Air Quality Response to COVID-19 Control Measures in the Arid Inland Region of China: A Case Study of Eastern Xinjiang
Abstract
1. Introduction
2. Materials and Methods
2.1. Study Area and Data Source
2.2. Source Analysis Models
3. Results
3.1. Variations in Air Pollutants
3.1.1. Temporal Variations in Air Quality Index (AQI) and Air Pollutants
3.1.2. Diurnal Variation of Air Pollutants
3.2. Analysis of Air Pollutant Sources During the COVID-19 Lockdown
3.2.1. Diagnostic Ratio Analysis
3.2.2. Regional Transport and Potential Contributing Sources
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Gu, D.; Reynolds, K.; Wu, X.; Chen, J.; Duan, X.; Muntner, P.; Huang, G.; Reynolds, R.F.; Su, S.; Whelton, P.K.; et al. Prevalence, awareness, treatment, and control of hypertension in China. Hypertension 2002, 40, 920–927. [Google Scholar] [CrossRef]
- He, J.; Gu, D.; Chen, J.; Wu, X.; Kelly, T.N.; Huang, J.; Chen, J.; Chen, C.; Bazzano, L.A.; Reynolds, K.; et al. Premature deaths attributable to blood pressure in China: A prospective cohort study. Lancet 2009, 374, 1765–1772. [Google Scholar] [CrossRef]
- Kan, H.; Chen, R.; Tong, S. Ambient air pollution, climate change, and population health in China. Environ. Int. 2012, 42, 10–19. [Google Scholar] [CrossRef]
- Shi, H.; Wang, Y.; Chen, J.; Huisingh, D. Preventing smog crises in China and globally. J. Clean. Prod. 2016, 112, 1261–1271. [Google Scholar] [CrossRef]
- Sheehan, P.; Cheng, E.; English, A.; Sun, F. China’s response to the air pollution shock. Nat. Clim. Change 2014, 4, 306–309. [Google Scholar]
- Li, X.; Qiao, Y.; Shi, L. The aggregate effect of air pollution regulation on CO2 mitigation in China’s manufacturing industry: An econometric analysis. J. Clean. Prod. 2017, 142, 976–984. [Google Scholar]
- Jiang, X.; Li, G.; Fu, W. Government environmental governance, structural adjustment and air quality: A quasi-natural experiment based on the Three-year Action Plan to Win the Blue Sky Defense War. J. Environ. Manag. 2021, 277, 111470. [Google Scholar] [CrossRef]
- Yang, J.; Ji, Z.; Kang, S.; Zhang, Q.; Chen, X.; Lee, S. Spatiotemporal variations of air pollutants in western China and their relationship to meteorological factors and emission sources. Environ. Pollut. 2019, 254, 112952. [Google Scholar] [CrossRef]
- Guo, P.; Umarova, A.B.; Luan, Y. The spatiotemporal characteristics of the air pollutants in China from 2015 to 2019. PLoS ONE 2020, 15, e227469. [Google Scholar] [CrossRef]
- Zhang, Y.; Xu, H.; Zhang, Y.; Luo, J.; Chen, F.; Cao, B.; Xie, M. Analysis of Air Pollutants and Their Potential Sources in Eastern Xinjiang, Northwestern Inland China, from 2018 to 2022. Atmosphere 2023, 14, 1670. [Google Scholar] [CrossRef]
- Niu, H.; Zhang, C.; Hu, W.; Hu, T.; Wu, C.; Hu, S.; Silva, L.F.; Gao, N.; Bao, X.; Fan, J. Air quality changes during the COVID-19 lockdown in an industrial city in North China: Post-pandemic proposals for air quality improvement. Sustainability 2022, 14, 11531. [Google Scholar] [CrossRef]
- Lv, Y.; Tian, H.; Luo, L.; Liu, S.; Bai, X.; Zhao, H.; Lin, S.; Zhao, S.; Guo, Z.; Xiao, Y.; et al. Meteorology-normalized variations of air quality during the COVID-19 lockdown in three Chinese megacities. Atmos. Pollut. Res. 2022, 13, 101452. [Google Scholar] [CrossRef]
- Yuan, Q.; Qi, B.; Hu, D.; Wang, J.; Zhang, J.; Yang, H.; Zhang, S.; Liu, L.; Xu, L.; Li, W. Spatiotemporal variations and reduction of air pollutants during the COVID-19 pandemic in a megacity of Yangtze River Delta in China. Sci. Total Environ. 2021, 751, 141820. [Google Scholar] [CrossRef]
- Fan, L.; Fu, S.; Wang, X.; Fu, Q.; Jia, H.; Xu, H.; Qin, G.; Hu, X.; Cheng, J. Spatiotemporal variations of ambient air pollutants and meteorological influences over typical urban agglomerations in China during the COVID-19 lockdown. J. Environ. Sci. 2021, 106, 26–38. [Google Scholar] [CrossRef]
- Li, Y.; Yang, Y.; Zhang, L. Comparison of Air pollutants during the two COVID-19 Lockdown periods in Winter 2019 and Spring 2022 in Shanghai, China. Atmosphere 2024, 15, 443. [Google Scholar] [CrossRef]
- Wang, H.; Miao, Q.; Shen, L.; Yang, Q.; Wu, Y.; Wei, H. Air pollutant variations in Suzhou during the 2019 novel coronavirus (COVID-19) lockdown of 2020: High time-resolution measurements of aerosol chemical compositions and source apportionment. Environ. Pollut. 2021, 271, 116298. [Google Scholar] [CrossRef]
- Mamtimin, A.; Wang, Y.; Zhao, T.; Sayit, H.; Yang, F.; Huo, W.; Zhou, C.; Gao, J. Impacts of winter and summer COVID-19 lockdowns on urban air quality in Urumqi, Northwest China. Front. Environ. Sci. 2022, 10, 910579. [Google Scholar] [CrossRef]
- Wang, J.; Lei, Y.; Chen, Y.; Wu, Y.; Ge, X.; Shen, F.; Zhang, J.; Ye, J.; Nie, D.; Zhao, X.; et al. Comparison of air pollutants and their health effects in two developed regions in China during the COVID-19 pandemic. J. Environ. Manag. 2021, 287, 112296. [Google Scholar] [CrossRef] [PubMed]
- Ren, J.; Zhao, X.; Guo, X.; Guo, F.; Liu, K. Responses of Ambient Ozone and Other Pollutants to COVID-19 Lockdown in Taiyuan, North China. Pol. J. Environ. Stud. 2022, 31, 2823–2835. [Google Scholar] [CrossRef]
- Zeng, B.; Ma, T.; Wang, Y.; Zhang, J.; Zhang, L.; Chang, X. Interregional and intraregional interaction of the Tianshanbeilu population in eastern Xinjiang from the perspective of pottery analysis. Herit. Sci. 2023, 11, 247. [Google Scholar] [CrossRef]
- Begum, B.A.; Kim, E.; Jeong, C.; Lee, D.; Hopke, P.K. Evaluation of the potential source contribution function using the 2002 Quebec forest fire episode. Atmos. Environ. 2005, 39, 3719–3724. [Google Scholar] [CrossRef]
- Wang, Y.Q.; Zhang, X.Y.; Arimoto, R. The contribution from distant dust sources to the atmospheric particulate matter loadings at XiAn, China during spring. Sci. Total Environ. 2006, 368, 875–883. [Google Scholar] [CrossRef]
- Polissar, A.V.; Hopke, P.K.; Paatero, P.; Kaufmann, Y.J.; Hall, D.K.; Bodhaine, B.A.; Dutton, E.G.; Harris, J.M. The aerosol at Barrow, Alaska: Long-term trends and source locations. Atmos. Environ. 1999, 33, 2441–2458. [Google Scholar] [CrossRef]
- Hsu, Y.; Holsen, T.M.; Hopke, P.K. Comparison of hybrid receptor models to locate PCB sources in Chicago. Atmos. Environ. 2003, 37, 545–562. [Google Scholar] [CrossRef]
- Yan, X.; Sun, T. Spatial--temporal variations and influencing factors of air quality in China’s major cities during COVID-19 lockdown. Environ. Sci. Pollut. Res. 2023, 30, 24617–24628. [Google Scholar] [CrossRef]
- Pei, Z.; Han, G.; Ma, X.; Su, H.; Gong, W. Response of major air pollutants to COVID-19 lockdowns in China. Sci. Total Environ. 2020, 743, 140879. [Google Scholar] [CrossRef] [PubMed]
- Lian, X.; Huang, J.; Huang, R.; Liu, C.; Wang, L.; Zhang, T. Impact of city lockdown on the air quality of COVID-19-hit of Wuhan city. Sci. Total Environ. 2020, 742, 140556. [Google Scholar] [CrossRef] [PubMed]
- Hu, X.; Liu, Q.; Fu, Q.; Xu, H.; Shen, Y.; Liu, D.; Wang, Y.; Jia, H.; Cheng, J. A high-resolution typical pollution source emission inventory and pollution source changes during the COVID-19 lockdown in a megacity, China. Environ. Sci. Pollut. Res. 2021, 28, 45344–45352. [Google Scholar] [CrossRef]
- Wang, F.; Zhang, X.; Wang, F.; Song, M.; Li, Z.; Ming, J. Urban air quality in Xinjiang and snow chemistry of Urumqi Glacier No. 1 during COVID-19’s restrictions. Environ. Sci. Pollut. Res. 2022, 29, 76026–76035. [Google Scholar] [CrossRef] [PubMed]
- Lei, S.; Ju, T.; Li, B.; Wang, J.; Xia, X.; Niu, X.; Peng, S. Study on O3-NOx-VOCs combined air pollution and ozone health effects in the Hexi Corridor. Environ. Sci. Pollut. Res. 2024, 31, 49837–49854. [Google Scholar] [CrossRef]
- Liu, M.; Wang, X.; Wang, Y. Interactions between aerosols and surface ozone in arid and semi-arid regions of China. Environ. Monit. Assess. 2024, 196, 390. [Google Scholar] [CrossRef]
- Chu, B.; Zhang, S.; Liu, J.; Ma, Q.; He, H. Significant concurrent decrease in PM2.5 and NO2 concentrations in China during COVID-19 epidemic. J. Environ. Sci. 2021, 99, 346–353. [Google Scholar] [CrossRef]
- Zhou, T.; Luo, X.; Liu, X.; Liu, G.; Li, N.; Sun, Y.; Xing, M.; Liu, J. Analysis of the influence of the stay-at-home order on the electricity consumption in Chinese university dormitory buildings during the COVID-19 pandemic. Energy Build. 2022, 277, 112582. [Google Scholar] [CrossRef]
- Li, L.; Meinrenken, C.J.; Modi, V.; Culligan, P.J. Impacts of COVID-19 related stay-at-home restrictions on residential electricity use and implications for future grid stability. Energy Build. 2021, 251, 111330. [Google Scholar] [CrossRef] [PubMed]
- Singh, V.; Singh, S.; Biswal, A.; Kesarkar, A.P.; Mor, S.; Ravindra, K. Diurnal and temporal changes in air pollution during COVID-19 strict lockdown over different regions of India. Environ. Pollut. 2020, 266, 115368. [Google Scholar] [CrossRef]
- Wang, Y.; Gao, J.; Mamtimin, A.; Sayit, H.; Zhou, C.; Li, R.; Dawut, M.; Yang, F.; Huo, W.; Wen, C.; et al. Evolution law of atmospheric boundary layer in Gurbantünggüt Desert based on reanalysis dataset and in situ observation data. Heliyon 2023, 9, e14147. [Google Scholar] [CrossRef]
- Zhang, Y.L.; Cao, F. Fine particulate matter (PM2.5) in China at a city level. Sci. Rep. 2015, 5, 14884. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, A.K.; Bhoyar, P.D.; Kanawade, V.P.; Devara, P.C.; Thomas, A.; Soni, V.K. Improved air quality during COVID-19 at an urban megacity over the Indo-Gangetic Basin: From stringent to relaxed lockdown phases. Urban Clim. 2021, 36, 100791. [Google Scholar] [CrossRef] [PubMed]
- Zhang, L.; Jin, L.; Zhao, T.; Yin, Y.; Zhu, B.; Shan, Y.; Guo, X.; Tan, C.; Gao, J.; Wang, H. Diurnal variation of surface ozone in mountainous areas: Case study of Mt. Huang, East China. Sci. Total Environ. 2015, 538, 583–590. [Google Scholar] [CrossRef]
- Xu, G.; Jiao, L.; Zhang, B.; Zhao, S.; Yuan, M.; Gu, Y.; Liu, J.; Tang, X. Spatial and temporal variability of the PM2.5/PM10 ratio in Wuhan, Central China. Aerosol Air Qual. Res. 2017, 17, 741–751. [Google Scholar] [CrossRef]
- Zhao, D.; Chen, H.; Yu, E.; Luo, T. PM2.5/PM10 ratios in eight economic regions and their relationship with meteorology in China. Adv. Meteorol. 2019, 2019, 5295726. [Google Scholar] [CrossRef]
- Ostro, B. Outdoor Air Pollution; WHO Environmental Burden of Disease Series; EPA: Washington, DC, USA, 2004; p. 5. [Google Scholar]
- Bai, Y.; Wang, Z.; Xie, F.; Cen, L.; Xie, Z.; Zhou, X.; He, J.; Lv, C. Changes in stoichiometric characteristics of ambient air pollutants pre-to post-COVID-19 in China. Environ. Res. 2022, 209, 112806. [Google Scholar] [CrossRef] [PubMed]
- Fu, S.; Guo, M.; Fan, L.; Deng, Q.; Han, D.; Wei, Y.; Luo, J.; Qin, G.; Cheng, J. Ozone pollution mitigation in guangxi (south China) driven by meteorology and anthropogenic emissions during the COVID-19 lockdown. Environ. Pollut. 2021, 272, 115927. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Ali, M.A.; Bilal, M.; Qiu, Z.; Mhawish, A.; Almazroui, M.; Shahid, S.; Islam, M.N.; Zhang, Y.; Haque, M.N. Identification of NO2 and SO2 pollution hotspots and sources in Jiangsu Province of China. Remote Sens. 2021, 13, 3742. [Google Scholar] [CrossRef]
- Zhao, Q.; He, Q.; Jin, L.; Wang, J. Potential source regions and transportation pathways of reactive gases at a regional background site in northwestern China. Adv. Meteorol. 2021, 2021, 9933466. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Xu, H.; Zhang, Y.; Zhang, Y.; Cao, B.; Qin, Z.; Zhou, X.; Zhang, L.; Xie, M. Air Quality Response to COVID-19 Control Measures in the Arid Inland Region of China: A Case Study of Eastern Xinjiang. Atmosphere 2025, 16, 1100. https://doi.org/10.3390/atmos16091100
Xu H, Zhang Y, Zhang Y, Cao B, Qin Z, Zhou X, Zhang L, Xie M. Air Quality Response to COVID-19 Control Measures in the Arid Inland Region of China: A Case Study of Eastern Xinjiang. Atmosphere. 2025; 16(9):1100. https://doi.org/10.3390/atmos16091100
Chicago/Turabian StyleXu, Hui, Yuanyuan Zhang, Yunhui Zhang, Bo Cao, Zihang Qin, Xiaofang Zhou, Li Zhang, and Mingjie Xie. 2025. "Air Quality Response to COVID-19 Control Measures in the Arid Inland Region of China: A Case Study of Eastern Xinjiang" Atmosphere 16, no. 9: 1100. https://doi.org/10.3390/atmos16091100
APA StyleXu, H., Zhang, Y., Zhang, Y., Cao, B., Qin, Z., Zhou, X., Zhang, L., & Xie, M. (2025). Air Quality Response to COVID-19 Control Measures in the Arid Inland Region of China: A Case Study of Eastern Xinjiang. Atmosphere, 16(9), 1100. https://doi.org/10.3390/atmos16091100