Next Article in Journal
Groundwater Quality and Suitability for Different Uses in the Saloum Area of Senegal
Previous Article in Journal
Infiltration and Anti-Filtration Recharge-Pumping Well and Laboratory Recharge Tests
Open AccessArticle

Potential of Biochar Filters for Onsite Wastewater Treatment: Effects of Biochar Type, Physical Properties and Operating Conditions

Department of Energy and Technology, Swedish University of Agricultural Sciences (SLU), Box 7032, SE 750 07 Uppsala, Sweden
*
Author to whom correspondence should be addressed.
Water 2018, 10(12), 1835; https://doi.org/10.3390/w10121835
Received: 20 November 2018 / Revised: 5 December 2018 / Accepted: 7 December 2018 / Published: 12 December 2018
(This article belongs to the Section Water and Wastewater Treatment)
  |  
PDF [5409 KB, uploaded 12 December 2018]
  |  

Abstract

The potential of biochar as a filter medium for onsite wastewater treatment was investigated in five sub-studies. Sub-study 1 compared pollutant removal from wastewater using pine-spruce biochar, willow biochar and activated biochar (undefined biomass) filters. Sub-study 2 investigated the effects of particle size (0.7, 1.4 and 2.8 mm) on pollutant removal using pine-spruce biochar filters. In sub-studies 3 and 4, the effects of the hydraulic loading rate (HLR; 32–200 L m−2) and organic loading rates (OLR; 5–20 g biochemical oxygen demand (BOD5) m−2) on pollutant removal using pine-spruce biochar filters were investigated, while sub-study 5 compared pollutant removal in pine-spruce biochar filters and in sand. The removal of chemical oxygen demand (COD), total nitrogen (Tot-N), ammonium nitrogen (NH4-N), phosphates (PO4-P) and total phosphorus (Tot-P) was monitored in all sub-studies. All types of biochar and all particle sizes of pine-spruce biochar achieved a high degree of removal of organic material (COD > 90%). Removal of Tot-P and PO4-P was higher in willow biochar and activated biochar (>70%) than in pine-spruce biochar during the first two months, but then decreased to similar levels as in pine-spruce biochar. Among the particle sizes tested, 0.7 mm pine-spruce biochar showed the lowest amount of Tot-P removal, while 2.8 mm pine-spruce biochar showed the lowest level of NH4-N removal. Different OLRs and HLRs did not influence COD removal (94–95%). Pine-spruce biochar showed a better degree of removal of Tot-N than sand. In conclusion, biochar is a promising filter medium for onsite wastewater treatment as a replacement or complement to sand, achieving high and robust performance regardless of the parent material, particle size or loading conditions. View Full-Text
Keywords: biochar filters; hydraulic loading rate; particle size; wastewater treatment biochar filters; hydraulic loading rate; particle size; wastewater treatment
Figures

Graphical abstract

This is an open access article distributed under the Creative Commons Attribution License which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited (CC BY 4.0).
SciFeed

Share & Cite This Article

MDPI and ACS Style

Perez-Mercado, L.F.; Lalander, C.; Berger, C.; Dalahmeh, S.S. Potential of Biochar Filters for Onsite Wastewater Treatment: Effects of Biochar Type, Physical Properties and Operating Conditions. Water 2018, 10, 1835.

Show more citation formats Show less citations formats

Note that from the first issue of 2016, MDPI journals use article numbers instead of page numbers. See further details here.

Related Articles

Article Metrics

Article Access Statistics

1

Comments

[Return to top]
Water EISSN 2073-4441 Published by MDPI AG, Basel, Switzerland RSS E-Mail Table of Contents Alert
Back to Top