You are currently viewing a new version of our website. To view the old version click .
Atmosphere
  • This is an early access version, the complete PDF, HTML, and XML versions will be available soon.
  • Article
  • Open Access

31 December 2025

Mechanisms of Topographic Steering and Track Morphology of Typhoon-like Vortices over Complex Terrain: A Dynamic Model Approach

School of Mechatronics and Intelligent Manufacturing, Huanggang Normal University, Huanggang 438000, China
This article belongs to the Special Issue Typhoon/Hurricane Dynamics and Prediction (3rd Edition)

Abstract

This study investigates the mechanisms of topographic steering and the resultant track morphology of typhoon-like vortices over complex terrain. Leveraging a dynamic model based on potential vorticity (PV) conservation, we conducted a comprehensive sensitivity analysis over both an idealized bell-shaped mountain and the realistic topography of Taiwan. Results indicate that a triad of controls governs track evolution: vortex intensity (α), terrain geometry \({dh}_b^*/dt^* \), and interaction time (impinging angle γ). To quantify predictability, we introduce the Track Divergence Percentage (td), which partitions the phase space into distinct Track Diverging (TDZ) and Converging (TCZ) Zones. The results demonstrate that vortex intensity, terrain-induced forcing, and interaction time jointly organize a regime-dependent predictability landscape, characterized by distinct zones of track divergence and convergence separated by a dynamically balanced trajectory. This framework provides a physically interpretable explanation for why small perturbations in initial conditions can lead to qualitatively different track outcomes near complex terrain. Rather than aiming at direct forecast skill improvement, this study provides a physically interpretable diagnostic framework for understanding terrain-induced track sensitivity and uncertainty, with implications for interpreting ensemble spread in forecasting systems.

Article Metrics

Citations

Article Access Statistics

Multiple requests from the same IP address are counted as one view.