Influence of Precipitation Characteristics and Vegetation on Runoff and Sediment: A Case on the Basin in the Three Gorges Reservoir Region
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Methods
2.3.1. Precipitation Grades
2.3.2. Precipitation Concentration Index
2.3.3. Precipitation Concentration Degree and Precipitation Concentration Period
2.3.4. Gini Concentration Index
2.3.5. Trend Analysis
3. Results
3.1. Temporal Precipitation Characteristics
3.1.1. Annual Precipitation Characteristics
3.1.2. Characteristics of Seasonal/Monthly Precipitation
3.1.3. Relationships between Concentration and Amount
3.2. Variation of the Vegetation Cover
3.3. Characteristics of Runoff and Sediment
3.3.1. Annual Runoff and Sediment
3.3.2. Seasonal/Monthly Runoff and Sediment
3.4. Response of Runoff and Sediment to the Changing Environment
3.4.1. Response of Sediment to NDVI
3.4.2. Response of Runoff and Sediment to Precipitation
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
CD | concentration degree, including PCD, RCD, and SCD |
CIa | concentration index on an annual scale, including PCIa, RCIa, and SCIa |
CId | concentration index for the dry season, including PCId, RCId, and SCId |
CIw | concentration index for the wet season, including PCIw, RCIw, and SCIw |
CP | concentration period, including PCP, RCP, SCP |
EP | extreme precipitation, the daily precipitation ≥ 50 mm |
G | Gini concentration index, defined as Formula (7) |
HP | heavy precipitation, the daily precipitation is 25–49.9 mm |
LP | light precipitation, the daily precipitation is 1–9.9 mm |
MK | the Mann–Kendall trend test |
MP | moderate precipitation, the daily precipitation is 10–24.9 mm |
NDVI | normalized difference vegetation index |
PA | annual total amount of precipitation |
PA25 | annual amount of precipitation when daily precipitation more than 25 mm |
PCD | precipitation concentration degree, defined as Formula (4) |
PCI | precipitation concentration index |
PCI0 | precipitation concentration index of SP (0.1–0.9 mm) |
PCIa | precipitation concentration index on an annual scale, defined as Formula (1) |
PCId | precipitation concentration index for the dry season, defined as Formula (2) |
PCIw | precipitation concentration index for the wet season, defined as Formula (2) |
PCIw0 | precipitation concentration index of SP (0.1–0.9 mm) for the wet season |
PCP | precipitation concentration period, defined as Formula (5) |
PDA25 | annual number of rainy days of PA25 (≥ 25 mm) |
R95P | total precipitation amount when the daily precipitation > 95th percentile of precipitation on wet days in the 1981–2010 period |
RA | annual total amount of runoff |
RCD | concentration degree for runoff |
RCI | concentration index for runoff |
RCIa | concentration index for runoff on an annual scale |
RCIw | concentration index for runoff for the wet season |
RCP | concentration period for runoff |
RG | Gini concentration index for runoff |
SA | annual total amount of sediment discharge |
SCA | annual suspended sediment concentration |
SCI | concentration index for sediment |
SCIw | concentration index for sediment for the wet season |
SCD | concentration degree for sediment |
SCP | concentration period for sediment |
SDII | annual total precipitation divided by the number of total wet days |
SG | Gini concentration index for sediment |
SP | slight precipitation, the daily precipitation is 0.1–0.9 mm |
YPD | annual total number of rainy days |
YPD0 | annual number of rainy days of SP (0.1–0.9 mm) |
YPD1 | annual number of rainy days of LP (1–9.9 mm) |
YPD10 | annual number of rainy days of MP (10–24.9 mm) |
YPD25 | annual number of rainy days of HP (25–49.9 mm) |
YPD50 | annual number of rainy days of EP (≥ 50 mm) |
References
- Li, Z.; Ma, J.; Guo, J.; Paerl, H.W.; Brookes, J.D.; Xiao, Y.; Fang, F.; Ouyang, W.; Lunhui, L. Water Quality Trends in the Three Gorges Reservoir Region before and after Impoundment (1992–2016). Ecohydrol. Hydrobiol. 2019, 19, 317–327. [Google Scholar] [CrossRef]
- Ye, L.; Cai, Q.-h.; Liu, R.-q.; Cao, M. The Influence of Topography and Land Use on Water Quality of Xiangxi River in Three Gorges Reservoir Region. Environ. Geol. 2009, 58, 937–942. [Google Scholar] [CrossRef]
- Ding, X.W.; Dong, X.S.; Hou, B.D.; Fan, G.H.; Zhang, X.Y. Visual Platform for Water Quality Prediction and Pre-Warning of Drinking Water Source Area in the Three Gorges Reservoir Area. J. Clean. Prod. 2021, 309, 12. [Google Scholar] [CrossRef]
- Luo, H.; Li, R.; Li, H.; Zhao, Y.; Li, Z.; Xiang, H.; Qiao, G.; Li, J. Risk Factor Research of Drinking Water for the Residents in the Water Level Fluctuation Zone of Wanzhou Section of the Three Gorges Reservior. Mod. Prev. Med. 2019, 46, 230–233+246. (In Chinese) [Google Scholar]
- Hu, J.; Lü, Y.; Fu, B.; Comber, A.J.; Harris, P. Quantifying the Effect of Ecological Restoration on Runoff and Sediment Yields: A Meta-Analysis for the Loess Plateau of China. Prog. Phys. Geogr. 2017, 41, 753–774. [Google Scholar] [CrossRef]
- Walling, D.; Fang, D. Recent Trends in the Suspended Sediment Loads of the World’s Rivers. Glob. Planet. Change 2003, 39, 111–126. [Google Scholar] [CrossRef]
- Mize, S.V.; Murphy, J.C.; Diehl, T.H.; Demcheck, D.K. Suspended-Sediment Concentrations and Loads in the Lower Mississippi and Atchafalaya Rivers Decreased by Half between 1980 and 2015. J. Hydrol. 2018, 564, 1–11. [Google Scholar] [CrossRef]
- Cheng, L.; Jueyi, S.; Yun, H.; Hirshfield, F. Changes in Runoff and Sediment Load from Major Chinese Rivers to the Pacific Ocean over the Period 1955–2010. Int. J. Sediment Res. 2013, 28, 486–495. [Google Scholar]
- Peng, T.; Tian, H.; Singh, V.P.; Chen, M.; Liu, J.; Ma, H.; Wang, J. Quantitative Assessment of Drivers of Sediment Load Reduction in the Yangtze River Basin, China. J. Hydrol. 2020, 580, 124242. [Google Scholar] [CrossRef]
- Yang, H.F.; Yang, S.L.; Xu, K.H.; Milliman, J.D.; Wang, H.; Yang, Z.; Chen, Z.; Zhang, C.Y. Human Impacts on Sediment in the Yangtze River: A Review and New Perspectives. Glob. Planet. Change 2018, 162, 8–17. [Google Scholar] [CrossRef]
- Pearce, W.; Holmberg, K.; Hellsten, I.; Nerlich, B. Climate Change on Twitter: Topics, Communities and Conversations about the 2013 Ipcc Working Group 1 Report. PLoS ONE 2014, 9, e94785. [Google Scholar] [CrossRef] [PubMed]
- Rajah, K.; O’Leary, T.; Turner, A.; Petrakis, G.; Leonard, M.; Westra, S. Changes to the Temporal Distribution of Daily Precipitation. Geophys. Res. Lett. 2014, 41, 8887–8894. [Google Scholar] [CrossRef]
- Sang, Y.F.; Wang, Z.G.; Li, Z.L.; Liu, C.M.; Liu, X.J. Investigation into the Daily Precipitation Variability in the Yangtze River Delta, China. Hydrol. Processes 2013, 27, 175–185. [Google Scholar] [CrossRef]
- Shi, P.; Qiao, X.Y.; Chen, X.; Zhou, M.; Qu, S.M.; Ma, X.X.; Zhang, Z.C. Spatial Distribution and Temporal Trends in Daily and Monthly Precipitation Concentration Indices in the Upper Reaches of the Huai River, China. Stoch. Environ. Res. Risk Assess. 2014, 28, 201–212. [Google Scholar] [CrossRef]
- Guo, E.L.; Wang, Y.F.; Jirigala, B.; Jin, E. Spatiotemporal Variations of Precipitation Concentration and Their Potential Links to Drought in Mainland China. J. Clean. Prod. 2020, 267, 14. [Google Scholar] [CrossRef]
- Masaki, Y.; Hanasaki, N.; Takahashi, K.; Hijioka, Y. Global-Scale Analysis on Future Changes in Flow Regimes Using Gini and Lorenz Asymmetry Coefficients. Water Resour. Res. 2014, 50, 4054–4078. [Google Scholar] [CrossRef]
- Meng, X.Y.; Wang, H. Significance of the China Meteorological Assimilation Driving Datasets for the Swat Model (Cmads) of East Asia. Water 2017, 9, 765. [Google Scholar] [CrossRef]
- Meng, X.Y.; Wang, H.; Wu, Y.P.; Long, A.H.; Wang, J.H.; Shi, C.X.; Ji, X.N. Investigating Spatiotemporal Changes of the Land-Surface Processes in Xinjiang Using High-Resolution Clm3.5 and Cldas: Soil Temperature. Sci. Rep. 2017, 7, 13286. [Google Scholar] [CrossRef]
- Liu, J.; Shanguan, D.H.; Liu, S.Y.; Ding, Y.J. Evaluation and Hydrological Simulation of Cmads and Cfsr Reanalysis Datasets in the Qinghai-Tibet Plateau. Water 2018, 10, 513. [Google Scholar] [CrossRef] [Green Version]
- Gu, X.; Xiao, S.; Yang, G.; He, X.; Zhao, Q.; Zhang, L.; Li, D. Hydrological Process Simulation of Manas River Basin Based on Cmads and Swat Model. J. Water Resour. Water Eng. 2021, 32, 116–123. [Google Scholar]
- Meng, X.Y.; Wang, H.; Chen, J. Profound Impacts of the China Meteorological Assimilation Driving Datasets for the Swat Model (Cmads). Water 2019, 11, 832. [Google Scholar] [CrossRef] [Green Version]
- Meng, X.Y.; Wang, H.; Shi, C.X.; Wu, Y.P.; Ji, X.N. Establishment and Evaluation of the China Meteorological Assimilation Driving Datasets for the Swat Model (Cmads). Water 2018, 10, 1555. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.S.; Liu, D.S.; Lin, H.; Montenegro, A.; Zhu, X.L. Ndvi and Vegetation Phenology Dynamics under the Influence of Sunshine Duration on the Tibetan Plateau. Int. J. Climatol. 2015, 35, 687–698. [Google Scholar] [CrossRef]
- Xu, X. China Monthly Vegetation Index (Ndvi) Spatial Distribution Dataset; Data Registration and Publishing System of Resource and Environment Science Data Center, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Xu, X. China Annual Vegetation Index (Ndvi) Spatial Distribution Dataset; Data Registration and Publishing System of Resource and Environment Science Data Center, Chinese Academy of Sciences: Beijing, China, 2018. [Google Scholar]
- Oliver, J.E. Monthly Precipitation Distribution—A Comparative Index. Prof. Geogr. 1980, 32, 300–309. [Google Scholar] [CrossRef]
- De Luis, M.; Gonzalez-Hidalgo, J.C.; Brunetti, M.; Longares, L.A. Precipitation Concentration Changes in Spain 1946–2005. Nat. Hazards Earth Syst. Sci. 2011, 11, 1259–1265. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.; Yan, D.; Wen, A.; Shi, Z.; Chen, T.; Chen, R. Relationship between Precipitation Characteristics at Different Scales and Drought/Flood during the Past 40 Years in Longchuan River, Southwestern China. Agriculture 2022, 12, 89. [Google Scholar] [CrossRef]
- Zhang, L.J.; Qian, Y.F. Annual Distribution Features of Precipitation in China and Their Interannual Variations. Acta Meteorol. Sin. 2003, 17, 146–163. [Google Scholar]
- Wang, W.G.; Xing, W.Q.; Yang, T.; Shao, Q.X.; Peng, S.Z.; Yu, Z.B.; Yong, B. Characterizing the Changing Behaviours of Precipitation Concentration in the Yangtze River Basin, China. Hydrol. Processes 2013, 27, 3375–3393. [Google Scholar] [CrossRef]
- Li, X.M.; Jiang, F.Q.; Li, L.H.; Wang, G.Q. Spatial and Temporal Variability of Precipitation Concentration Index, Concentration Degree and Concentration Period in Xinjiang, China. Int. J. Climatol. 2011, 31, 1679–1693. [Google Scholar] [CrossRef]
- Shrestha, S.; Yao, T.D.; Kattel, D.B.; Devkota, L.P. Precipitation Characteristics of Two Complex Mountain River Basins on the Southern Slopes of the Central Himalayas. Theor. Appl. Climatol. 2019, 138, 1159–1178. [Google Scholar] [CrossRef]
- Martin-Vide, J. Spatial Distribution of a Daily Precipitation Concentration Index in Peninsular Spain. Int. J. Climatol. 2004, 24, 959–971. [Google Scholar] [CrossRef]
- Mann, H.B. Nonparametric Tests against Trend. Econometrica 1945, 13, 245–259. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods. Br. J. Psychol. Gen. 1990, 11–12, 86–91. [Google Scholar] [CrossRef]
- Sen, P.K. Estimates of the Regression Coefficient Based on Kendall’s Tau. J. Am. Stat. Assoc. 1968, 63, 1379–1389. [Google Scholar] [CrossRef]
- Zhang, Y.Q.; Liu, C.M.; You, Q.L.; Chen, C.C.; Xie, W.X.; Ye, Z.W.; Li, X.C.; He, Q.N. Decrease in Light Precipitation Events in Huai River Eco-Economic Corridor, a Climate Transitional Zone in Eastern China. Atmos. Res. 2019, 226, 240–254. [Google Scholar] [CrossRef]
- Huang, G.; Wen, G. Spatial and Temporal Variations of Light Rain Events over China and the Mid-High Latitudes of the Northern Hemisphere. Chin. Sci. Bull. 2013, 58, 1402–1411. [Google Scholar] [CrossRef] [Green Version]
- Liu, B.; Xu, M.; Henderson, M. Where Have All the Showers Gone? Regional Declines in Light Precipitation Events in China, 1960–2000. Int. J. Climatol. 2011, 31, 1177–1191. [Google Scholar]
- Qian, Y.; Gong, D.Y.; Fan, J.W.; Leung, L.R.; Bennartz, R.; Chen, D.L.; Wang, W.G. Heavy Pollution Suppresses Light Rain in China: Observations and Modeling. J. Geophys. Res.-Atmos. 2009, 114, 16. [Google Scholar] [CrossRef]
- Liu, R.; Liu, S.C.; Cicerone, R.J.; Shiu, C.-J.; Li, J.; Wang, J.; Zhang, Y. Trends of Extreme Precipitation in Eastern China and Their Possible Causes. Adv. Atmos. Sci. 2015, 32, 1027–1037. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.; He, M.; Ran, N.; Xie, D.; Wang, Q.; Teng, M.; Wang, P. China’s Key Forestry Ecological Development Programs: Implementation, Environmental Impact and Challenges. Forests 2021, 12, 101. [Google Scholar] [CrossRef]
- Kumar, T.V.L.; Uma, R.; Rao, K.K.; Barbosa, H.; Jothi, E.P.; Patnaik, K. Variability in Modis Ndvi in Relation to Southwest Monsoon over Western Ghats, India. J. Environ. Inform. 2016, 27, 52–61. [Google Scholar]
- Schultz, P.; Halpert, M. Global Correlation of Temperature, Ndvi and Precipitation. Adv. Space Res. 1993, 13, 277–280. [Google Scholar] [CrossRef]
- Pei, F.; Zhou, Y.; Xia, Y. Application of Normalized Difference Vegetation Index (Ndvi) for the Detection of Extreme Precipitation Change. Forests 2021, 12, 594. [Google Scholar] [CrossRef]
- Wen, Z.F.; Wu, S.J.; Chen, J.L.; Lu, M.Q. Ndvi Indicated Long-Term Interannual Changes in Vegetation Activities and Their Responses to Climatic and Anthropogenic Factors in the Three Gorges Reservoir Region, China. Sci. Total Environ. 2017, 574, 947–959. [Google Scholar] [CrossRef] [PubMed]
Intensity | Precipitation | Rainy days | SDII |
---|---|---|---|
(mm/10 a) | (d/10 a) | ((mm/d)/10 a) | |
Total | 78.26 ** | −10.00 * | 0.55 *** |
SP 0.1–0.9 | −2.13 | −7.03 ** | 0.01 *** |
LP 1–9.9 | −10.78 | −5.36 *** | 0.07 ** |
MP 10–24.9 | 7.52 | −0 | 0.09 |
HP 25–49.9 | 28.91 ** | 0.86 * | 0.86 |
EP ≥ 50 | 37.00 *** | 0.57 *** | 5.93 ** |
PA25 ≥ 25 | 80.05 *** | 1.43 ** | 2.20 *** |
Intensity | Precipitation | Rainy days | SDII | |
---|---|---|---|---|
(mm/10 a) | (d/10 a) | ((mm/d)/10 a) | ||
Wet Season | Total | 35.8 | −9.50 *** | 0.85 *** |
SP 0.1–0.9 | −2.10 *** | −5.40 *** | +0 | |
LP 1–9.9 | −18.41 *** | −5.33 *** | 0.06 | |
MP 10–24.9 | −12.37 | −1.17 * | 0.31 *** | |
HP 25–49.9 | 18.88 | 0.50 | 0.18 | |
EP ≥ 50 | 36.66 *** | 0.56 *** | 3.93 *** | |
Dry Season | Total | 37.14 *** | −0.40 | 0.49 *** |
SP 0.1–0.9 | 0.26 | −2.07 | 0.01 *** | |
LP 1–9.9 | 5.97 * | 0.62 | 0.15 ** | |
MP 10–24.9 | 12.79 ** | 0.89 ** | −0.06 | |
HP 25–49.9 | 8.87 *** | 0.27 *** | 2.40 *** | |
EP ≥ 50 | - | - | - |
P–PCI | P–PCD | P–PCP | PCI–PCD | |
---|---|---|---|---|
Total | −0.158 | 0.032 | 0.516 ** | 0.581 *** |
0.1–0.9 mm | −0.730 *** | −0.548 ** | 0.299 | 0.670 *** |
1–9.9 mm | −0.407 * | 0 | −0.069 | 0.698 *** |
10–24.9 mm | −0.820 *** | −0.579 *** | −0.056 | 0.707 *** |
25–49.9 mm | −0.651 *** | −0.561 *** | 0.415 * | 0.738 *** |
≥50 mm | −0.720 *** | −0.585 *** | 0.286 | 0.701 *** |
Precipitation | Runoff | Sediment | |
---|---|---|---|
Slope (/10 a) | Slope (/10 a) | Slope (/10 a) | |
G | 0.004 | −0.007 | −0.039 *** |
CIa | −0.211 | −0.219 | −11.602 *** |
CIw | 0.070 | 0.143 | −4.655 ** |
CId | 0.517 | −0.246 | +0 |
CD | −0.021 * | +0 | −0.143 *** |
CP/° | −2.672 | 6.737 | −0.976 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, Y.; Wen, A.; Yan, D.; Shi, Z. Influence of Precipitation Characteristics and Vegetation on Runoff and Sediment: A Case on the Basin in the Three Gorges Reservoir Region. Water 2022, 14, 2141. https://doi.org/10.3390/w14132141
Liu Y, Wen A, Yan D, Shi Z. Influence of Precipitation Characteristics and Vegetation on Runoff and Sediment: A Case on the Basin in the Three Gorges Reservoir Region. Water. 2022; 14(13):2141. https://doi.org/10.3390/w14132141
Chicago/Turabian StyleLiu, Yuan, Anbang Wen, Dongchun Yan, and Zhonglin Shi. 2022. "Influence of Precipitation Characteristics and Vegetation on Runoff and Sediment: A Case on the Basin in the Three Gorges Reservoir Region" Water 14, no. 13: 2141. https://doi.org/10.3390/w14132141
APA StyleLiu, Y., Wen, A., Yan, D., & Shi, Z. (2022). Influence of Precipitation Characteristics and Vegetation on Runoff and Sediment: A Case on the Basin in the Three Gorges Reservoir Region. Water, 14(13), 2141. https://doi.org/10.3390/w14132141