Abstract
Mixed-phase clouds, in which liquid droplets and ice crystals coexist at temperatures between C and C, play a critical role in Earth’s radiation budget. Here, we assess the ability of climate and storm-resolving models to represent mixed-phase cloud properties and their hemispheric contrasts as inferred from satellite observations. We compare observations from the Advanced Very High Resolution Radiometer (AVHRR) and the Moderate Resolution Imaging Spectroradiometer (MODIS) with one global climate model, the Community Atmosphere Model version 6, Oslo configuration (CAM6-Oslo), and three storm-resolving models: the ICOsahedral Non-hydrostatic model (ICON), the Simple Cloud-Resolving E3SM Atmosphere Model (SCREAM), and the Goddard Earth Observing System model (GEOS). Our results show that all models reproduce the geographic distribution of mixed-phase clouds but differ significantly in detail. CAM6-Oslo yields the closest agreement in hemispheric contrasts of supercooled liquid fraction and its relationship with the liquid effective radius. Our results highlight the role of aerosol–cloud interactions and microphysics schemes in determining model performance and demonstrate that storm-resolving models still do not overcome the challenge of representing mixed-phase clouds at global scales.