, W.; Tian, Y.; Sun, Z.; Zheng, C.M. How does plastic film mulching affect crop water productivity in an arid river basin? Agri. Water Manag. 2021, 258, 107218. [Google Scholar] [CrossRef]
- Mohammad, A.H.; Mohammad, J.; Derek, C. Effect of plastic mulch on crop yield and land degradation in south coastal saline soils of Bangladesh. Int. Soil Water Conse. 2018, 6, 317–324. [Google Scholar]
- El-Mageed, T.; Semida, W.M.; El-Wahed, M. Effect of mulching on plant water status, soil salinity and yield of squash under summer-fall deficit irrigation in salt affected soil. Agri. Water Manag. 2016, 173, 1–12. [Google Scholar] [CrossRef]
- Hao, X.Y.; Chang, C. Does long-term heavy cattle manure application increase salinity of a clay loam soil in semi-arid southern Alberta? Agr. Ecosyst. Environ. 2003, 94, 89–103. [Google Scholar] [CrossRef]
- Yao, L.X.; Li, G.L.; Tu, S.H.; Gavin, S.; He, Z.H. Salinity of animal manure and potential risk of secondary soil salinization through successive manure application. Sci. Total Environ. 2007, 383, 106–114. [Google Scholar]
- Wu, W.J.; Lin, Z.; Zhu, X.P.; Li, G.Y.; Zhang, W.J.; Chen, Y.J.; Ren, L.; Luo, S.W.; Lin, H.H.; Zhou, H.K.; et al. Improved tomato yield and quality by altering soil physicochemical properties and nitrification processes in the combined use of organic-inorganic fertilizers. Eur. J. Soil Biol. 2022, 109, 103384. [Google Scholar] [CrossRef]
- Zhang, B.B.; Hu, Y.J.; Hill, R.L.; Wu, S.F.; Song, X.L. Combined effects of biomaterial amendments and rainwater harvesting on soil moisture, structure and apple roots in rainfed apple orahard on the Loess Plateau, China. Agric. Water Manag. 2021, 248, 106776. [Google Scholar] [CrossRef]
- Khaliq, A.; Kaleem Abbasi, M. Improvements in the physical and chemical characteristics of degraded soils supplemented with organic–inorganic amendments in the Himalayan region of Kashmir, Pakistan. Catena 2015, 126, 209–219. [Google Scholar] [CrossRef]
- Bilong, E.G.; Abossolo-Angue, M.; Ajebesone, F.N.; Anaba, B.D.; Madong, B.A.; Nomo, L.B.; Bilong, P. Improving soil physical properties and cassava productivity through organic manures management in the southern Cameroon. Heliyon 2022, 8, e09570. [Google Scholar] [CrossRef]
- Zhang, M.M.; Song, D.P.; Pu, X.; Dang, P.F.; Qin, X.L.; Siddique, K.H.M. Effect of different straw returning measures on resource use efficiency and spring maize yield under a plastic film mulch system. Europ. J. Agron. 2022, 134, 126461. [Google Scholar] [CrossRef]
- Wang, X.L.; Ren, Y.Y.; Zhang, S.Q.; Chen, Y.L.; Wang, N. Applications of organic manure increased maize (Zea mays L.) yield and water productivity in a semi-arid region. Agric. Water Manag. 2017, 187, 88–98. [Google Scholar] [CrossRef]
- Zhang, P.; Chen, X.L.; Wei, T.; Yang, Z.; Jia, Z.K.; Yang, B.P.; Han, Q.F.; Ren, X.L. Effects of straw incorporation on the soil nutrient contents, enzyme activities, and crop yield in a semiarid region of China. Soil Tillage Res. 2016, 160, 65–72. [Google Scholar] [CrossRef]
- Wang, X.Q.; Yang, Y.D.; Zhao, J.; Nie, J.W.; Zang, H.D.; Zeng, Z.H.; Olesen, J.E. Yield benefits from replacing chemical fertilizers with manure under water deficient conditions of the winter wheat—Summer maize system in the North China Plain. Europ. J. Agron. 2020, 119, 126118. [Google Scholar] [CrossRef]
Barley | Maize | ||||||
---|---|---|---|---|---|---|---|
Basel Fertilizer | Reviving | Heading | Basel Fertilizer | Seeding | Jointing | Tasseling | |
Monoammonium phosphate (11% N, 44% P) | 204 | 204 | |||||
Urea (46% N) | 146 | 146 | 146 | 146 | 97 | 97 | 97 |
Soil Depth (cm) | Treatment | BD (g/cm3) | Ks (cm/d) | SWC (%) |
---|---|---|---|---|
0–10 | CK | 1.42 ± 0.01 a | 10.98 ± 0.45 a | 37.91 ± 0.33 a |
PM | 1.39 ± 0.03 ab | 12.01 ± 0.48 a | 38.40 ± 0.33 ab | |
FM | 1.36 ± 0.02 b | 12.95 ± 0.37 b | 38.86 ± 0.38 b | |
FM+PM | 1.34 ± 0.03 b | 13.65 ± 0.24 b | 39.20 ± 0.40 b | |
10–20 | CK | 1.43 ± 0.02 a | 10.06 ± 0.37 a | 37.46 ± 0.15 a |
PM | 1.40 ± 0.04 a | 10.75 ± 0.24 a | 37.80 ± 0.60 ab | |
FM | 1.36 ± 0.05 a | 11.81 ± 0.38 b | 38.18 ± 0.50 b | |
FM+PM | 1.35 ± 0.03 b | 12.02 ± 0.49 b | 38.41 ± 0.70 b |
Soil Depth (cm) | Treatment | OM (g/kg) | TN (g/kg) | AN(mg/kg) | AP (mg/kg) |
---|---|---|---|---|---|
0–10 | CK | 4.87 ± 0.42 c | 0.35 ± 0.04 b | 112.58 ± 11.41 a | 16.08 ± 6.71 c |
PM | 5.81 ± 0.50 b | 0.38 ± 0.01 b | 73.78 ± 19.4 b | 23.46 ± 1.30 c | |
FM | 7.67 ± 1.02 a | 0.48 ± 0.03 a | 71.51 ± 20.5 b | 46.56 ± 1.21 b | |
FM+PM | 7.38 ± 0.68 a | 0.49 ± 0.10 a | 70.26 ± 28.6 b | 60.19 ± 3.91 a | |
10–20 | CK | 4.70 ± 0.25 c | 0.28 ± 0.05 b | 30.71 ± 3.11 b | 13.62 ± 1.90 b |
PM | 5.76 ± 0.50 b | 0.40 ± 0.13 a | 46.89 ± 10.21 a | 14.44 ± 4.91 b | |
FM | 7.47 ± 1.09 a | 0.40 ± 0.28 a | 57.60 ± 22.63 a | 27.97 ± 6.82 a | |
FM+PM | 6.29 ± 0.42 b | 0.39 ± 0.04 a | 63.55 ± 9.90 a | 25.08 ± 7.41 a |
Treatment | Maize | Barley | |||
---|---|---|---|---|---|
2016 | 2017 | Average | |||
Biomass | CK | 3943 c | 3256 c | 3600 c | 6080 c |
PM | 4296 b | 3960 c | 4128 c | 10,890 b | |
FM | 5826 b | 5633 b | 5730 b | 12,649 ab | |
FM+PM | 7965 a | 6869 a | 7417 a | 14192 a | |
Yield | CK | 1675 c | 1749 c | 1712 c | 2053 c |
PM | 2009 c | 2000 c | 2005 c | 3233 b | |
FM | 2696 b | 2967 b | 2832 b | 3415 b | |
FM+PM | 4372 a | 3729 a | 4051 a | 4231 a |
Salt Content | BD | Ks | SWC | OM | TN | AN | AP | |
---|---|---|---|---|---|---|---|---|
Yield | −0.109 | −0.876 ** | 0.879 ** | 0.892 ** | 0.778 ** | 0.837 ** | −0.701 * | 0.897 ** |
Biomass | −0.052 | −0.558 | 0.559 | 0.562 | 0.518 | 0.535 | −0.482 | 0.550 |
Plant height | −0.155 | −0.314 | 0.313 | 0.312 | 0.306 | 0.301 | −0.296 | 0.294 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, X.; Yang, J.; Yao, R.; Xie, W.; Zhang, X. Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China. Water 2022, 14, 2944. https://doi.org/10.3390/w14192944
Wang X, Yang J, Yao R, Xie W, Zhang X. Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China. Water. 2022; 14(19):2944. https://doi.org/10.3390/w14192944
Chicago/Turabian StyleWang, Xiangping, Jingsong Yang, Rongjiang Yao, Wenping Xie, and Xing Zhang. 2022. "Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China" Water 14, no. 19: 2944. https://doi.org/10.3390/w14192944
APA StyleWang, X., Yang, J., Yao, R., Xie, W., & Zhang, X. (2022). Manure plus Plastic Film Mulch Reduces Soil Salinity and Improves Barley-Maize Growth and Yield in Newly Reclaimed Coastal Land, Eastern China. Water, 14(19), 2944. https://doi.org/10.3390/w14192944