Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries
Abstract
1. Introduction
2. Geological Setting
3. Hydraulic Methods
4. Airborne Electromagnetic (AEM) Methods
5. Results
5.1. Site 1: Wausa
5.2. Site 2: Oakland
5.3. Site 3: Firth
6. Discussion
7. Conclusions
Funding
Acknowledgments
Conflicts of Interest
References
- Eaton, T.T. On the importance of geological heterogeneity for flow simulation. Sediment. Geol. 2006, 184, 187–201. [Google Scholar] [CrossRef]
- Blouin, M.; Martel, R.; Gloaguen, E. Accounting for aquifer heterogeneity from geological data to management tools. Groundwater 2013, 51, 421–431. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.G. Hydrology. In Ground Water; Wisler, C.O., Brater, E.F., Eds.; Wiley & Sons: New York, NY, USA, 1959. [Google Scholar]
- Van der Kamp, G.; Maathuis, H. The Unusual and Large Drawdown Response of Buried-Valley Aquifers to Pumping. Groundwater 2012, 50, 207–215. [Google Scholar] [CrossRef] [PubMed]
- Fleckenstein, J.H.; Niswonger, R.G.; Fogg, G.E. River-aquifer interactions, geologic heterogeneity, and low-flow management. Groundwater 2006, 44, 837–852. [Google Scholar] [CrossRef] [PubMed]
- Irvine, D.J.; Brunner, P.; Franssen, H.-J.H.; Simmons, C.T. Heterogeneous or homogeneous? Implications of simplifying heterogeneous streambeds in models of losing streams. J. Hydrol. 2012, 424, 16–23. [Google Scholar] [CrossRef]
- Shaver, R.B.; Pusc, S.W. Hydraulic barriers in Pleistocene buried-valley aquifers. Groundwater 1992, 30, 21–28. [Google Scholar] [CrossRef]
- Raiber, M.; Webb, J.; Cendón, D.; White, P.; Jacobsen, G. Environmental isotopes meet 3D geological modelling: Conceptualising recharge and structurally-controlled aquifer connectivity in the basalt plains of south-western Victoria, Australia. J. Hydrol. 2015, 527, 262–280. [Google Scholar] [CrossRef]
- Butler, J.J. Pumping tests for aquifer evaluation—Time for a change? Groundwater 2009, 47, 615–617. [Google Scholar] [CrossRef] [PubMed]
- Ferris, J.G.; Knowles, D.B.; Brown, R.H.; Stallman, R.W. Theory of Aquifer Tests; U.S. Geological Survey: Reston, VA, USA, 1962; p. 174.
- Butler, J.J.; Liu, W.Z. Pumping tests in non-uniform aquifers—The linear strip case. J. Hydrol. 1991, 128, 69–99. [Google Scholar] [CrossRef]
- Kruseman, G.P.; Ridder, N.A. Analysis and Evaluation of Pumping Test Data; International Institute for Land Reclamation and Improvement: Wageningen, The Netherlands, 1990; p. 377. [Google Scholar]
- Strausberg, S.I. Estimating Distances to Hydrologic Boundaries from Discharging Well Data. Groundwater 1967, 5, 5–8. [Google Scholar] [CrossRef]
- Palacky, G.J.; Stephens, L.E. Mapping of Quaternary sediments in northeastern Ontario using ground electromagnetic methods. Geophysics 1990, 55, 1596–1604. [Google Scholar] [CrossRef]
- Bowling, J.C.; Rodriguez, A.B.; Harry, D.L.; Zheng, C. Delineating alluvial aquifer heterogeneity using resistivity and GPR data. Groundwater 2005, 43, 890–903. [Google Scholar] [CrossRef] [PubMed]
- Goutaland, D.; Winiarski, T.; Dubé, J.-S.; Bièvre, G.; Buoncristiani, J.-F.; Chouteau, M.; Giroux, B. Hydrostratigraphic characterization of glaciofluvial deposits underlying an infiltration basin using ground penetrating radar. Vadose Zone J. 2008, 7, 194–207. [Google Scholar] [CrossRef]
- Brosten, T.R.; Day-Lewis, F.D.; Schultz, G.M.; Curtis, G.P.; Lane, J.W. Inversion of multi-frequency electromagnetic induction data for 3D characterization of hydraulic conductivity. J. Appl. Geophys. 2011, 73, 323–335. [Google Scholar] [CrossRef]
- Triantafilis, J.; Ribeiro, J.; Page, D.; Monteiro Santos, F. Inferring the location of preferential flow paths of a leachate plume by using a DUALEM-421 and a Quasi-Three-Dimensional inversion model. Vadose Zone J. 2013, 12. [Google Scholar] [CrossRef]
- Robinson, D.A.; Binley, A.; Crook, N.; Day-Lewis, F.D.; Ferre, T.P.A.; Grauch, V.J.S.; Knight, R.; Knoll, M.; Lakshmi, V.; Miller, R.; et al. Advancing process-based watershed hydrological research using near-surface geophysics: A vision for, and review of, electrical and magnetic geophysical methods. Hydrol. Process. 2008, 22, 3604–3635. [Google Scholar] [CrossRef]
- Siemon, B.; Christiansen, A.V.; Auken, E. A review of helicopter-borne electromagnetic methods for groundwater exploration. Near Surf. Geophys. 2009, 7, 629–646. [Google Scholar] [CrossRef]
- Pellerin, L.; Beard, L.P.; Mandell, W. Mapping Structures that Control Contaminant Migration using Helicopter Transient Electromagnetic Data. J. Environ. Eng. Geophys. 2010, 15, 65–75. [Google Scholar] [CrossRef]
- Kirkegaard, C.; Sonnenborg, T.O.; Auken, E.; Jørgensen, F. Salinity Distribution in Heterogeneous Coastal Aquifers Mapped by Airborne Electromagnetics. Vadose Zone J. 2011, 10, 125–135. [Google Scholar] [CrossRef]
- Jorgensen, F.; Moller, R.R.; Nebel, L.; Jensen, N.-P.; Christiansen, A.V.; Sandersen, P. A method for cognitive 3D geological voxel modelling of AEM data. Bull. Eng. Geol. Environ. 2013, 72, 421–432. [Google Scholar] [CrossRef]
- Gunnink, J.L.; Siemon, B. Applying airborne electromagnetics in 3D stochastic geohydrological modelling for determining groundwater protection. Near Surf. Geophys. 2015, 13, 45–60. [Google Scholar] [CrossRef]
- Costabel, S.; Siemon, B.; Houben, G.; Günther, T. Geophysical investigation of a freshwater lens on the island of Langeoog, Germany—Insights from combined HEM, TEM and MRS data. J. Appl. Geophys. 2017, 136, 231–245. [Google Scholar] [CrossRef]
- Paine, J.G.; Collins, E.W. Identifying Ground-water Resources and Intrabasinal Faults in the Hueco Bolson, West Texas, using Airborne Electromagnetic Induction and Magnetic-field Data. J. Environ. Eng. Geophys. 2017, 22, 63–81. [Google Scholar] [CrossRef]
- Marker, P.A.; Foged, N.; He, X.; Christiansen, A.V.; Refsgaard, J.C.; Auken, E.; Bauer-Gottwein, P. Performance evaluation of groundwater model hydrostratigraphy from airborne electromagnetic data and lithological borehole logs. Hydrol. Earth Syst. Sci. 2015, 19, 3875–3890. [Google Scholar] [CrossRef]
- Barfod, A.A.S.; Møller, I.; Christiansen, A.V.; Høyer, A.-S.; Hoffimann, J.; Straubhaar, J.; Caers, J. Hydrostratigraphic modeling using multiple-point statistics and airborne transient electromagnetic methods. Hydrol. Earth Syst. Sci. 2018, 22, 3351–3373. [Google Scholar] [CrossRef]
- Raingeard, A.; Reninger, P.-A.; Thiery, Y.; Lacquement, F.; Nachbaur, A. 3D geological modelling coupling AEM with field observations. In Proceedings of the 7th International Workshop on Airborne Electromagnetics, Kolding, Denmark, 17–20 June 2018. [Google Scholar]
- Høyer, A.-S.; Jørgensen, F.; Lykke-Andersen, H.; Christiansen, A.V. Iterative modelling of AEM data based on a priori information from seismic and borehole data. Near Surf. Geophys. 2014, 12, 635–650. [Google Scholar] [CrossRef]
- Koltermann, C.E.; Gorelick, S.M. Heterogeneity in sedimentary deposits: A review of structure-imitating, process-imitating, and descriptive approaches. Water Resour. Res. 1996, 32, 2617–2658. [Google Scholar] [CrossRef]
- Fogg, G.E.; Noyes, C.D.; Carle, S.F. Geologically based model of heterogeneous hydraulic conductivity in an alluvial setting. Hydrogeol. J. 1998, 6, 131–143. [Google Scholar] [CrossRef]
- Anderson, M.; Aiken, J.; Webb, E.; Mickelson, D. Sedimentology and hydrogeology of two braided stream deposits. Sediment. Geol. 1999, 129, 187–199. [Google Scholar] [CrossRef]
- De Marsily, G.; Delay, F.; Gonçalvès, J.; Renard, P.; Teles, V.; Violette, S. Dealing with spatial heterogeneity. Hydrogeol. J. 2005, 13, 161–183. [Google Scholar] [CrossRef]
- Huggenberger, P.; Regli, C. A sedimentological model to characterize braided river deposits for hydrogeological applications. In Braided Rivers: Process, Deposits, Ecology, and Management; Sambrook, G.H., Best, J.L., Bristow, C.S., Petts, G.E., Eds.; Blackwell Publishing: Oxford, UK, 2009; pp. 51–74. [Google Scholar]
- Bayer, P.; Comunian, A.; Höyng, D.; Mariethoz, G. High resolution multi-facies realizations of sedimentary reservoir and aquifer analogs. Sci. Data 2015, 2. [Google Scholar] [CrossRef] [PubMed]
- Marini, M.; Felletti, F.; Beretta, G.; Terrenghi, J. Three Geostatistical Methods for Hydrofacies Simulation Ranked Using a Large Borehole Lithology Dataset from the Venice Hinterland (NE Italy). Water 2018, 10, 844. [Google Scholar] [CrossRef]
- Barfod, A.A.S.; Vilhelmsen, T.N.; Jorgensen, F.; Christiansen, A.V.; Straubhaar, J.; Moller, I. Contributions to uncertainty related to hydrostratigraphic modeling using Multiple-Point Statistics. Hydrol. Earth Syst. Sci. 2018, 1–38. [Google Scholar] [CrossRef]
- Ruggeri, P.; Irving, J.; Holliger, K.; Gloaguen, E.; Lefebvre, R. Hydrogeophysical data integration at larger scales: Application of Bayesian sequential simulation for the characterization of heterogeneous alluvial aquifers. Lead. Edge 2013, 32, 766–774. [Google Scholar] [CrossRef]
- Friedel, M.J. Estimation and scaling of hydrostratigraphic units: Application of unsupervised machine learning and multivariate statistical techniques to hydrogeophysical data. Hydrogeol. J. 2016, 24, 2103–2122. [Google Scholar] [CrossRef]
- Gutentag, E.D.; Heimes, F.J.; Krothe, N.C.; Luckey, R.R.; Weeks, J.B. Geohydrology of the High Plains Aquifer in Parts of Colorado, Kansas, Nebraska, New Mexico, Oklahoma, South Dakota, Texas, and Wyoming; U.S. Geological Survey: Reston, VA, USA, 1984; p. 63.
- Seni, S.J. Sand-Body Geometry and Depositional Systems, Ogallala Formation, Texas; Bureau of Economic Geology, University of Texas at Austin: Austin, TX, USA, 1980. [Google Scholar]
- Joeckel, R.M.; Wooden, S.R., Jr.; Korus, J.T.; Garbisch, J.O. Architecture, heterogeneity, and origin of late Miocene fluvial deposits hosting the most important aquifer in the Great Plains, USA. Sedimentology 2014, 311, 75–95. [Google Scholar] [CrossRef]
- Shepherd, R.G. Hydrogeologic significance of Ogallala fluvial environments, the Gangplank. In Recent and Ancient Nonmarine Depositional Environments; Models for Exploration; Ethridge, F.G., Flores, R.M., Eds.; SEPM (Society for Sedimentary Geology): Tulsa, OK, USA, 1981; Volume 31, pp. 89–94. [Google Scholar]
- Korus, J.T.; Joeckel, R.M.; Divine, D.P.; Abraham, J.D. Three-dimensional architecture and hydrostratigraphy of cross-cutting buried valleys using airborne electromagnetics, glaciated Central Lowlands, Nebraska, USA. Sedimentology 2016. [Google Scholar] [CrossRef]
- Korus, J.T.; Joeckel, R.M.; Divine, D.P. Three-Dimensional Hydrostratigraphy of the Firth, Nebraska Area: Results from Helicopter Electromagnetic (HEM) Mapping in the Eastern Nebraska Water Resources Assessment (ENWRA); Conservation and Survey Division, School of Natural Resources, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln: Lincoln, NE, USA, 2013; p. 100. [Google Scholar]
- Young, A.R.; Burbach, M.E.; Howard, L.M.; Waszgis, M.M.; Joeckel, R.M.; Olafsen-Lackey, S. Nebraska Statewide Groundwater-Level Monitoring Report 2016; Conservation and Survey Division, School of Natural Resources, Institute of Agriculture and Natural Resources, University of Nebraska-Lincoln: Lincoln, NE, USA, 2015; p. 24. [Google Scholar]
- Viezzoli, A.; Jørgensen, F.; Sørensen, C. Flawed Processing of Airborne EM Data Affecting Hydrogeological Interpretation. Groundwater 2013, 51, 191–202. [Google Scholar] [CrossRef] [PubMed]
- Lesmes, D.P.; Friedman, S.P. Relationship between the electrical and hydrogeological properties of rocks and soils. In Hydrogeophysics; Rubin, Y., Hubbard, S.S., Eds.; Springer: Dordrecht, The Netherlands, 2005; pp. 87–128. [Google Scholar]
- Beamish, D. Petrophysics from the air to improve understanding of rock properties in the UK. First Break 2013, 31, 63–71. [Google Scholar]
- Christiansen, A.V.; Foged, N.; Auken, E. A concept for calculating accumulated clay thickness from borehole lithological logs and resistivity models for nitrate vulnerability assessment. J. Appl. Geophys. 2014, 108, 69–77. [Google Scholar] [CrossRef]
- Barfod, A.A.S.; Møller, I.; Christiansen, A.V. Compiling a national resistivity atlas of Denmark based on airborne and ground-based transient electromagnetic data. J. Appl. Geophys. 2016, 134, 199–209. [Google Scholar] [CrossRef]
- Smith, B.D.; Abraham, J.A.; Cannia, J.C.; Steele, G.V.; Hill, P. Helicopter Electromagnetic and Magnetic Geophysical Survey Data, Oakland, Ashland, and Firth Study Areas, Eastern Nebraska, March 2007; U.S. Geological Survey: Reston, VA, USA, 2008; p. 16.
- Smith, B.; Abraham, J.; Cannia, J.; Minsley, B.; Ball, L.; Steele, G.; Deszcz-Pan, M. Helicopter Electromagnetic and Magnetic Geophysical Survey Data, Swedeburg and Sprague Study Areas, Eastern Nebraska, May 2009; Open File Report 2331-1258; U.S. Geological Survey: Reston, VA, USA, 2011; p. 32.
- Beamish, D. Airborne EM footprints. Geophys. Prospect. 2003, 51, 49–60. [Google Scholar] [CrossRef]
- Yin, C.; Huang, X.; Liu, Y.; Cai, J. Footprint for frequency-domain airborne electromagnetic systems. Geophysics 2014, 79, E243–E254. [Google Scholar] [CrossRef]
- Farquharson, C.G. Background for Program “EM1DFM”. Available online: https://www.eoas.ubc.ca/ubcgif/iag/sftwrdocs/em1dfm/bg.pdf (accessed on 17 July 2018).
- Farquharson, C.G.; Oldenburg, D.W.; Routh, P.S. Simultaneous 1D inversion of loop–loop electromagnetic data for magnetic susceptibility and electrical conductivity. Geophysics 2003, 68, 1857–1869. [Google Scholar] [CrossRef]
- Oldenburg, D.W.; Li, Y. Estimating depth of investigation in DC resistivity and IP surveys. Geophysics 1999, 64, 403–416. [Google Scholar] [CrossRef]
- Sørensen, K.I.; Auken, E. SkyTEM—A new high-resolution helicopter transient electromagnetic system. Explor. Geophys. 2004, 35, 194–202. [Google Scholar] [CrossRef]
- Carney, C.P.; Abraham, J.D.; Cannia, J.C.; Steele, G.V. Final Report on Airborne Electromagnetic Geophysical Surveys and Hydrogeologic Framework Development for the Eastern Nebraska Water Resources Assessment—Volume I, Including the Lewis and Clark, Lower Elkhorn, and Papio-Missouri River Natural Resources Districts; Exploration Resources International: Vicksburg, MS, USA, 2015; p. 132. [Google Scholar]
- Cannia, J.C.; Abraham, J.D.; Asch, T.H. Hydrogeologic Framework of Selected Areas in the Lower Elkhorn Natural Resources District, Nebraska; Aqua Geo Frameworks, LLC: Mitchell, NE, USA, 2017; p. 109. [Google Scholar]
- Reid, J.E.; Pfaffling, A.; Vrbancich, J. Airborne electromagnetic footprints in 1D earths. Geophysics 2006, 71, G63–G72. [Google Scholar] [CrossRef]
- Reid, J.E.; Vrbancich, J. A comparison of the inductive-limit footprints of airborne electromagnetic configurations. Geophysics 2004, 69, 1229–1239. [Google Scholar] [CrossRef]
- Viezzoli, A.; Christiansen, A.V.; Auken, E.; Sørensen, K. Quasi-3D modeling of airborne TEM data by spatially constrained inversion. Geophysics 2008, 73, F105–F113. [Google Scholar] [CrossRef]
- Butler, J.J.; Stotler, R.L.; Whittemore, D.O.; Reboulet, E.C. Interpretation of water level changes in the High Plains aquifer in western Kansas. Groundwater 2013, 51, 180–190. [Google Scholar] [CrossRef] [PubMed]
- Streltsova, T.D. Well Testing in Heterogeneous Formations; Wiley: New York, NY, USA, 1988. [Google Scholar]
- Dawson, K.J.; Istok, J.D. Aquifer Testing: Design and Analysis of Pumping and Slug Tests; CRC Press: Boca Raton, FL, USA, 2002. [Google Scholar]
- Brodzikowski, K.; van Loon, A.J. A systematic classification of glacial and periglacial environments, facies and deposits. Earth-Sci. Rev. 1987, 24, 297–381. [Google Scholar] [CrossRef]
- Boyce, J.I.; Eyles, N. Architectural element analysis applied to glacial deposits: Internal geometry of a late Pleistocene till sheet, Ontario, Canada. Geol. Soc. Am. Bull. 2000, 112, 98–118. [Google Scholar] [CrossRef]
© 2018 by the author. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Korus, J. Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries. Water 2018, 10, 975. https://doi.org/10.3390/w10080975
Korus J. Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries. Water. 2018; 10(8):975. https://doi.org/10.3390/w10080975
Chicago/Turabian StyleKorus, Jesse. 2018. "Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries" Water 10, no. 8: 975. https://doi.org/10.3390/w10080975
APA StyleKorus, J. (2018). Combining Hydraulic Head Analysis with Airborne Electromagnetics to Detect and Map Impermeable Aquifer Boundaries. Water, 10(8), 975. https://doi.org/10.3390/w10080975