Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain)
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Overall Study Design
2.3. Data Sources
2.4. Interpolation of Meteorological Variables
2.5. Snowfall Analysis and Snow Climate Indicators
- Snowfall days indicator (Dsnowfall): number of days each year in which snowfall is higher than 0.5 mm.
- Snowfall intensity (Isnowfall): relationship between the annual snowfall and the snowfall days indicator, as outlined by Equation (2).
2.6. Long-Term Data Analysis
3. Results
3.1. Long-Term Precipitation and Temperature Analysis for Future Scenarios
3.2. Long-Term Snowfall Analysis for Future Scenarios
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Barnett, T.P.; Adam, J.C.; Lettenmaier, D.P. Potential impacts of a warming climate on water availability in snow-dominated regions. Nature 2005, 438, 303. [Google Scholar] [CrossRef] [PubMed]
- Mote, P.W. Trends in snow water equivalent in the Pacific Northwest and their climatic causes. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P.; Hamlet, A.F.; Mote, P.W.; Clark, M.P.; Lettenmaier, D.P. Effects of Temperature and Precipitation Variability on Snowpack Trends in the Western United States. J. Clim. 2015, 48, 4545–4561. [Google Scholar] [CrossRef]
- Berghuijs, W.R.; Woods, R.A.; Hrachowitz, M. A precipitation shift from snow towards rain leads to a decrease in streamflow. Nat. Clim. Chang. 2014, 4, 583. [Google Scholar] [CrossRef]
- Kevin, E. Trenberth Changes in precipitation with climate change. Clim. Res. Clim Res. 2011, 47, 123–138. [Google Scholar] [CrossRef]
- Chou, C.; Lan, C.-W.; Chou, C.; Lan, C.-W. Changes in the Annual Range of Precipitation under Global Warming. J. Clim. 2012, 25, 222–235. [Google Scholar] [CrossRef]
- Solomon, S.; Quin, D.; Manning, M.; Chen, Z.; Marquis, M.; Averyt, K.; Tignort, M.; Miller, H. Climate Change: The Physical Science Basis. Contribution of Working Group I to the Fourth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK; New York, NY, USA, 2017. [Google Scholar]
- Groisman, P.Y.; Knight, R.W.; Easterling, D.R.; Karl, T.R.; Hegerl, G.C.; Razuvaev, V.N. Trends in Intense Precipitation in the Climate Record. J. Clim. 2005, 18, 1326–1350. [Google Scholar] [CrossRef]
- Norrant, C.; Douguédroit, A. Monthly and daily precipitation trends in the Mediterranean (1950–2000). Theor. Appl. Climatol. 2006, 83, 89–106. [Google Scholar] [CrossRef]
- Klein Tank, A.M.G.; Wijngaard, J.B.; Können, G.P.; Böhm, R.; Demarée, G.; Gocheva, A.; Mileta, M.; Pashiardis, S.; Hejkrlik, L.; Kern-Hansen, C.; et al. Daily dataset of 20th-century surface air temperature and precipitation series for the European Climate Assessment. Int. J. Climatol. 2002, 22, 1441–1453. [Google Scholar] [CrossRef]
- New, M.; Todd, M.; Hulme, M.; Jones, P. Precipitation measurements and trends in the twentieth century. Int. J. Climatol. 2001, 21, 1889–1922. [Google Scholar] [CrossRef]
- Pérez-Palazón, M.J.; Pimentel, R.; Herrero, J.; Aguilar, C.; Perales, J.M.; Polo, M.J. Extreme values of snow-related variables in Mediterranean regions: Trends and long-term forecasting in Sierra Nevada (Spain). Proc. Int. Assoc. Hydrol. Sci. 2015, 369, 157–162. [Google Scholar] [CrossRef]
- Beniston, M. Climatic Change in Mountain Regions: A Review of Possible Impacts. Clim. Chang. 2003, 59, 5–31. [Google Scholar] [CrossRef]
- IPCC. Climate Change 2014: Synthesis Report. Contribution of Working Groups I, II and III to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Core Writing Team, Pachauri, R.K., Meyer, L.A., Eds.; IPCC: Geneva, Switzerland, 2014; p. 151. [Google Scholar]
- Giorgi, F. Climate change hot-spots. Geophys. Res. Lett. 2006, 33, L08707. [Google Scholar] [CrossRef]
- Gelfan, A.; Gustafsson, D.; Motovilov, Y.; Arheimer, B.; Kalugin, A.; Krylenko, I.; Lavrenov, A. Climate change impact on the water regime of two great Arctic rivers: Modeling and uncertainty issues. Clim. Chang. 2017, 141, 499–515. [Google Scholar] [CrossRef]
- Eisner, S.; Flörke, M.; Chamorro, A.; Daggupati, P.; Donnelly, C.; Huang, J.; Hundecha, Y.; Koch, H.; Kalugin, A.; Krylenko, I.; et al. An ensemble analysis of climate change impacts on streamflow seasonality across 11 large river basins. Clim. Chang. 2017, 141, 401–417. [Google Scholar] [CrossRef]
- Soares, M.B.; Alexander, M.; Dessai, S. Sectoral use of climate information in Europe: A synoptic overview. Clim. Serv. 2018, 9, 5–20. [Google Scholar] [CrossRef]
- Damm, A.; Greuell, W.; Landgren, O.; Prettenthaler, F. Impacts of +2 °C global warming on winter tourism demand in Europe. Clim. Serv. 2017, 7, 31–46. [Google Scholar] [CrossRef]
- Donnelly, C.; Greuell, W.; Andersson, J.; Gerten, D.; Pisacane, G.; Roudier, P.; Ludwig, F. Impacts of climate change on European hydrology at 1.5, 2 and 3 degrees mean global warming above preindustrial level. Clim. Chang. 2017, 143, 13–26. [Google Scholar] [CrossRef]
- Steininger, K.W.; Bednar-Friedl, B.; Formayer, H.; König, M. Consistent economic cross-sectoral climate change impact scenario analysis: Method and application to Austria. Clim. Serv. 2016, 1, 39–52. [Google Scholar] [CrossRef]
- Fayad, A.; Gascoin, S.; Faour, G.; López-Moreno, J.I.; Drapeau, L.; Page, M.L.; Escadafal, R. Snow hydrology in Mediterranean mountain regions: A review. J. Hydrol. 2017, 551, 374–396. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Gascoin, S.; Herrero, J.; Sproles, E.A.; Pons, M.; Alonso-González, E.; Hanich, L.; Boudhar, A.; Musselman, K.N.; Molotch, N.P.; et al. Different sensitivities of snowpacks to warming in Mediterranean climate mountain areas. Environ. Res. Lett. 2017, 12, 074006. [Google Scholar] [CrossRef]
- Möller, L.; Hanke, B.; Lubinski, L.; Kollig, C. For Life, for the Future. Biosphere Reserves and Climate Change; German Commission for UNESCO (DUK): Bonn, Germany; ISBN 978-3-940785-27-5.
- Danco, J.F.; DeAngelis, A.M.; Raney, B.K.; Broccoli, A.J. Effects of a Warming Climate on Daily Snowfall Events in the Northern Hemisphere. J. Clim. 2016, 29, 6295–6318. [Google Scholar] [CrossRef]
- Blanca, G.; Cueto, M.; Martínez-Lirola, M.J.; Molero-Mesa, J. Threatened vascular flora of Sierra Nevada (Southern Spain). Biol. Conserv. 1998, 85, 269–285. [Google Scholar] [CrossRef]
- Heywood, V. Endemism and biodiversity of the flora and vegetation of Sierra Nevada: Environmental consequences. In Sierra Nevada. Conservaci6n y Desarrollo Sostenible; University of Granada: Granada, Spain, 1996; pp. 191–201. [Google Scholar]
- Pimentel, R.; Herrero, J.; Polo, M.J. Subgrid parameterization of snow distribution at a Mediterranean site using terrestrial photography. Hydrol. Earth Syst. Sci. 2017, 21, 805–820. [Google Scholar] [CrossRef]
- Lorite, J.; Navarro, F.B.; Valle, F. Estimation of threatened orophytic flora and priority of its conservation in the Baetic range (S. Spain). Plant Biosyst. 2007, 141, 1–14. [Google Scholar] [CrossRef]
- Myers, N.; Mittermeier, R.A.; Mittermeier, C.G.; da Fonseca, G.A.B.; Kent, J. Biodiversity hotspots for conservation priorities. Nature 2000, 403, 853–858. [Google Scholar] [CrossRef] [PubMed]
- Pérez-Palazon, M.J.; Pimentel, R.; Herrero, J.; Polo, M.J. Modelado el régimen de humedad media del suelo en el área de Sierra Nevada a diferentes escalas temporales. In Estudios de la Zona no Saturada; Martinez Perez, S., Merlín, A.S., Eds.; Universidad de Alcalá, Servicio de Publicaciones: Madrid, Spain, 2015; Volumen XII, pp. 221–226. [Google Scholar]
- Boé, J.; Terray, L. Can metric-based approaches really improve multi-model climate projections? The case of summer temperature change in France. Clim. Dyn. 2015, 45, 1913–1928. [Google Scholar] [CrossRef]
- Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A.; Knutti, R.; Furrer, R.; Tebaldi, C.; Cermak, J.; Meehl, G.A. Challenges in Combining Projections from Multiple Climate Models. J. Clim. 2010, 23, 2739–2758. [Google Scholar] [CrossRef]
- Giorgi, F.; Mearns, L.O.; Giorgi, F.; Mearns, L.O. Calculation of Average, Uncertainty Range, and Reliability of Regional Climate Changes from AOGCM Simulations via the “Reliability Ensemble Averaging” (REA) Method. J. Clim. 2002, 15, 1141–1158. [Google Scholar] [CrossRef]
- Tebaldi, C.; Smith, R.L.; Nychka, D.; Mearns, L.O.; Tebaldi, C.; Smith, R.L.; Nychka, D.; Mearns, L.O. Quantifying Uncertainty in Projections of Regional Climate Change: A Bayesian Approach to the Analysis of Multimodel Ensembles. J. Clim. 2005, 18, 1524–1540. [Google Scholar] [CrossRef]
- Block, K.; Mauritsen, T. Forcing and feedback in the MPI-ESM-LR coupled model under abruptly quadrupled CO2. J. Adv. Model. Earth Syst. 2013, 5, 676–691. [Google Scholar] [CrossRef]
- Zorita, E.; von Storch, H.; Zorita, E.; von Storch, H. The Analog Method as a Simple Statistical Downscaling Technique: Comparison with More Complicated Methods. J. Clim. 1999, 12, 2474–2489. [Google Scholar] [CrossRef]
- Stevens, B.; Giorgetta, M.; Esch, M.; Mauritsen, T.; Crueger, T.; Rast, S.; Salzmann, M.; Schmidt, H.; Bader, J.; Block, K.; et al. Atmospheric component of the MPI-M Earth System Model: ECHAM6. J. Adv. Model. Earth Syst. 2013, 5, 146–172. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. [Google Scholar] [CrossRef]
- Jones, C.; Robertson, E.; Arora, V.; Friedlingstein, P.; Shevliakova, E.; Bopp, L.; Brovkin, V.; Hajima, T.; Kato, E.; Kawamiya, M.; et al. Twenty-First-Century Compatible CO2 Emissions and Airborne Fraction Simulated by CMIP5 Earth System Models under Four Representative Concentration Pathways. J. Clim. 2013, 26, 4398–4413. [Google Scholar] [CrossRef]
- Maier-Reimer, E.; Kriest, I.; Segschneider, J.; Wetzel, P. The HAMburg Ocean Carbon Cycle Model HAMOCC5.1-Technical Description Release 1.1; Max-Planck-Inst. für Meteorologie: Hamburg, Germany, 2005. [Google Scholar] [CrossRef]
- Kaminski, T.; Knorr, W.; Schürmann, G.; Scholze, M.; Rayner, P.J.; Zaehle, S.; Blessing, S.; Dorigo, W.; Gayler, V.; Giering, R.; et al. The BETHY/JSBACH Carbon Cycle Data Assimilation System: Experiences and challenges. J. Geophys. Res. Biogeosci. 2013, 118, 1414–1426. [Google Scholar] [CrossRef]
- Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; et al. The NCEP/NCAR 40-Year Reanalysis Project. Bull. Am. Meteorol. Soc. 1996, 77, 437–471. [Google Scholar] [CrossRef]
- Petisco, S.E.; Martín, J.; Gel, D. Método de estima de precipitación mediante “downscaling”. In Nota técnica n.o 11 del Servicio de Variabilidad y Predicción del Clima; INM: Madrid, Spain, 2005. [Google Scholar]
- Petisco, S.E.; Martín, J.M. Escenarios de temperatura y precipitación para la España peninsular y Baleares durante el período 2001–2100 basados en “downscaling” estadístico mediante métodos de análogos. In Proceedings of the XXIX Jornadas Científicas de la Asociación Meteorológica Española, Pamplona, Spain, 24–26 April 2006. [Google Scholar]
- Agnew, M.; Palutikof, J. GIS-based construction of baseline climatologies for the Mediterranean using terrain variables. Clim. Res. 2000, 14, 115–127. [Google Scholar] [CrossRef]
- Herrero, J.; Aguilar, C.; Polo, M.J.; Losada, M.A. Mapping of meteorological variables for runoff generation forecast in distributed hydrological modeling. In Proceedings of the Hydraulic Measurements & Experimental Methods Conference, Lake Placid, NY, USA, 10–12 September 2007; pp. 606–611. [Google Scholar]
- Creutin, J.D.; Obled, C. Objective analyses and mapping techniques for rainfall fields: An objective comparison. Water Resour. Res. 1982, 18, 413–431. [Google Scholar] [CrossRef]
- Buytaert, W.; Celleri, R.; Willems, P.; De Bièvre, B.; Wyseure, G. Spatial and temporal rainfall variability in mountainous areas: A case study from the south Ecuadorian Andes. J. Hydrol. 2006, 329, 413–421. [Google Scholar] [CrossRef]
- Susong, D.; Marks, D.; Garen, D. Methods for developing time-series climate surfaces to drive topographically distributed energy- and water-balance models. Hydrol. Process. 1999, 13, 2003–2021. [Google Scholar] [CrossRef]
- Garen, D.C.; Marks, D. Spatially distributed energy balance snowmelt modelling in a mountainous river basin: Estimation of meteorological inputs and verification of model results. J. Hydrol. 2005, 315, 126–153. [Google Scholar] [CrossRef]
- Aguilar, C.; Herrero, J.; Polo, M.J. Topographic effects on solar radiation distribution in mountainous watersheds and their influence on reference evapotranspiration estimates at watershed scale. Hydrol. Earth Syst. Sci. 2010, 14, 2479–2494. [Google Scholar] [CrossRef]
- Herrero, J.; Polo, M.J. Evaposublimation from the snow in the Mediterranean mountains of Sierra Nevada (Spain). Cryosphere 2016, 10, 2981–2998. [Google Scholar] [CrossRef]
- Pimentel, R.; Herrero, J.; Polo, M. Quantifying Snow Cover Distribution in Semiarid Regions Combining Satellite and Terrestrial Imagery. Remote Sens. 2017, 9, 995. [Google Scholar] [CrossRef]
- Dai, A. Temperature and Pressure Dependence of the Rain-Snow Phase Transition over Land and Ocean. Geophys. Res. Lett. 2008, 10. [Google Scholar] [CrossRef]
- Lundquist, J.D.; Neiman, P.J.; Martner, B.; White, A.B.; Gottas, D.J.; Ralph, F.M.; Lundquist, J.D.; Neiman, P.J.; Martner, B.; White, A.B.; et al. Rain versus Snow in the Sierra Nevada, California: Comparing Doppler Profiling Radar and Surface Observations of Melting Level. J. Hydrometeorol. 2008, 9, 194–211. [Google Scholar] [CrossRef]
- Klos, P.Z.; Link, T.E.; Abatzoglou, J.T. Extent of the rain-snow transition zone in the western U.S. under historic and projected climate. Geophys. Res. Lett. 2014, 41, 4560–4568. [Google Scholar] [CrossRef]
- Rajagopal, S.; Harpold, A.A. Testing and Improving Temperature Thresholds for Snow and Rain Prediction in the Western United States. JAWRA J. Am. Water Resour. Assoc. 2016, 52, 1142–1154. [Google Scholar] [CrossRef]
- Hatchett, B.; Daudert, B.; Garner, C.; Oakley, N.; Putnam, A.; White, A. Winter Snow Level Rise in the Northern Sierra Nevada from 2008 to 2017. Water 2017, 9, 899. [Google Scholar] [CrossRef]
- Motoyama, H.; Motoyama, H. Simulation of Seasonal Snowcover Based on Air Temperature and Precipitation. J. Appl. Meteorol. 1990, 29, 1104–1110. [Google Scholar] [CrossRef]
- Lynch-Stieglitz, M. The Development and Validation of a Simple Snow Model for the GISS GCM. J. Clim. 1994, 7, 1842–1855. [Google Scholar] [CrossRef]
- Marks, D.; Winstral, A.; Reba, M.; Pomeroy, J.; Kumar, M. An evaluation of methods for determining during-storm precipitation phase and the rain/snow transition elevation at the surface in a mountain basin. Adv. Water Resour. 2013, 55, 98–110. [Google Scholar] [CrossRef]
- Herrero, J.; Polo, M.J.; Moñino, A.; Losada, M.A. An energy balance snowmelt model in a Mediterranean site. J. Hydrol. 2009, 371, 98–107. [Google Scholar] [CrossRef]
- Yang, Z.-L.; Dickinson, R.E.; Robock, A.; Vinnikov, K.Y.; Yang, Z.-L.; Dickinson, R.E.; Robock, A.; Vinnikov, K.Y. Validation of the Snow Submodel of the Biosphere–Atmosphere Transfer Scheme with Russian Snow Cover and Meteorological Observational Data. J. Clim. 1997, 10, 353–373. [Google Scholar] [CrossRef]
- Gibbons, J.D.; Chakraborti, S. Nonparametric Statistical Inference; Chapman & Hall/CRC Edition: London, UK, 2011; ISBN 9781420077612. [Google Scholar]
- Venables, W.N.; Ripley, B.D. Modern Applied Statistics with S-PLUS; Springer Science & Business Media: Berlin, Germany, 2013; ISBN 9781441930088. [Google Scholar]
- Esteban-Parra, M.J.; Rodrigo, F.S.; Castro-Diez, Y. Spatial and temporal patterns of precipitation in Spain for the period 1880–1992. Int. J. Climatol. 1998, 18, 1557–1574. [Google Scholar] [CrossRef]
- Shuttleworth, W.J. The challenges of developing a changing world. Eos Trans. Am. Geophys. Union 1996, 77, 347. [Google Scholar] [CrossRef]
- Maheras, P.; Balafoutis, C.; Vafiadis, M. Precipitation in the Central Mediterranean during the last century. Theor. Appl. Climatol. 1992, 45, 209–216. [Google Scholar] [CrossRef]
- Gampe, D.; Nikulin, G.; Ludwig, R. Using an ensemble of regional climate models to assess climate change impacts on water scarcity in European river basins. Sci. Total Environ. 2016, 573, 1503–1518. [Google Scholar] [CrossRef] [PubMed]
- Molina-Navarro, E.; Andersen, H.E.; Nielsen, A.; Thodsen, H.; Trolle, D. Quantifying the combined effects of land use and climate changes on stream flow and nutrient loads: A modelling approach in the Odense Fjord catchment (Denmark). Sci. Total Environ. 2018, 621, 253–264. [Google Scholar] [CrossRef] [PubMed]
- Tan, M.L.; Ibrahim, A.L.; Yusop, Z.; Chua, V.P.; Chan, N.W. Climate change impacts under CMIP5 RCP scenarios on water resources of the Kelantan River Basin, Malaysia. Atmos. Res. 2017, 189, 1–10. [Google Scholar] [CrossRef]
- Dimri, A.P.; Kumar, D.; Choudhary, A.; Maharana, P. Future changes over the Himalayas: Maximum and minimum temperature. Glob. Planet. Chang. 2018, 162, 212–234. [Google Scholar] [CrossRef]
- Diffenbaugh, N.S.; Scherer, M.; Ashfaq, M. Response of snow-dependent hydrologic extremes to continued global warming. Nat. Clim. Chang. 2013, 3, 379–384. [Google Scholar] [CrossRef] [PubMed]
- Verfaillie, D.; Lafaysse, M.; Déqué, M.; Eckert, N.; Lejeune, Y.; Morin, S. Multi-component ensembles of future meteorological and natural snow conditions for 1500 m altitude in the Chartreuse mountain range, Northern French Alps. Cryosphere 2018, 125194, 1249–1271. [Google Scholar] [CrossRef]
- Marty, C.; Schlögl, S.; Bavay, M.; Lehning, M. How much can we save? Impact of different emission scenarios on future snow cover in the Alps. Cryosphere 2017, 11, 517–529. [Google Scholar] [CrossRef]
- Meza, F.J.; Wilks, D.S.; Gurovich, L.; Bambach, N. Impacts of Climate Change on Irrigated Agriculture in the Maipo Basin, Chile: Reliability of Water Rights and Changes in the Demand for Irrigation. J. Water Resour. Plan. Manag. 2012, 138, 421–430. [Google Scholar] [CrossRef]
- Vicuña, S.; Garreaud, R.D.; McPhee, J. Climate change impacts on the hydrology of a snowmelt driven basin in semiarid Chile. Clim. Chang. 2011, 105, 469–488. [Google Scholar] [CrossRef]
- Cayan, D.; Tyree, M.; Kunkel, K.E.; Castro, C.; Gershunov, A.; Barsugli, J.; Ray, A.J.; Overpeck, J.; Anderson, M.; Russell, J.; et al. Future Climate: Projected Average. In Assessment of Climate Change in the Southwest United States: A Report Prepared for the National Climate Assessment; A Report by the Southwest Climate Alliance; Garfin, G., Jardine, A., Merideth, R., Black, M., LeRoy, S., Eds.; Island Press: Washington, DC, USA, 2013; pp. 101–125. [Google Scholar]
- Kay, A.L. A review of snow in Britain: The historical picture and future projections. Prog. Phys. Geog. 2016, 40, 676–698. [Google Scholar] [CrossRef]
- Monaghan, A.J.; Bromwich, D.H.; Schneider, D.P. Twentieth century Antarctic air temperature and snowfall simulations by IPCC climate models. Geophys. Res. Lett. 2008, 35. [Google Scholar] [CrossRef]
- Polade, S.D.; Gershunov, A.; Cayan, D.R.; Dettinger, M.D.; Pierce, D.W. Precipitation in a warming world: Assessing projected hydro-climate changes in California and other Mediterranean climate regions. Sci. Rep. 2017, 7, 10783. [Google Scholar] [CrossRef] [PubMed]
- Berg, N.; Hall, A. Increased Interannual Precipitation Extremes over California under Climate Change. J. Clim. 2015, 28, 6324–6334. [Google Scholar] [CrossRef]
- Valdés-Pineda, R.; Pizarro, R.; García-Chevesich, P.; Valdés, J.B.; Olivares, C.; Vera, M.; Balocchi, F.; Pérez, F.; Vallejos, C.; Fuentes, R.; et al. Water governance in Chile: Availability, management and climate change. J. Hydrol. 2014, 519, 2538–2567. [Google Scholar] [CrossRef]
- Mudryk, L.R.; Derksen, C.; Howell, S.; Laliberté, F.; Thackeray, C.; Sospedra-Alfonso, R.; Vionnet, V.; Kushner, P.J.; Brown, R. Canadian snow and sea ice: Historical trends and projections. Cryosphere 2018, 12, 1157–1176. [Google Scholar] [CrossRef]
- Demaria, E.M.C.; Maurer, E.P.; Thrasher, B.; Vicuña, S.; Meza, F.J. Climate changes impacts on an alpine watershed in Chile: Do new model projections change the story? J. Hydrol. 2013, 502, 128–138. [Google Scholar] [CrossRef]
- Sun, F.; Hall, A.; Schwartz, M.; Walton, D.B.; Berg, N. Twenty-First-Century Snowfall and Snowpack Changes over the Southern California Mountains. J. Clim. 2016, 29, 91–110. [Google Scholar] [CrossRef]
R1 | R2 | R3 | R4 | R5 | Total SN | |
---|---|---|---|---|---|---|
Area (km2) | 459.13 | 1169.00 | 914.43 | 983.16 | 1058.00 | 4583.72 |
Average altitude (m) | 1330.6 | 1235.0 | 1350.0 | 1270.6 | 1418.5 | 1320.9 |
Tmean (°C) | 13.2 | 13.4 | 12.2 | 12.1 | 12.0 | 12.6 |
Tmax (°C) | 26.3 | 26.4 | 26.3 | 26.0 | 25.1 | 26.0 |
Tmin (°C) | 1.4 | 1.8 | −0.7 | −0.6 | 0.0 | 0.4 |
P (mm·year−1) | 579 | 373 | 427 | 557 | 658 | 510 |
S (mm·year−1) | 85 | 44 | 68 | 107 | 160 | 93 |
E (events·year−1) | 30 | 32 | 32 | 30 | 29 | 31 |
De (days·year−1) | 3 | 3 | 4 | 3 | 4 | 4 |
Trend Tmean (°C·year−1) | 0.052 (**) | 0.022 (+) | 0.023 (+) | 0.043 (**) | 0.044 (**) | 0.034 (*) |
Trend Tmax (°C·year−1) | 0.053 (**) | 0.022 (+) | 0.024 (+) | 0.043 (**) | 0.044 (**) | 0.035 (*) |
Trend Tmin (°C·year−1) | −0.017 (+) | −0.004 (+) | −0.015 (+) | −0.012 (+) | −0.011 (+) | −0.010 (+) |
Trend P ((mm·year−1)·year−1) | −3.099 (*) | −1.832 (*) | −2.946 (+) | −8.043 (***) | −4.529 (**) | −4.135 (**) |
Trend S ((mm·year−1)·year−1) | −1.107 (**) | −0.427 (+) | −0.684 (**) | −1.923 (***) | −2.085 (***) | −1.250 (***) |
Trend E ((nºev·year−1)·year−1 | −0.116 (+) | −0.061 (+) | −0.001 (+) | 0.038 (+) | −0.047 (+) | 0.012 (+) |
Trend D((day·year−1)·year−1) | −0.025 (+) | −0.025 (+) | −0.157 (+) | −0.194 (+) | −0.074 (+) | −0.039 (+) |
DecTrend Tmean (°C·dec−1) | 0.2604 (+) | 0.2109 (+) | 0.1989 (+) | 0.2381 (+) | 0.2403 (+) | 0.2261 (+) |
DecTrend Tmax (°C·dec−1) | 0.5927 (+) | 0.2689 (+) | 0.2698 (+) | 0.4667 (+) | 0.4639 (+) | 0.3847 (+) |
DecTrend Tmin (°C·dec−1) | −0.1678 (+) | −0.0195 (+) | −0.1139 (+) | −0.0787 (+) | −0.0787 (+) | −0.0665 (+) |
DecTrend P((mm·year−1)·dec−1) | −35.24 (+) | −19.63 (+) | −30.40 (+) | −80.75 (+) | −50.16 (+) | −43.49 (+) |
DecTrend S ((mm·year−1)·dec−1) | −11.45 (+) | −4.39 (+) | −6.99 (+) | −19.29 (+) | −21.97 (+) | −12.87 (+) |
RCP 4.5 | ||||||
R1 | R2 | R3 | R4 | R5 | TOTAL (SN) | |
Tmax (°C) | 28.0 | 28.1 | 28.0 | 27.7 | 26.7 | 27.7 |
Tmin (°C) | −8.6 | −8.2 | −10.7 | −10.8 | −10.0 | −9.7 |
Tmean (°C) | 25.2 | 25.4 | 24.2 | 24.5 | 24.0 | 24.7 |
P (mm·year−1) | 573 | 367 | 421 | 549 | 652 | 503 |
S (mm·year−1) | 78 | 36 | 64 | 106 | 153 | 87 |
E (nºev.·year−1) | 40 | 32 | 34 | 38 | 48 | 37 |
D (days·year−1) | 3 | 2 | 3 | 3 | 3 | 3 |
Trend Tmax (°C·year−1) | 0.024 (***) | 0.024 (***) | 0.024 (***) | 0.025 (***) | 0.023 (***) | 0.024 (***) |
Trend Tmin (°C·year−1) | 0.010 (***) | 0.010 (***) | 0.010 (***) | 0.011 (***) | 0.010 (***) | 0.010 (***) |
Trend Tmean (°C·year−1) | 0.019 (***) | 0.019 (***) | 0.019 (***) | 0.019 (***) | 0.019 (***) | 0.019 (***) |
Trend P ((mm·year−1)·year−1) | −0.109 (+) | −0.060 (+) | −0.068 (+) | −0.119 (+) | −0.070 (+) | −0.081 (+) |
Trend S ((mm·year−1)·year−1) | −0.289 (***) | −0.215 (***) | −0.236 (***) | −0.232 (***) | −0.271 (***) | 0.243 (***) |
Trend E ((nºev.·year−1)·year−1) | −0.068 (+) | −0.076 (+) | −0.061 (+) | −0.042 (+) | −0.027 (+) | −0.056 (+) |
Trend D ((day·year−1)·year−1) | −0.003 (+) | −0.003 (+) | −0.004 (+) | −0.004 (+) | −0.005 (+) | −0.044 (+) |
DecTrend Tmean (°C·dec−1) | 0.1826 (**) | 0.1820 (**) | 0.1837 (**) | 0.1868 (**) | 0.1838 (**) | 0.1838 (**) |
DecTrend Tmax (°C·dec−1) | 0.2242 (***) | 0.2246 (***) | 0.2201 (***) | 0.2207 (***) | 0.2104 (***) | 0.2193 (***) |
DecTrend Tmin (°C·dec−1) | 0.0838 (**) | 0.0859 (**) | 0.0829 (**) | 0.0915 (**) | 0.0808 (**) | 0.0838 (**) |
DecTrend((mm·year−1)·dec−1) | −1.0118 (+) | −0.6906 (+) | −0.9842 (+) | −1.6084 (+) | −0.8593 (+) | −1.0129 (+) |
DecTrend ((mm·year−1)·dec−1) | −2.6852 (+) | −1.9920 (+) | −2.3388 (+) | −2.3325 (+) | −2.6641 (+) | −2.3597 (+) |
RCP 8.5 | ||||||
R2 | R3 | R4 | R5 | TOTAL(SN) | ||
Temp max (°C) | 29.2 | 29.3 | 29.2 | 28.9 | 27.9 | 28.8 |
Tmin (°C) | −7.9 | −7.5 | −10.1 | −10.2 | −9.4 | −9.0 |
Tmean (°C) | 26.2 | 26.4 | 25.2 | 25.5 | 25.0 | 25.7 |
P (mm·year−1) | 548 | 352 | 403 | 528 | 625 | 482 |
S (mm· year−1) | 62 | 25 | 51 | 92 | 135 | 74 |
E (nºev.·year−1) | 39 | 30 | 32 | 37 | 46 | 36 |
De(days·year−1) | 2 | 2 | 2 | 2 | 3 | 2 |
Trend Tmax (°C·year−1) | 0.061 (***) | 0.062 (***) | 0.062 (***) | 0.064 (***) | 0.062 (***) | 0.062 (***) |
Trend Tmin (°C·year−1) | 0.028 (***) | 0.028 (***) | 0.028 (***) | 0.028 (***) | 0.028 (***) | 0.028 (***) |
Trend Tmean (°C·year−1) | 0.047 (***) | 0.046 (***) | 0.047 (***) | 0.047 (***) | 0.047 (***) | 0.047 (***) |
Trend P ((mm·year−1)·year−1) | −0.408 (**) | −0.290 (**) | −0.286 (*) | −0.370 (+) | −0.436 (*) | −0.352 (**) |
Trend S ((mm·year−1)·year−1) | −0.408 (***) | −0.362 (***) | −0.416 (***) | −0.442 (***) | −0.553 (***) | −0.448 (***) |
Trend E ((nºev·year−1)·year−1) | −0.161 (+) | −0.151 (+) | −0.148 (+) | −0.135 (+) | −0.142 (+) | −0.124 (+) |
Trend D ((day·year−1)·year−1) | −0.016 (+) | −0.008 (+) | −0.008 (+) | −0.008 (+) | −0.008 (+) | −0.008 (+) |
DecTrend Tmean (°C·dec−1) | 0.465 (***) | 0.463 (***) | 0.467 (***) | 0.472 (***) | 0.467 (***) | 0.467 (***) |
DecTrend Tmax (°C·dec−1) | 0.653 (***) | 0.655 (***) | 0.657 (***) | 0.682 (***) | 0.660 (***) | 0.659 (***) |
DecTrend Tmin (°C·dec−1) | 0.270 (***) | 0.269 (***) | 0.267 (***) | 0.271 (***) | 0.266 (***) | 0.266 (***) |
DecTrend P((mm·year−1)·dec−1) | −4.121 (+) | −2.975 (+) | −2.704 (+) | −3.564 (+) | −4.372 (+) | −3.483 (+) |
DecTrend S ((mm·year−1)·dec−1) | −4.937 (+) | −3.546 (+) | −4.123 (+) | −4.407 (+) | −5.555 (+) | −4.449 (+) |
Tmax | Tmin | Tmean | P | Smax | Smin | Smean | Strend | |
---|---|---|---|---|---|---|---|---|
R1 | 1.045 | 1.619 | 1.081 | 0.924 | 1.005 | 0.462 | 0.800 | 1.724 |
R2 | 1.044 | 1.413 | 1.078 | 0.948 | 0.944 | 0.516 | 0.775 | 1.681 |
R3 | 1.046 | 1.709 | 1.082 | 0.944 | 1.052 | 0.453 | 0.790 | 1.760 |
R4 | 1.049 | 1.480 | 1.080 | 0.928 | 1.042 | 0.576 | 0.814 | 1.908 |
R5 | 1.045 | 2.051 | 1.084 | 0.919 | 1.020 | 0.666 | 0.827 | 2.042 |
Total SN | 1.046 | 1.590 | 1.081 | 0.933 | 1.057 | 0.529 | 0.806 | 1.840 |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pérez-Palazón, M.J.; Pimentel, R.; Polo, M.J. Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain). Water 2018, 10, 720. https://doi.org/10.3390/w10060720
Pérez-Palazón MJ, Pimentel R, Polo MJ. Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain). Water. 2018; 10(6):720. https://doi.org/10.3390/w10060720
Chicago/Turabian StylePérez-Palazón, María José, Rafael Pimentel, and María José Polo. 2018. "Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain)" Water 10, no. 6: 720. https://doi.org/10.3390/w10060720
APA StylePérez-Palazón, M. J., Pimentel, R., & Polo, M. J. (2018). Climate Trends Impact on the Snowfall Regime in Mediterranean Mountain Areas: Future Scenario Assessment in Sierra Nevada (Spain). Water, 10(6), 720. https://doi.org/10.3390/w10060720