Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Research Location
2.2. Experimental Design
2.3. Measurements and Calculations
3. Results
3.1. Influence of Straw Amendment on Daily Soil Temperature and Soil Moisture in Early Crop Growth Stages
3.2. Influence of Straw Amendment on Daily Soil Temperature and Soil Moisture in Late Crop Growth Stages
3.3. Influence of Straw Amendment on Monthly Soil Temperature across Different Slope Positions
3.4. Influence of Straw Amendments on Monthly Soil Moisture at Different Slope Positions
3.5. Influence of Straw Amendment on Soil Bulk Density
3.6. Influence of Straw Amendment on Soil Nutrients
3.7. Influence of Straw Amendment on Crop Growth and Yield
4. Discussion
5. Conclusions
Author Contributions
Acknowledgments
Conflicts of Interest
References
- Recous, S.; Robin, D.; Darwis, D.; Mary, B. Soil inorganic N availability: Effect on maize residue decomposition. Soil Biol. Biochem. 1995, 27, 1529–1538. [Google Scholar] [CrossRef]
- Kim, S.; Dale, B.E. Global potential bioethanol production from wasted crops and crop residues. Biomass Bioenergy 2004, 26, 361–375. [Google Scholar] [CrossRef]
- Blanco-Canqui, H.; Lal, R. Crop Residue Removal Impacts on Soil Productivity and Environmental Quality. Crit. Rev. Plant Sci. 2009, 28, 139–163. [Google Scholar] [CrossRef]
- Ghimire, R.; Machado, S.; Rhinhart, K. Long-Term Crop Residue and Nitrogen Management Effects on Soil Profile Carbon and Nitrogen in Wheat-Fallow Systems. Agron. J. 2015, 107, 2230–2240. [Google Scholar] [CrossRef]
- Kumar, K.; Goh, K.M. Crop residues and management practices: Effects on soil quality, soil nitrogen dynamics, crop yield, and nitrogen recovery. In Advances in Agronomy; Sparks, D.L., Ed.; Elsevier: New York, NY, USA, 2000; Volume 68, pp. 197–319. [Google Scholar]
- Poeplau, C.; Reiter, L.; Berti, A.; Katterer, T. Qualitative and quantitative response of soil organic carbon to 40 years of crop residue incorporation under contrasting nitrogen fertilisation regimes. Soil Res. 2017, 55, 1–9. [Google Scholar] [CrossRef]
- Schmatz, R.; Recous, S.; Aita, C.; Tahir, M.M.; Schu, A.L.; Chaves, B.; Giacomini, S.J. Crop residue quality and soil type influence the priming effect but not the fate of crop residue C. Plant Soil 2017, 414, 229–245. [Google Scholar] [CrossRef]
- Novelli, L.E.; Caviglia, O.P.; Pineiro, G. Increased cropping intensity improves crop residue inputs to the soil and aggregate-associated soil organic carbon stocks. Soil Tillage Res. 2017, 165, 128–136. [Google Scholar] [CrossRef]
- Zhao, Y.G.; Pang, H.C.; Wang, J.; Huo, L.; Li, Y.Y. Effects of straw mulch and buried straw on soil moisture and salinity in relation to sunflower growth and yield. Field Crops Res. 2014, 161, 16–25. [Google Scholar] [CrossRef]
- Saha, R.; Ghosh, P.K. Soil Organic Carbon Stock, Moisture Availability and Crop Yield as Influenced by Residue Management and Tillage Practices in Maize-Mustard Cropping System Under Hill Agro-Ecosystem. Nat. Acad. Sci. Lett. India 2013, 36, 461–468. [Google Scholar] [CrossRef]
- Liu, D.L.; Zeleke, K.T.; Wang, B.; Macadam, I.; Scott, F.; Martin, R.J. Crop residue incorporation can mitigate negative climate change impacts on crop yield and improve water use efficiency in a semiarid environment. Eur. J. Agron. 2017, 85, 51–68. [Google Scholar] [CrossRef]
- Zhang, S.L.; Zhang, X.Y.; Huffman, T.; Liu, X.B.; Yang, J.Y. Soil Loss, Crop Growth, and Economic Margins under Different Management Systems on a Sloping Field in the Black Soil Area of Northeast China. J. Sustain. Agric. 2011, 35, 293–311. [Google Scholar] [CrossRef]
- Chen, S.Y.; Zhang, X.Y.; Pei, D.; Sun, H.Y.; Chen, S.L. Effects of straw mulching on soil temperature, evaporation and yield of winter wheat: Field experiments on the North China Plain. Ann. Appl. Biol. 2007, 150, 261–268. [Google Scholar] [CrossRef]
- Singh, V.; Srivastava, A.; Singh, R.K.; Savita, U.S. Effect of tillage practices and residue management on soil quality and crop yield under maize (Zea mays)-based cropping system in Mollisol. Indian J. Agric. Sci. 2011, 81, 1019–1025. [Google Scholar]
- Azam, F.; Lodhi, A.; Ashraf, M. Availability of soil and fertilizer nitrogen to wetland rice following wheat straw amendment. Biol. Fertil. Soils 1991, 11, 97–100. [Google Scholar] [CrossRef]
- McCalla, T.M.; Duley, F.L. Effect of crop residues on soil temperature. J. Am. Soc. Agron. 1946, 38, 75–89. [Google Scholar] [CrossRef]
- Mooers, C.A.; Washko, J.B.; Young, J.B. Effects of wheat straw, lespedeza sericea hay, and farmyard manure, as soil mulches, on the conservation of moisture and the production of nitrates. Soil Sci. 1948, 66, 307–315. [Google Scholar] [CrossRef]
- Xing, X.G.; Li, Y.B.; Ma, X.Y. Effects on infiltration and evaporation when adding rapeseed-oil residue or wheat straw to a Loam soil. Water 2017, 9, 12. [Google Scholar] [CrossRef]
- Lu, P.R.; Zhang, Z.Y.; Feng, G.X.; Huang, M.Y.; Shi, X.F. Experimental study on the potential use of bundled crop straws as subsurface drainage material in the newly reclaimed coastal land in Eastern China. Water 2018, 10, 15. [Google Scholar] [CrossRef]
- Wang, X.; Jia, Z.; Liang, L. Effect of straw incorporation on soil moisture, evapotranspiration, and rainfall-use efficiency of maize under dryland farming. J. Soil Water Conserv. 2014, 69, 449–455. [Google Scholar] [CrossRef]
- Yang, H.S.; Feng, J.X.; Zhai, S.L.; Dai, Y.J.; Xu, M.M.; Wu, J.S.; Shen, M.X.; Bian, X.M.; Koide, R.T.; Liu, J. Long-term ditch-buried straw return alters soil water potential, temperature, and microbial communities in a rice-wheat rotation system. Soil Tillage Res. 2016, 163, 21–31. [Google Scholar] [CrossRef]
- Smika, D.E.; Ellis, R. Soil temperature and wheat straw mulch effects on wheat plant development and nutrient concentration. Agron. J. 1971, 63, 388–391. [Google Scholar] [CrossRef]
- Abera, G.; Wolde-meskel, E.; Bakken, L.R. Effect of organic residue amendments and soil moisture on N mineralization, maize (Zea mays L.) dry biomass and nutrient concentration. Arch. Agron. Soil Sci. 2013, 59, 1263–1277. [Google Scholar] [CrossRef]
- Andren, O.; Rajkai, K.; Katterer, T. Water and temperature dynamics in a clay soil under winter-wheat—Influence on straw decomposition and n-immobilization. Biol. Fertil. Soils 1993, 15, 1–8. [Google Scholar] [CrossRef]
- Zhang, S.L.; Huang, J.; Wang, Y.; Shen, Q.S.; Mu, L.L.; Liu, Z.H. Spatiotemporal heterogeneity of soil available nitrogen during crop growth stages on mollisol slopes of Northeast China. Land Degrad. Dev. 2017, 28, 856–869. [Google Scholar] [CrossRef]
- Zhang, S.L.; Yan, L.L.; Huang, J.; Mu, L.L.; Huang, Y.Q.; Zhang, X.Y.; Sun, Y.K. Spatial heterogeneity of soil C:N ratio in a mollisol watershed of Northeast China. Land Degrad. Dev. 2016, 27, 295–304. [Google Scholar] [CrossRef]
- Bao, S. Soil Agricultural Chemical Elements Analysis; China Agriculture Press: Beijing, China, 2000; p. 3. [Google Scholar]
- Bussiere, F.; Cellier, P. Modification of the soil-temperature and water-content regimes by a crop residue mulch—Experiment and modeling. Agric. For. Meteorol. 1994, 68, 1–28. [Google Scholar] [CrossRef]
- Tian, Y.Q.; Liu, J.; Zhang, X.Y.; Gao, L.H. Effects of summer catch crop, residue management, soil temperature and water on the succeeding cucumber rhizosphere nitrogen mineralization in intensive production systems. Nutr. Cycl. Agroecosyst. 2010, 88, 429–446. [Google Scholar] [CrossRef]
- Reth, S.; Hentschel, K.; Drosler, M.; Falge, E. DenNit—Experimental analysis and modelling of soil N2O efflux in response on changes of soil water content, soil temperature, soil pH, nutrient availability and the time after rain event. Plant Soil 2005, 272, 349–363. [Google Scholar] [CrossRef]
- Walker, A. Soil Microbiology: A Critical Review; Butterworth & Co.: London, UK, 1975. [Google Scholar]
- Paul, E.A.; Clark, F.E. Soil Microbiology and Biochemistry; Academic Press: San Diego, CA, USA, 1989. [Google Scholar]
- Bhagat, R.M.; Verma, T.S. Impact of rice straw management on soil physical-properties and wheat yield. Soil Sci. 1991, 152, 108–115. [Google Scholar] [CrossRef]
- Qiao, H.L.; Liu, X.J.; Li, W.Q.; Huang, W. Effects of straw deep mulching on soil moisture infiltration and evaporation. Sci. Soil Water Conserv. 2006, 2, 34–39. [Google Scholar]
- Brady, N.C.; Weil, R.R. Nature and Properties of Soils; Macmillan Publishing Company: New York, NY, USA, 2000. [Google Scholar]
- Chen, J.; Gu, W.; Tao, J.; Xu, Y.J.; Wang, Y.; Gu, J.Y.; Du, S.Y. The effects of organic residue quality on growth and reproduction of Aporrectodea trapezoides under different moisture conditions in a salt-affected agricultural soil. Biol. Fertil. Soils 2017, 53, 103–113. [Google Scholar] [CrossRef]
- Zhou, X.Q.; Wu, H.W.; Li, G.D.; Chen, C.R. Short-term contributions of cover crop surface residue return to soil carbon and nitrogen contents in temperate Australia. Environ. Sci. Pollut. Res. 2016, 23, 23175–23183. [Google Scholar] [CrossRef] [PubMed]
- Zhao, B.Z.; Zhang, J.B.; Yu, Y.Y.; Karlen, D.L.; Hao, X.Y. Crop residue management and fertilization effects on soil organic matter and associated biological properties. Environ. Sci. Pollut. Res. 2016, 23, 17581–17591. [Google Scholar] [CrossRef] [PubMed]
- Zhang, S.L.; Zhang, X.Y.; Huffman, T.; Liu, X.B.; Yang, J.Y. Influence of topography and land management on soil nutrients variability in Northeast China. Nutr. Cycl. Agroecosyst. 2011, 89, 427–438. [Google Scholar] [CrossRef]
- Chamen, T. The effect of straw incorporation on diesel fuel use and the emission of pollutants. Agric. Eng. 1994, 49, 89–92. [Google Scholar]
Slope Position | Soil Depth (cm) | Organic Matter (g kg−1) | Total Nitrogen (g kg−1) | Total Phosphorus (g kg−1) | Bulk Density (g cm−3) | Total Porosity (%) | Field Capacity (cm3 cm−3) | Wilting Point (cm3 cm−3) | Saturated Water (cm3 cm−3) | pH |
---|---|---|---|---|---|---|---|---|---|---|
Top (n = 12) | 0–10 | 36.7 ± 4.2 | 1.6 ± 0.3 | 0.29 ± 0.04 | 0.98 ± 0.11 | 63.02 ± 5.01 | 27.5 ± 0.4 | 8.2 ± 0.9 | 54.2 ± 0.5 | 6.15 ± 0.04 |
10–20 | 36.7 ± 4.2 | 1.6 ± 0.3 | 0.29 ± 0.04 | 0.99 ± 0.10 | 62.64 ± 4.90 | 28.5 ± 0.4 | 10.0 ± 1.0 | 50.3 ± 0.4 | 6.38 ± 0.03 | |
Back slope (n = 12) | 0–10 | 32.3 ± 3.1 | 1.2 ± 0.2 | 0.11 ± 0.03 | 1.21 ± 0.14 | 54.34 ± 6.1 | 30.6 ± 0.3 | 10.8 ± 1.5 | 61.0 ± 0.6 | 6.51 ± 0.03 |
10–20 | 32.3 ± 3.1 | 1.2 ± 0.2 | 0.11 ± 0.03 | 1.26 ± 0.11 | 52.45 ± 5.1 | 32.8 ± 0.3 | 13.4 ± 1.5 | 56.8 ± 0.5 | 6.62 ± 0.05 | |
Bottom (n = 12) | 0–10 | 34.2 ± 3.9 | 1.4 ± 0.3 | 0.32 ± 0.02 | 1.02 ± 0.09 | 61.51 ± 6.1 | 27.5 ± 0.5 | 9.0 ± 0.8 | 52.2 ± 0.6 | 6.06 ± 0.02 |
10–20 | 34.2 ± 3.9 | 1.4 ± 0.3 | 0.32 ± 0.02 | 1.05 ± 0.07 | 60.38 ± 4.6 | 27.8 ± 0.4 | 9.5 ± 0.7 | 53.7 ± 0.6 | 6.17 ± 0.04 |
Locations | Crop | Crop Variety | Seeding Date | Plant Density (Plant ha−1) | Fertilizer (kg ha−1) | Weed Control (L ha−1) |
---|---|---|---|---|---|---|
2016 | Corn | Pengcheng 216 | 8 May | 60,000 | 8 May N:58.5; P2O5:54.0 28 Jule N:150.0 | 4 May Xiongdilian (2,4-D butylate 15%, Metribuzin 5%, Acetochlor 40%) 2 28 July Nicosulfuron 1 |
2015 | Corn | Xianyu 335 | 4 May | 60,000 | 4 May N:117.8 P2O5:121.1 | 4 May Acetochlor 2 29 July Atrazine 1.2 |
Straw Amendments (SA) (°C) | No Straw Amendments (NSA) (°C) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Top | Back Slope | Bottom | Top | Back Slope | Bottom | |||||||
Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | |
2015 | ||||||||||||
May | 16.64 a 1 | 0.31 | 16.56 ab | 0.30 | 16.56 ab | 0.31 | 16.06 b | 0.37 | 16.51 ab | 0.27 | 16.45 ab | 0.31 |
Jun. | 22.62 ab | 0.24 | 22.20 cd | 0.22 | 22.58 bc | 0.24 | 23.01 a | 0.29 | 22.02 d | 0.22 | 22.49 dc | 0.25 |
Jul. | 23.23 a | 0.12 | 22.54 b | 0.10 | 22.84 c | 0.11 | 23.53 d | 0.15 | 22.78 e | 0.10 | 23.24 f | 0.12 |
Aug. | 22.78 bc | 0.07 | 22.29 e | 0.06 | 22.70 c | 0.07 | 23.09 a | 0.10 | 22.50 d | 0.06 | 22.93 ab | 0.08 |
2016 | ||||||||||||
May | 17.28 b | 0.25 | 17.02 c | 0.23 | 17.67 a | 0.27 | 16.03 d | 0.27 | 15.87 d | 0.28 | 17.74 a | 0.24 |
Jun. | 21.64 d | 0.15 | 21.92 c | 0.12 | 22.11 b | 0.16 | 20.87 e | 0.15 | 20.49 f | 0.15 | 22.61 a | 0.16 |
Jul. | 23.74 d | 0.09 | 24.43 c | 0.08 | 25.68 b | 0.12 | 23.14 f | 0.10 | 23.29 e | 0.10 | 26.66 a | 0.13 |
Aug. | 22.43 d | 0.11 | 22.64 c | 0.11 | 24.36 b | 0.13 | 22.13 e | 0.12 | 21.98 f | 0.11 | 24.86 a | 0.13 |
Sept. | 17.30 e | 0.12 | 18.00 bc | 0.11 | 18.06 b | 0.16 | 17.91 c | 0.13 | 17.57 d | 0.12 | 19.54 a | 0.14 |
Straw Amendments (SA) (cm3 cm−3) | No Straw Amendments (NSA) (cm3 cm−3) | |||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|
Top | Back slope | Bottom | Top | Back slope | Bottom | |||||||
Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | Mean | CV | |
2015 | ||||||||||||
May | 30.16 f 1 | 0.10 | 42.02 c | 0.08 | 51.52 b | 0.04 | 34.05 e | 0.09 | 40.85 d | 0.06 | 60.37 a | 0.02 |
Jun. | 33.23 e | 0.14 | 44.55 c | 0.08 | 52.44 b | 0.07 | 32.77 f | 0.14 | 40.32 d | 0.16 | 60.22 a | 0.04 |
Jul. | 32.20 e | 0.22 | 35.73 c | 0.16 | 50.87 b | 0.11 | 24.34 f | 0.23 | 32.84 d | 0.21 | 54.53 a | 0.08 |
Aug. | 34.21 e | 0.20 | 39.83 c | 0.15 | 54.39 b | 0.10 | 24.90 f | 0.25 | 36.72 d | 0.20 | 56.34 a | 0.08 |
Sept. | 24.76 e | 0.20 | 29.84 c | 0.17 | 43.79 a | 0.15 | 19.88 f | 0.26 | 29.26 d | 0.21 | 40.51 b | 0.12 |
2016 | ||||||||||||
May | 30.69 f | 0.07 | 52.89 b | 0.04 | 47.55 d | 0.05 | 34.66 e | 0.09 | 51.79 c | 0.03 | 56.57 a | 0.03 |
Jun. | 33.43 f | 0.10 | 55.46 b | 0.05 | 49.49 d | 0.06 | 37.64 e | 0.10 | 52.47 c | 0.03 | 58.85 a | 0.03 |
Jul. | 25.75 f | 0.19 | 47.31 b | 0.11 | 40.64 d | 0.14 | 28.25 e | 0.22 | 45.42 c | 0.10 | 52.14 a | 0.10 |
Aug. | 21.77 f | 0.07 | 43.12 b | 0.07 | 33.06 d | 0.10 | 23.75 e | 0.12 | 38.34 c | 0.09 | 46.95 a | 0.06 |
Sept. | 26.56 f | 0.13 | 45.04 b | 0.07 | 37.24 d | 0.14 | 29.51 e | 0.16 | 42.52 c | 0.08 | 51.96 a | 0.05 |
Straw Amendments (SA) | No straw Amendments (NSA, Control) | ||||||
---|---|---|---|---|---|---|---|
Height/Yield | Top | Back Slope | Bottom | Top | Back Slope | Bottom | |
2015 | Jul. (cm) | 197.8 ± 3.0 a 1 | 157.2 ± 6.2 c | 177.7 ± 0.6 b | 197.7 ± 5.3 a | 166.2 ± 10.6 bc | 170 ± 0.9 b |
Sept. (cm) | 318.8 ± 3.2 ab | 311.5 ± 6.6 ab | 321.2 ± 3.7 a | 311.2 ± 4.9 ab | 302 ± 4.9 b | 315.8 ± 7.0 ab | |
Yield (t) | 10.1 ± 1.4 a | 8.4 ± 0.8 a | 9.3 ± 0.7 a | 9.2 ± 0.4 a | 5.4 ± 0.1b | 9.7 ± 1.3 a | |
2016 | Jul. (cm) | 125.9 ± 9.0 a | 119.2 ± 1.5 a | 120.1 ± 3.3 a | 130.9 ± 4.0 a | 133.6 ± 10.8 a | 127.1 ± 7.2 a |
Sept. (cm) | 300.8 ± 5.1 a | 267.2 ± 4.1 b | 280.3 ± 5.6 ab | 286.8 ± 15.3 ab | 269.3 ± 8.0 b | 270.8 ± 1.3 b | |
Yield (t) | 13.4 ± 1.6 a | 12.1 ± 1.6 ab | 10.0 ± 1.4 b | 13.3 ± 1.3 ab | 5.9 ± 1.0 c | 14.4 ± 0.1 a |
© 2018 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, S.; Wang, Y.; Shen, Q. Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China. Water 2018, 10, 559. https://doi.org/10.3390/w10050559
Zhang S, Wang Y, Shen Q. Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China. Water. 2018; 10(5):559. https://doi.org/10.3390/w10050559
Chicago/Turabian StyleZhang, Shaoliang, Yao Wang, and Qingsong Shen. 2018. "Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China" Water 10, no. 5: 559. https://doi.org/10.3390/w10050559
APA StyleZhang, S., Wang, Y., & Shen, Q. (2018). Influence of Straw Amendment on Soil Physicochemical Properties and Crop Yield on a Consecutive Mollisol Slope in Northeastern China. Water, 10(5), 559. https://doi.org/10.3390/w10050559