Particulate Matter 2.5 (PM2.5): Persistence and Trends in the Air Quality of Five India Cities
Abstract
1. Introduction
2. Literature Review
3. Data
4. Methodology and Empirical Results
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- WHO. WHO Global Air Quality Guidelines. 2021. Available online: https://www.who.int/es/news-room/questions-and-answers/item/who-global-air-quality-guidelines (accessed on 28 March 2025).
- National Clean Air Programme (NCAP). Ministry of Environment, Forest and Climate Change. Government of India. 2019. Available online: https://prana.cpcb.gov.in/#/about (accessed on 28 March 2025).
- Chafe, Z.; Chowdhury, S. A deadly double dose for India’s. Nat. Sustain. 2021, 4, 835–836. [Google Scholar] [CrossRef]
- Central Pollution Control Board (CPCB). Ministry of Environment, Forest and Climate Change Government of India. Available online: https://cpcb.nic.in/air-pollution/ (accessed on 28 March 2025).
- Health Effects Institute (HEI). Air Quality and Health. In Cities: A State of Global Air Report 2022; Health Effects Institute: Boston, MA, USA, 2022; Available online: https://www.stateofglobalair.org/sites/default/files/documents/2022-08/2022-soga-cities-report.pdf (accessed on 28 March 2025).
- IQAir World’s most Polluted Cities. 2022. Available online: https://www.iqair.com/world-most-polluted-cities (accessed on 28 March 2025).
- Rao, N.D.; Kiesewetter, G.; Min, J.; Pachauri, S.; Wagner, F. Household contributions to and impacts from air pollution in India. Nat. Sustain. 2021, 4, 859–867. [Google Scholar] [CrossRef]
- Stewart, G.J.; Nelson, B.S.; Acton, W.J.F.; Vaughan, A.R.; Farren, N.J.; Hopkins, J.R.; Ward, M.W.; Swift, S.J.; Arya, R.; Mondal, A.; et al. Emissions of intermediate-volatility and semi-volatile organic compounds from domestic fuels used in Delhi, India. Atmos. Chem. Phys. 2021, 21, 2407–2426. [Google Scholar] [CrossRef]
- Chakrabarti, M.; Khan, T.; Kishore, A.; Roy, D.; Scott, S.P. Risk of acute respiratory infection from crop burning in India: Estimating disease burden and economic welfare from satellite and national health survey data for 250 000 persons. Int. J. Epidemiol. 2019, 48, 1113–1124. [Google Scholar] [CrossRef]
- Cusworth, D.H.; Mickley, L.J.; Sulprizio, M.P.; Liu, T.; Marlier, M.E.; DeFries, R.S.; Guttikunda, S.K.; Gupta, P. Quantifying the influence of agricultural fires in northwest India on urban air pollution in Delhi, India. Environ. Res. Lett. 2018, 13, 044018. [Google Scholar] [CrossRef]
- The World Bank. What You Need to Know About Climate Change and Air Pollution. 2022. Available online: https://www.worldbank.org/en/news/feature/2022/09/01/what-you-need-to-know-about-climate-change-and-air-pollution (accessed on 28 March 2025).
- Smith, K.R. National burden of disease in India from indoor air pollution. Proc. Natl. Acad. Sci. USA 2000, 97, 13286–13293. [Google Scholar] [CrossRef]
- Balakrishnan, K.; Dey, S.; Gupta, T.; Dhaliwal, R.S.; Brauer, M.; Cohen, A.J.; Dandona, L. The impact of air pollution on deaths, disease burden, and life expectancy across the states of India: The Global Burden of Disease Study 2017. Lancet Planet Health 2018, 3, e26–e39. [Google Scholar] [CrossRef]
- Hang, Y.; Meng, X.; Li, T.; Wang, T.; Cao, J.; Fu, Q.; Dey, S.; Li, S.; Huang, K.; Liang, F.; et al. Assessment of long-term particulate nitrate air pollution and its health risk in China. iScience 2022, 25, 104899. [Google Scholar] [CrossRef]
- Shen, J.; Cai, W.; Chen, X.; Chen, X.; Zhao, Z.; Ma, Z.; Yang, F.; Zhang, S. Synergies of carbon neutrality, air pollution control, and health improvement a case study of China energy interconnection scenario. Glob. Energy Interconnect. 2022, 5, 531–542. [Google Scholar] [CrossRef]
- Badami, M.G. Transport and urban air pollution in India. Environ. Manag. 2005, 36, 195–204. [Google Scholar] [CrossRef]
- Puthussery, J.V.; Dave, J.; Shukla, A.; Gaddamidi, S.; Singh, A.; Vats, P.; Salana, S.; Ganguly, D.; Rastogi, N.; Tripathi, S.N.; et al. Effect of Biomass Burning, Diwali Fireworks, and Polluted Fog Events on the Oxidative Potential of Fine Ambient Particulate Matter in Delhi, India. Environ. Sci. Technol. 2022, 56, 14605–14616. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Singh, V.; Chintalapati, S.; Beig, G.; Mor, S. Understanding the influence of summer biomass burning on air quality in North India: Eight cities field campaign study. Sci. Total Environ. 2023, 861, 160361. [Google Scholar] [CrossRef]
- Cropper, M.L.; Guttikunda, S.; Jawahar, P.; Lazri, Z.; Malik, K.; Song, X.P.; Yao, X. Applying benefit-cost analysis to air pollution control in the Indian power sector. J. Benefit-Cost Anal. 2019, 10 (Suppl. S1), 185–205. [Google Scholar] [CrossRef] [PubMed]
- Pandey, A.; Brauer, M.; Cropper, M.L.; Balakrishnan, K.; Mathur, P.; Dey, S.; Dandona, L. Health and economic impact of air pollution in the states of India: The Global Burden of Disease Study 2019. Lancet Planet. Health 2021, 5, e25–e38. [Google Scholar] [CrossRef] [PubMed]
- Naveen, V.; Anu, N. Time series analysis to forecast air quality indices in Thiruvananthapuram District, Kerala, India. J. Eng. Res. Appl. 2017, 7, 66–84. [Google Scholar] [CrossRef]
- Abhilash, M.S.K.; Thakur, A.; Gupta, D.; Sreevidya, B. Time Series Analysis of Air Pollution in Bengaluru Using ARIMA Model. In Ambient Communications and Computer Systems. Advances in Intelligent Systems and Computing; Perez, G., Tiwari, S., Trivedi, M., Mishra, K., Eds.; Springer: Singapore, 2018; Volume 696. [Google Scholar] [CrossRef]
- Gopu, P.; Panda, R.R.; Nagwani, N.K. Time Series Analysis Using ARIMA Model for Air Pollution Prediction in Hyderabad City of India. In Soft Computing and Signal Processing; Reddy, V.S., Prasad, V.K., Wang, J., Reddy, K.T.V., Eds.; Advances in Intelligent Systems and Computing; Springer: Singapore, 2021; Volume 1325. [Google Scholar] [CrossRef]
- Kulkarni, G.E.; Muley, A.A.; Deshmukh, N.K.; Bhalchandra, P.U. Autoregressive integrated moving average time series model for forecasting air pollution in Nanded city, Maharashtra, India. Model. Earth Syst. Environ. 2018, 4, 1435–1444. [Google Scholar] [CrossRef]
- Chaudhuri, S.; Dutta, D. Mann–Kendall trend of pollutants, temperature and humidity over an urban station of India with forecast verification using different ARIMA models. Environ. Monit. Assess. 2014, 186, 4719–4742. [Google Scholar] [CrossRef]
- Gil-Alana, L.A.; Yaya, O.S.; Carmona-González, N. Air quality in London: Evidence of persistence, seasonality and trends. Theor. Appl. Climatol. 2020, 142, 103–115. [Google Scholar] [CrossRef]
- Gil-Alana, L.A.; Yaya, O.; Awolaja, O.; Cristofaro, L. Long memory and time trends in PM pollution in US states. J. Appl. Meteorol. Climatol. 2020, 59, 1351–1367. [Google Scholar] [CrossRef]
- Lin, G.-Y.; Lee, Y.-M.; Tsai, C.-J.; Lin, C.-Y. Spatial-temporal characterization of air pollutants using a hybrid deep learning/Kriging model incorporated with a weather normalization technique. Atmos. Environ. 2022, 289, 119304. [Google Scholar] [CrossRef]
- Chen, M.; Chen, Y.; Zhu, H.; Wang, Y.; Xie, Y. Analysis of pollutants transport in heavy air pollution processes using a new complex-network-based model. Atmos. Environ. 2023, 292, 19395. [Google Scholar] [CrossRef]
- Chen, Z.; Barros, C.P.; Gil-Alana, L.A. The persistence of air pollution in four mega-cities of China. Habitat Int. 2016, 56, 103–108. [Google Scholar] [CrossRef]
- Caporale, G.M.; Gil-Alana, L.A.; Carmona-González, N. Particulate matter 10 (PM10): Persistence and trends in eight European capitals. Air Quality. Atmos. Health 2021, 14, 1097–1102. [Google Scholar] [CrossRef]
- World Air Quality Index (WAQI). Available online: https://aqicn.org/map/world/es/ (accessed on 28 March 2025).
- US. Embassy & Consulates in India. Available online: https://in.usembassy.gov/embassy-consulates/new-delhi/air-quality-data/ (accessed on 28 March 2025).
- Granger, C.W.J. Long memory relationships and the aggregation of dynamic models. J. Econom. 1980, 14, 227–238. [Google Scholar] [CrossRef]
- Granger, C.W.J.; Joyeux, R. An Introduction to Long-Memory Time Series Models and Fractional Differencing. J. Time Ser. Anal. 1980, 1, 15–29. [Google Scholar] [CrossRef]
- Hosking, J.R. Fractional differencing. Biometrika 1981, 68, 165–176. [Google Scholar] [CrossRef]
- Bloomfield, P. An Exponential Model for the Spectrum of a Scalar Time Series. Biometrika 1973, 60, 217–226. [Google Scholar] [CrossRef]
- Gil-Alana, L.A. The use of the Bloomfield model as an approximation to ARMA processes in the context of fractional integration. Math. Comput. Model. 2004, 39, 429–436. [Google Scholar] [CrossRef]
- Gil-Alana, L.A. Fractional integration with Bloomfield exponential spectral disturbances. A Monte Carlo experiment and an application. Braz. J. Probab. Stat. 2008, 22, 69–93. [Google Scholar]
- Robinson, P.M. Efficient Tests of Nonstationary Hypotheses. J. Am. Stat. Assoc. 1994, 89, 1420–1437. [Google Scholar] [CrossRef]
(i) Original Data | |||
---|---|---|---|
City | No Terms | With an Intercept | An Intercept and a Time Trend |
Mumbai | 0.73 (0.70, 0.76) | 0.71 (0.68, 0.75) | 0.71 (0.68, 0.75) |
New Delhi | 0.67 (0.64, 0.71) | 0.66 (0.63, 0.70) | 0.66 (0.63, 0.70) |
Hyderabad | 0.76 (0.72, 0.80) | 0.74 (0.71, 0.78) | 0.74 (0.71, 0.78) |
Chennai | 0.72 (0.68, 0.76) | 0.71 (0.67, 0.75) | 0.71 (0.67, 0.75) |
Kolkata | 0.76 (0.72, 0.79) | 0.75 (0.72, 0.79) | 0.75 (0.72, 0.79) |
(ii) Logged data | |||
Mumbai | 0.77 (0.74, 0.81) | 0.69 (0.66, 0.73) | 0.69 (0.66, 0.73) |
New Delhi | 0.78 (0.75, 0.82) | 0.64 (0.62, 0.68) | 0.64 (0.62, 0.68) |
Hyderabad | 0.80 (0.77, 0.83) | 0.69 (0.66, 0.73) | 0.69 (0.66, 0.73) |
Chennai | 0.77 (0.73, 0.80) | 0.68 (0.64, 0.72) | 0.68 (0.64, 0.72) |
Kolkata | 0.78 (0.74, 0.82) | 0.70 (0.67, 0.74) | 0.70 (0.67, 0.74) |
(i) Original Data | |||
---|---|---|---|
City | No Terms | With an Intercept | An Intercept and a Time Trend |
Mumbai | 0.71 (0.68, 0.75) | 173.49 (10.34) | --- |
New Delhi | 0.66 (0.63, 0.70) | 225.27 (7.32) | --- |
Hyderabad | 0.74 (0.71, 0.78) | 166.14 (10.96) | --- |
Chennai | 0.71 (0.67, 0.75) | 102.51 (6.07) | --- |
Kolkata | 0.75 (0.72, 0.79) | 281.83 (11.92) | --- |
(I) Logged data | |||
Mumbai | 0.69 (0.66, 0.73) | 5.125 (26.73) | --- |
New Delhi | 0.64 (0.62, 0.68) | 5.376 (30.50) | --- |
Hyderabad | 0.69 (0.66, 0.73) | 5.086 (31.07) | --- |
Chennai | 0.68 (0.64, 0.72) | 4.615 (21.29) | --- |
Kolkata | 0.70 (0.67, 0.74) | 5.561 (23.31) | --- |
(i) Original Data | |||
---|---|---|---|
City | No Terms | With an Intercept | An Intercept and a Time Trend |
Mumbai | 0.61 (0.58, 0.64) | 0.59 (0.56, 0.62) | 0.59 (0.56, 0.63) |
New Delhi | 0.55 (0.52, 0.58) | 0.52 (0.49, 0.56) | 0.52 (0.49, 0.56) |
Hyderabad | 0.63 (0.60, 0.66) | 0.60 (0.55, 0.64) | 0.60 (0.55, 0.64) |
Chennai | 0.51 (0.47, 0.54) | 0.46 (0.42, 0.50) | 0.46 (0.42, 0.50) |
Kolkata | 0.62 (0.59, 0.65) | 0.60 (0.56, 0.64) | 0.60 (0.56, 0.64) |
(i) Logged data | |||
Mumbai | 0.69 (0.66, 0.72) | 0.55 (0.52, 0.59) | 0.55 (0.52, 0.59) |
New Delhi | 0.73 (0.68, 0.76) | 0.53 (0.50, 0.56) | 0.53 (0.50, 0.56) |
Hyderabad | 0.77 (0.74, 0.80) | 0.61 (0.57, 0.66) | 0.61 (0.57, 0.66) |
Chennai | 0.65 (0.62, 0.68) | 0.43 (0.39, 0.47) | 0.43 (0.39, 0.47) |
Kolkata | 0.70 (0.67, 0.74) | 0.53 (0.50, 0.56) | 0.53 (0.50, 0.56) |
(i) Original data | |||
---|---|---|---|
City | No Terms | With an Intercept | An Intercept and a Time Trend |
Mumbai | 0.59 (0.56, 0.62) | 166.81 (12.02) | −0.0325 (−2.01) |
New Delhi | 0.52 (0.49, 0.56) | 206.26 (9.82) | --- |
Hyderabad | 0.60 (0.55, 0.64) | 155.123 (12.18) | --- |
Chennai | 0.46 (0.42, 0.50) | 97.935 (11.99) | --- |
Kolkata | 0.60 (0.56, 0.64) | 248.35 (12.94) | −0.0452 (−1.91) |
(i) Logged data | |||
Mumbai | 0.55 (0.52, 0.59) | 5.071 (34.41) | −0.00035 (−2.50) |
New Delhi | 0.53 (0.50, 0.56) | 5.268 (40.69) | --- |
Hyderabad | 0.61 (0.57, 0.66) | 5.030 (35.53) | --- |
Chennai | 0.43 (0.39, 0.47) | 4.495 (48.24) | --- |
Kolkata | 0.53 (0.50, 0.56) | 5.234 (31.14) | −0.00026 (−1.69) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Gil-Alana, L.A.; Carmona-González, N. Particulate Matter 2.5 (PM2.5): Persistence and Trends in the Air Quality of Five India Cities. Atmosphere 2025, 16, 534. https://doi.org/10.3390/atmos16050534
Gil-Alana LA, Carmona-González N. Particulate Matter 2.5 (PM2.5): Persistence and Trends in the Air Quality of Five India Cities. Atmosphere. 2025; 16(5):534. https://doi.org/10.3390/atmos16050534
Chicago/Turabian StyleGil-Alana, Luis A., and Nieves Carmona-González. 2025. "Particulate Matter 2.5 (PM2.5): Persistence and Trends in the Air Quality of Five India Cities" Atmosphere 16, no. 5: 534. https://doi.org/10.3390/atmos16050534
APA StyleGil-Alana, L. A., & Carmona-González, N. (2025). Particulate Matter 2.5 (PM2.5): Persistence and Trends in the Air Quality of Five India Cities. Atmosphere, 16(5), 534. https://doi.org/10.3390/atmos16050534