Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining
Abstract
:1. Introduction
2. Efficient Water Management in Latin American Mining
- Northern Chile—Atacama Desert (Region of Arica, Region of Tarapaca, Region of Antofagasta, and Region of Atacama).
- Southern Peru—Atacama Desert (Tacna Department, Moquegua Department, Ica Department, and Arequipa Department).
- Northern Peru—Sechura Desert (Piura Department, and Lambayeque Department).
- Southern Bolivia—Atacama Desert (Potosí Department, and Oruro Department).
- Central and Northern Argentine—Sierra y Pampa (Province of Catamarca, Province of La Rioja, Province of San Juan, and Province of Mendoza).
- Central and Northern México (Chihuahua State, Sonora State, Zacatecas State, Durango State, and Baja California State).
3. Tailings Management Methodologies Description
3.1. Water Recovery from Tailings with Conventional Technologies (WRCT)
3.2. Water Recovery from Tailings with Thickening Technologies (WRTT)
3.3. Water Recovery from Tailings with Paste Tailings Technologies (WRPTT)
3.4. Water Recovery from Tailings with Filtering Technologies (WRFT)
3.5. Water Recovery from Tailings with Hybrid Technologies (WRHT)
4. Water Recovery Performance Tailings Management Technology Comparison
5. Case Study of Evaluation Dewatered Tailings Methodologies and Different Sources of Water at Large-Scale Mining Sites
- Flotation/concentration: The copper is separated from the gang material using froth flotation collected and dewatered using thickening and filtration.
- Leach hydro-metallurgical: Copper mine tailings are leached using sulfuric acid (or other agents) and the pregnant Leach solution is sent to a solvent extraction—electro winning (SXEW) circuit.
- Biological treatment: Bacterial action is used in mine tailings to transfer the copper from the solid matrix to a solution which subsequently is sent to SXEW.
6. New Mine Operation Cases—Greenfield Projects
- Major increase in water losses from the tailings in conventional technologies (slurry tailings) at extreme dry climates.
- Eliminate high capital/operation costs for new water sources (sea water desalination) to maintain and/or increase production.
- Substantial capital/operation cost reduction in the TSF as compared to conventional slurry tailings disposal.
- It is important to note that for some specific cases, extracting water from the tailings has the potential to be a better option than sourcing water make-up from the sea.
- The main economic and/or environmental drivers to consider a seawater supply are:
- Potential depletion of freshwater make-up, and/or the need of a major increase in water recovery from tailings.
- Sustainable use of water, promoting economic, environmental and quality life development of stakeholders in the region.
7. Expansion Mine Operation Cases—Brownfield Projects
8. Conclusions
Author Contributions
Funding
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Barrera, S.; Arredondo, M.; Madariaga, P.; Scognamillo, C. Tailings management a simple way to increase water reclaim. In Proceedings of the 11th International Conference on Tailings and Mine Waste, Vail, CO, USA, 10–13 October 2004; A.A. Balkema: Rotterdam, The Netherlands, 2004; pp. 39–44. [Google Scholar]
- Cacciuttolo, C.; Scognamillo, C. Improving Water Recovery with Different Tailings Management Technologies. In Proceedings of the 4th International Congress on Water Management in Mining WIM 2014, Viña del Mar, Chile, 10–13 May 2014. [Google Scholar]
- Wels, C.; MacG, A.R. Water recovery for Pampa Pabellon tailings impoundment, Collahuasi, Chile. In Proceedings of the 11th International Conference on Tailings and Mine Waste, Vail, CO, USA, 10–13 October 2004; A.A. Balkema: Rotterdam, The Netherlands, 2004; pp. 77–88. [Google Scholar]
- Samad, M.A.; Singh, S. Mine Water Management Strategies in Dry Areas of Chile. In Proceedings of the 1st International Conference on Mine Water Solutions in Extreme Environments, Lima, Peru, 15–17 April 2013. [Google Scholar]
- Tabra, K.; Lange, S. Active Treatment of Tailings Seepage with Focus on Sulphate and Manganese Removal. In Proceedings of the 2nd International Seminar on Tailings Management TAILINGS 2014, Antofagasta, Chile, 6–8 August 2014. [Google Scholar]
- Tabra, K.; Gaete, O. Ways to Deal with Mine/Plant Effluent Residues: A roadmap process. In Proceedings of the 142th SME Annual Meeting, Denver, CO, USA, 24–27 February 2013. [Google Scholar]
- Valenzuela, L. Design, construction, operation and the effect of fines content and permeability on the seismic performance of tailings sand dams in Chile. Obras Y Proy. 2016, 19, 6–22. [Google Scholar] [CrossRef] [Green Version]
- FCX (Freeport McMoran). 2018 Working toward Sustainable Development Report. Available online: https://www.fcx.com/sites/fcx/files/documents/sustainability/wtsd_2018.pdf (accessed on 10 April 2022).
- Schoenbrunn, F. Dewatering to higher densities. In Proceedings of the 14th International Seminar on Paste and Thickened Tailings, Perth, Australia, 5–7 April 2011; Jewell, R.J., Fourie, A.B., Eds.; ACG: Perth, Australia, 2011; pp. 19–24. [Google Scholar]
- Robinsky, E.I. Thickened Tailings Disposal in the Mining Industry; E.I. Robinsky Associates Ltd.: Lydia Court, TO, Canada, 1999. [Google Scholar]
- Ministerio de Minería. Plan Nacional de Depósitos de Relaves para una Minería Sostenible. 2019. Available online: https://www.minmineria.cl/media/2021/05/Plan_Nacional_de_Despositos_de_Relaves_para_una_Mineria_Sostenible_2021.pdf (accessed on 1 April 2022).
- Cacciuttolo, C.; Holgado, A. Management of Paste Tailings in Chile: A Review of Practical Experience and Environmental Acceptance. In Proceedings of the 19th International Seminar on Paste and Thickened Tailings Paste, Santiago, Chile, 3–6 July 2016. [Google Scholar]
- Cacciuttolo, C.; Barrera, S.; Caldwell, J.; Vargas, W. Filtered Dry Stacked Tailings: Developments and New Trends. In Proceedings of the 2nd International Seminar on Tailings Management, Antofagasta, Chile, 15–17 August 2014. [Google Scholar]
- Caldwell. Presentation Tailings Facility Failures in 2014 and an Update on Failure Statistics. Available online: https://www.riskope.com/wp-content/uploads/2015/10/Tailings-Facility-Failures-in-2014-and-an-Update-on-Failure-Statistics.pdf (accessed on 5 December 2012).
- Barrera, S.; Riveros, C. Caserones: Option of tailings classifying to improve water reclaim. In Proceedings of the 12th International Seminar on Paste and Thickened Tailings, Viña Del Mar, Chile, 21–24 April 2009. [Google Scholar]
- Lyell, K.A.; Copeland, A.M.; Blight, G.E. Alternatives to paste disposal with lower water consumption. In Proceedings of the 11th International Seminar on Paste and Thickened Tailings, Kasane, Botswana, 5–8 May 2008; Fourie, A.B., Jewell, R.J., Slatter, P., Paterson, A., Eds.; Australian Center of Geomechanics: Perth, Australia, 2008; pp. 171–178. [Google Scholar]
- Wels, C.; Caldwell, J. Challenges in tailings water balance analysis—Make-up water, seepage and consolidation. In Proceedings of the 1st Mine Water Solutions in Extreme Environments Conference, Lima, Peru, 15–17 April 2013. [Google Scholar]
- Consejo Minero. Plataforma Online de Relaves Mineros. Available online: https://consejominero.cl/comunicaciones/plataforma-de-relaves/ (accessed on 2 April 2022).
- Wels, C.; MacG, A.R. Conceptual Model for Estimating Water Recovery in Tailings Impoundments. In Proceedings of the 10th International Conference on Tailings and Mine Waste, Vail, CO, USA, 10–13 October 2004. [Google Scholar]
- Barrientos, S. Design, operation and control of the Mauro tailings dam. In Proceedings of the Plenary Presentation at 1st International Seminar on Tailings Management, Santiago, Chile, 1–3 September 2013. [Google Scholar]
- Mineria Los Pelambres. Presentation about El Mauro Tailings Storage Facility. Available online: https://www.antofagasta.co.uk/investors/news/2019/statement-on-the-stability-of-our-tailings-dams-and-deposits/ (accessed on 7 April 2022).
- Ecometales. Presentation about Candelaria Mine and Tailings Management. Available online: https://www.ecometales.cl/ecometales/site/docs/20191111/20191111114704/7_lundin_mining_candelara.pdf (accessed on 6 April 2022).
- Sotil, A.; Soto, V.; Brouwer, K. Reducing Long Term Risk at Candelaria Tailings Storage Facility. In Proceedings of the Tailings and Mine Waste 2020, Vancouver, Canada, 15–18 November 2020; Available online: https://www.knightpiesold.com/en/news/publications/reducing-long-term-risk-at-the-candelaria-tailings-storage-facility/ (accessed on 4 April 2022).
- Teck. Tailings Management of Quebrada Blanca Phase 2 Mining Project. Available online: https://www.teck.com/media/Connect-vol-25-ES.pdf (accessed on 23 April 2022).
- Chambers, B.; Howard, P.; Pottie, J.; Murray, L.; Burgess, A. Water recovery from a mine in the Atacama Desert. In Proceedings of the 10th Water in Mining Conference, Brisbane, Australia, 27–28 October 2003. [Google Scholar]
- Thiele, C.; Parraguez, L. Minera Esperanza Presentation. In Proceedings of the 3rd Paste Tailings Seminar, RELPAS, Amsterdam, Netherlands, 26 October 2011; Available online: https://issuu.com/revistamch/docs/mch_358 (accessed on 23 December 2011).
- Engels, J.; Gonzalez, H.; Aedo, G.; Mcphail, G. Implementation of Spigot Discharge Systems for High-Density Tailings at Sierra Gorda Sociedad Contractual Minera, Chile. Paste 2018; Jewell, R.J., Fourie, A.B., Eds.; Australian Centre for Geomechanics: Perth, Australia, 2018; ISBN 978-0-9924810-8-7. [Google Scholar]
- Engels, J.; Gonzalez, H.; Aedo, G.; McPhail, G.I. Implementation of spigot discharge systems for high-density tailings at Sierra Gorda Sociedad Contractual Minera, Chile. Available online: https://www.photosat.ca/wp-content/uploads/2019/09/PhotoSat-Advances-in-Tailings-surveying-using-optical-satellites-Report.pdf (accessed on 25 April 2022).
- Pino, R. Presentation Depositacion de Relaves Espesados en Proyecto Cerro Negro Norte. In Proceedings of the 5th Paste Tailings Seminar, RELPAS, Santiago, Chile. Available online: http://www.plataformacaldera.cl/biblioteca/589/articles-64617_documento.pdf (accessed on 2 December 2013).
- Barrera, S.; Cacciuttolo, C.; Caldwell, J. Reassessment of best available tailings management practices. Tailings Mine Waste Int. Conf. 2015. [Google Scholar] [CrossRef]
- Lara, J.L.; Pornillos, E.; Loayza, C. The application of highly dewatered tailings in the design of tailings storage facilities—Experience in Mining Projects in Peru. In Proceedings of the 16th International Conference on Tailings and Mine Waste, Keytone, SD, USA, 14–17 October 2012. [Google Scholar]
- Lara, J.L.; León, E. Design and Operational Experience of the Cerro Lindo Filtered Tailings Deposit. In Proceedings of the Paste and Thickened Tailings 2011 Seminar, Perth, Australia, 5–7 April 2011. [Google Scholar]
- Pizarro, N. SCMLCC Presentation. In Proceedings of the 1st Mining Symposium, ATACAMAMIN, Copiapo, Chile, 20–23 May 2012. [Google Scholar]
- Obermeyer, C.; Enriquez, J.; Alexieva, T. Enviable water recovery in a desert environment: A case study. In Proceedings of the 1st International Conference on Mine Water Solutions in Extreme Environments, Lima, Peru, 15–17 April 2013. [Google Scholar]
- Obermeyer, J. Cerro Verde Mine Tailings Storage Facility Webinar. Available online: https://www.stantec.com/en/ideas/topic/energy-resources/webinar-recording-cerro-verde-mine-tailings-storage-facility (accessed on 12 April 2022).
- Stantec. Cerro Verde Mine Tailings Storage Facility Webinar. 2022. Available online: https://www.youtube.com/watch?v=V2bULqEo3j0 (accessed on 11 April 2022).
- Serpa, B.; Walqui, H.B. Tailings disposal at Quebrada Honda Toquepala. In Proceedings of the 11th International Seminar on Paste and Thickened Tailings, Kasane, Botswana, 5–9 May 2008; Fourie, A.B., Jewell, R.J., Slatter, P., Paterson, A., Eds.; Australian Center of Geomechanics: Perth, Australia, 2008. [Google Scholar]
- Quellaveco. El Proyecto: Así se construye Quellaveco. Quellaveco Webpage. 2022. Available online: https://peru.angloamerican.com/es-es/quellaveco (accessed on 10 April 2022).
- Reyes-Bozo, L.; Godoy-Faúndez, A.; Herrera-Urbina, R.; Higueras, P.; Salazar, J.L.; Valdés-González, H.; Vyhmeister, E.; Antizar-Ladislao, B. Greening Chilean copper mining operations through industrial ecology strategies. J. Clean. Prod. 2014, 84, 671–679. [Google Scholar] [CrossRef] [Green Version]
- Mesa, D.; Barriga, D.; Berríos, P.; Rodríguez, E.; Amelunxen, R. Reprocessing historic tailings—Three Chilean case studies. In Proceedings of the Procemin Geomet 2020, 16th International Mineral Processing Conference, Santiago, Chile, 25–27 November 2020. [Google Scholar]
- Edraki, M.; Baumgartl, T.; Manlapig, E.; Bradshaw, D.; Franks, D.M.; Moran, C.J. Designing mine tailings for better environmental, social and economic outcomes: A review of alternative approaches. J. Clean. Prod. 2014, 84, 411–420. [Google Scholar] [CrossRef]
- Araya, N.; Ramirez, Y.; Cisternas, L.; Kraslawsky, A. Use of real options to enhance water-energy nexus in mine tailings management. Appl. Energy 2021, 303, 117626. [Google Scholar] [CrossRef]
- Avila, P.; Brantes, R.; Perez, P. Sin Agua No hay Minería: Impacto de la Desalinización en la Posición Competitiva de la Industria Chilena de Cobre. In Proceedings of the 2nd International Seminar on Desalination and Water Reuse, Antofagasta, Chile, 2–4 November 2010. [Google Scholar]
- Consejo Minero. Políticas de Sustentabilidad y Relación con las Comunidades en el Uso del Agua en la Minería. 2022. Available online: https://consejominero.cl/ (accessed on 12 April 2022).
- Cochilco. Proyección Demanda de Agua Fresca en la Minería del Cobre, 2013–2021. 2013. Available online: https://www.cochilco.cl/Listado%20Temtico/2020%2012%2024%20Proyeccion%20agua%20mineria%20del%20cobre%202020-2031_v1.0.pdf (accessed on 10 April 2014).
- Pincock, P.; Allen, K.; Holt, G. Technical Report for the Sierra Gorda Project, Chile. Available online: https://minedocs.com/20/Sierra_Gorda_Project_Technical_Report_2907887_06082011.pdf (accessed on 25 April 2022).
- SEA (Servicio de Evaluacion Ambiental). Environmental Impact Assesment of Quebrada Blanca Phase 2 Mining Project. Available online: https://seia.sea.gob.cl/documentos/documento.php?idDocumento=2131794108 (accessed on 23 April 2022).
- Codelco. Proyecto RT Sulfuros. 2012. Available online: https://www.codelco.com/prontus_codelco/site/edic/base/port/rt_sulfuros.html (accessed on 18 September 2012).
- Lara, J.L. Presentacion de relaves espesados y filtrados en Perú, Insituto de Ingenieros de Minas, Jueves Minero. Available online: https://www.youtube.com/watch?v=0vcYR2gSPjk (accessed on 12 April 2022).
- MDO (Mining Data Online). Bayovar 12 Phosphate Project. 2022. Available online: https://miningdataonline.com/property/3299/Bayovar-12-Project.aspx (accessed on 10 April 2022).
- Shougang. Video Proceso Expansion Proyecto Shougang. 2022. Available online: https://www.youtube.com/watch?v=0QwRKwhAalc (accessed on 5 April 2022).
- Marcobre. Modificación del EIAD del Proyecto Mina Justa. 2022. Available online: https://www.marcobre.com/wp-content/uploads/2019/08/Resumen-Ejecutivo-del-EIA-Semi-detallado-3era-Modificaci%C3%B3n-del-Proyecto-de-Exploraci%C3%B3n-Mina-Justa-2013.pdf (accessed on 10 April 2022).
Tailings Management Methodology | Tailings Storage Facility Name | Country | TSF Disposal and Water Management Parameters | Reference | |||
---|---|---|---|---|---|---|---|
Production Rate (mtpd) | PSD d50 (µm) | Solids Content Cw (%) | Average Make-Up (m3/mt) | ||||
FWS—WRCT | Pampa Pabellon TSF | Chile | 170,000 | 52 | 52 (TT) | 0.70 | [19] |
FWS—WRCT | Talabre TSF | Chile | 180,000 | 70 | 55 (TT) | 0.64 | [19] |
FWS—WRCT | Los Quillayes TSF | Chile | 115,000 | 36 | 40 (SL) | 0.35 | [20] |
FWS—WRCT | Mauro TSF | Chile | 205,000 | 36 | 40 (SL) | 0.35 | [21] |
FWS—WRCT | Candelaria TSF | Chile | 75,000 | 65 | 51 (TT) | 0.34 | [22,23] |
FWS—WRCT | Candelaria (Los Diques TSF) | Chile | 75,000 | 65 | 51 (TT) | 0.34 | [22,23] |
FWS—WRCT | Carmen de Andacollo TSF | Chile | 55,000 | 70 | 53 (TT) | 0.44 | [24] |
SWS—WRCT | Laguna Seca TSF | Chile | 370,000 | 65 | 50 (TT) | 0.66 | [25] |
SWS—WRTT | Esperanza (Centinela TSF) | Chile | 95,000 | 45 | 65 (TT) | 0.50 | [26] |
SWS—WRTT | Sierra Gorda TSF | Chile | 110,000 | 40 | 60 (TT) | 0.50 | [27,28] |
SWS—WRTT | Cerro Negro Norte TSF | Chile | 20,000 | 75 | 65 (TT) | 0.45 | [29] |
FWS—WRPTT | Las Cenizas (Chinchorro TSF) | Chile | 2500 | 44 | 65 (TT) | 0.39 | [30] |
FWS—WRPTT | ENAMI (Delta Plant TSF) | Chile | 2000 | 25 | 60 (TT) | 0.48 | [30] |
FWS—WRPTT | Coemin TSF | Chile | 8000 | 50 | 60 (TT) | 0.42 | [30] |
FWS—WRPTT | Alhue TSF | Chile | 3000 | 55 | 65 (TT) | 0.40 | [30] |
FWS—WRFT | La Coipa TSF | Chile | 20,000 | 68 | 80 (TT) | 0.22 | [31] |
FWS—WRFT | El Peñon TSF | Chile | 3000 | 62 | 84 (TT) | 0.20 | [32] |
FWS—WRFT | Mantos Verde TSF | Chile | 12,000 | 57 | 82 (TT) | 0.23 | [32] |
FWS—WRHT | Mantos Blancos TSF | Chile | 12,000 | 86 | 82 (TT) | 0.28 | [31] |
FWS—WRHT | Caserones (La Brea/Sand TSF) | Chile | 90,000 | 74 | 60 (TT) | 0.37 | [15,33] |
FWS—WRFT | Cerro Lindo TSF | Peru | 7000 | 65 | 88 (SL) | 0.20 | [32] |
FWS—WRCT | Quebrada Enlozada TSF | Peru | 120,000 | 45 | 40 (SL) | 0.38 | [34,35] |
FWS—WRCT | Quebrada Linga TSF | Peru | 240,000 | 45 | 40 (SL) | 0.38 | [35,36] |
FWS—WRCT | Quebrada Honda TSF | Peru | 150,000 | 75 | 37 (SL) | 0.62 | [37] |
FWS—WRCT | Quebrada Cortadera TSF | Peru | 127,500 | 75 | 45 (TT) | 0.40 | [38] |
Description | Unit | Conventional Tailings Management | Thickened Tailings Management | Hybrid Tailings Management | Filtered Tailings Management |
---|---|---|---|---|---|
Tailings Production | mtpd | 100,000 | 100,000 | 100,000 | 100,000 |
Cw before Thickening | % | 28 | 28 | 28 | 28 |
Water on Conventional Tailings | L/s | 2976 | 2976 | 2976 | 2976 |
Cw after Thickening | % | 50 | 60 | 70 (*) | 80 |
Water on Dewatered Tailings | L/s | 1157 | 772 | 496 | 289 |
Water Recovery from Thickeners | L/s | 1819 | 2205 | 2480 | 2687 |
Water Recovery from TSF | L/s | 382 | 255 | 164 | 95 |
Total Water Recovery | L/s | 2201 | 2459 | 2644 | 2782 |
Water Recovery Efficiency | % | 74 | 83 | 89 | 93 |
Parameters | Value | Unit |
---|---|---|
Tailings Production Rate | 100,000 | mtpd |
Sea-Concentrator Plant Distance | 150 | km |
Sea-Concentrator Plant Difference of Level | 2000 | m.a.s.l. |
Mine Lifetime | 20 | years |
Discount Rate for Cost Estimate | 10 | % |
Tailings Management Methodology | Conventional Technology Cw 50% | Thickened Technology Cw 60% | Hybrid Technology Cw 70% | Filtered Technology Cw 80% | ||||
---|---|---|---|---|---|---|---|---|
| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 |
CAPEX, million US$ | 225 | 225 | 150 | 150 | 250 | 250 | 450 | 450 |
Total SUSTAINING Cost, million US$ | 100 | 100 | 200 | 200 | 125 | 125 | 50 | 50 |
OPEX, million US$ per year | 15 | 15 | 25 | 25 | 35 | 35 | 50 | 50 |
Make-up water flow rate, L/s | 691 | 691 | 432 | 432 | 346 | 346 | 173 | 173 |
Tailings Disposal Cost, US$/t | 0.9 | 0.9 | 1.2 | 1.2 | 1.5 | 1.5 | 2.1 | 2.1 |
| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 |
CAPEX, million US$ | 50 | 750 | 25 | 650 | 15 | 500 | 5 | 250 |
Make-up water, m3/t | 0.8 | 0.8 | 0.5 | 0.5 | 0.4 | 0.4 | 0.2 | 0.2 |
Water Cost, US$/m3 (Fresh Water) | 1.7 | - | 1.7 | - | 1.7 | - | 1.7 | - |
Water Cost, US$/m3 (Sea Water) | - | 4.0 | - | 4.0 | - | 4.0 | - | 4.0 |
OPEX, million US$ per year (Fresh Water) | 50 | - | 31 | - | 25 | - | 12 | - |
OPEX, million US$ per year (Sea Water) | - | 117 | - | 73 | - | 58 | - | 29 |
Make-Up Water Cost US$/t (Fresh Water) | 1.4 | 0.9 | 0.7 | 0.3 | - | |||
Make-Up Water Cost US$/t (Sea Water) | - | 4.2 | - | 2.9 | - | 2.3 | - | 1.1 |
| Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Case 7 | Case 8 |
Unit Cost, US$/t | 2.3 | 5.1 | 2.0 | 4.1 | 2.2 | 3.8 | 2.4 | 3.2 |
Net Present Cost, Million US$ | 925 | 2197 | 852 | 1834 | 899 | 1670 | 934 | 1424 |
Mine Operation Name | Country | Tailings Production (mtpd) | Sea Water Pumping Capacity (L/s) | Seawater Supply (%) | Status | Reference |
---|---|---|---|---|---|---|
Escondida | Chile | 370,000 | 3800 | 75 | In Operation | [45] |
Esperanza (Centinela) | Chile | 95,000 | 1500 | 100 | In Operation | [45] |
Candelaria | Chile | 75,000 | 500 | 85 | In Operation | [45] |
Cerro Negro Norte | Chile | 20,000 | 200 | 100 | In Operation | [45] |
Sierra Gorda | Chile | 100,000 | 1315 | 100 | In Operation | [45,46] |
Quebrada Blanca II | Chile | 140,000 | 850 | 100 | In Operation | [47] |
RT Sulfuros | Chile | 200,000 | 2000 | 100 | Project | [48] |
Cerro Lindo | Peru | 15,000 | 120 | 100 | In Operation | [49] |
Bayovar | Peru | 15,000 | 450 | 100 | In Operation | [50] |
Shougang | Peru | 20,000 | 231 | 100 | In Operation | [51] |
Mina Justa (Marcobre) | Peru | 15,000 | 250 | 100 | In Operation | [52] |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Cacciuttolo, C.; Valenzuela, F. Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining. Water 2022, 14, 1741. https://doi.org/10.3390/w14111741
Cacciuttolo C, Valenzuela F. Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining. Water. 2022; 14(11):1741. https://doi.org/10.3390/w14111741
Chicago/Turabian StyleCacciuttolo, Carlos, and Fernando Valenzuela. 2022. "Efficient Use of Water in Tailings Management: New Technologies and Environmental Strategies for the Future of Mining" Water 14, no. 11: 1741. https://doi.org/10.3390/w14111741