Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Location and Instrumentation
2.2. Calculation Methods
3. Results
3.1. Overview of the Sea Fog
3.2. Fog Droplets Microphysical Characteristics
Observation Site and Time | Observation Instrument | Nd (cm−3) | LWC (g m−3) | rm (μm) |
---|---|---|---|---|
Qingdao, Shandong 27−28 June 2022 | FM-120 | 190.62 (1.43−440.88) | 0.026 (0.001−0.068) | 2.84 (2.07−3.54) |
Beilun, Zhejiang [25] 14−15 June 2021 | FM-120 | 41.5 (0.31−212.93) | 0.065 (0−0.64) | 5.3 (1.75−11) |
Xiamen, Fujian [26] 7 April 2019 | FM-120 | 100 (0−468) | 0.17 (0−1.35) | / |
Maoming, Guangdong [27] 16−17 March 2008 | FM-100 | 326.6 (15−422.6) | 0.058 (0.010−0.64) | 1.5 (1.2−2.45) |
Zhanjiang, Guangdong [28] 23−24 February 2011 | FM-100 | 248.0 (3−354) | 0.102 (0.001−0.257) | 2.6 (1.55−3.9) |
Weizhou Island, Guangxi [29] 28 February 2021 | FM-100 | 76.7 (10.6−454.9) | 0.006 (0.001−0.03) | 2.0 (1.9−2.2) |
3.3. Comparison of the Effect of Large and Small Droplets
3.4. Analytical Expression for Fog DSD
3.5. Comparison of the Calculated Vis with Different Methods
4. Discussion
5. Conclusions
- The fog event lasted 880 min, beginning at 1756 UTC on 27 June and dissipating by 0835 UTC on June 28 (LST = UTC + 8 h). Significant precipitation occurred during two periods: 2100–2200 UTC on June 27 and 0300–0400 UTC on 28 June. Although the precipitation caused fluctuations in visibility, it did not disrupt the formation or persistence of the fog.
- The observed microphysical parameters included an average Nd of 190.62 cm−3, LWC of 0.026 g m−3, rm of 2.84 μm, and re of 3.44 μm. Using the average re as a threshold, droplets were classified as “small” or “large”. Small droplets dominated Nd (81%) and contributed significantly to visibility attenuation (60% of βext), while large droplets, though fewer in number, accounted for 58% of LWC.
- The fog DSD throughout the fog event was better represented by a G-exponential distribution than by a Gamma distribution. The fog process was divided into four stages: formation, development, maturity, and dissipation. During formation, droplet sizes increased. The development stage exhibited a pronounced bimodal spectrum, with the second peak weakening in maturity. By dissipation, droplet quantities decreased, narrowing the spectrum.
- A comparison of visibility parameterization methods reveals that incorporating both Nd and LWC yields a smaller MRE compared to using either parameter alone. Among the evaluated methods, VisFRAM demonstrates the lowest MAE and RMSE, indicating superior visibility prediction performance, followed by VisGex.
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
Abbreviations
Vis | visibility |
DSD | droplet size distribution |
LWC | liquid water content |
Nd | number concentration |
rm | mean radius |
re | Effective radius |
QDMS | Qingdao Meteorological Station |
BGMS | Baguan Hill Meteorological Station |
RH | relative humidity |
Ta | air temperature |
SST | the total sum of squares |
SSE | the sum of squared errors |
R2 | the coefficient of determination |
MAE | the mean absolute error |
RMSE | the root mean square errors |
References
- Wang, B.H. Sea Fog; China Ocean Press: Beijing, China, 1985; p. 330. [Google Scholar]
- Koračin, D.; Dorman, C.E.; Lewis, J.M.; Hudson, J.G.; Wilcox, E.M.; Torregrosa, A. Marine fog: A review. Atmos. Res. 2014, 143, 142–175. [Google Scholar] [CrossRef]
- Gultepe, I.; Tardif, R.; Michaelides, S.; Cermak, J.; Bott, A.; Bendix, J.; Müller, M.D.; Pagowski, M.; Hansen, B.; Ellrod, G.P.; et al. Fog research: A review of past achievements and future perspectives. Pure Appl. Geophys. 2007, 164, 1121–1159. [Google Scholar] [CrossRef]
- Gultepe, I.; Pearson, G.; Milbrandt, J.A.; Hansen, B.; Platnick, S.; Taylor, P.; Gordon, M.; Oakley, J.P.; Cober, S.G. The fog remote sensing and modeling (FRAM) field project. Bull. Am. Meteorol. Soc. 2009, 90, 341–360. [Google Scholar] [CrossRef]
- Jung, S.; Qin, X.; Oh, C. A risk-based systematic method for identifying fog-related crash prone locations. Appl. Spat. Anal. 2019, 12, 729–751. [Google Scholar] [CrossRef]
- Eldridge, R.G. A few fog drop-size distributions. J. Atmos. Sci. 1961, 18, 671–676. [Google Scholar] [CrossRef]
- Gultepe, I.; Milbrandt, J.A. Probabilistic parameterizations of visibility using observations of rain precipitation rate, relative humidity, and visibility. J. Appl. Meteorol. Climatol. 2010, 49, 36–46. [Google Scholar] [CrossRef]
- Gultepe, I.; Heymsfield, A.J.; Fernando, H.J.S.; Pardyjak, E.; Dorman, C.E.; Wang, Q.; Creegan, E.; Hoch, S.W.; Flagg, D.D.; Yamaguchi, R.; et al. A review of coastal fog microphysics during C-FOG. Bound.-Layer Meteorol. 2021, 181, 227–265. [Google Scholar] [CrossRef]
- Gultepe, I.; Kuhn, T.; Pavolonis, M.; Calvert, C.; Gurka, J.; Heymsfield, A.J.; Liu, P.S.K.; Zhou, B.B.; Ware, R.; Ferrier, B.; et al. Ice fog in Arctic during FRAM-ice fog project: Aviation and nowcasting applications. Bull. Am. Meteorol. Soc. 2014, 95, 211–226. [Google Scholar] [CrossRef]
- Fernando, H.J.S.; Gultepe, I.; Dorman, C.; Pardyjak, E.; Wang, Q.; Hoch, S.; Richter, D.; Creegan, E.; Gaberšek, S.; Bullock, T.; et al. C-FOG: Life of coastal fog. Bull. Am. Meteorol. Soc. 2021, 176, 1977–2017. [Google Scholar] [CrossRef]
- Zhang, S.P.; Bao, X.W. The main advances in sea fog research in China. Period. Ocean Univ. China 2008, 38, 359–366. (In Chinese) [Google Scholar] [CrossRef]
- Wang, S.K.; Yi, L.; Zhang, S.P.; Shi, X.M.; Chen, X.Y. The microphysical properties of a sea-fog event along the west coast of the Yellow Sea in spring. Atmosphere 2020, 11, 413. [Google Scholar] [CrossRef]
- Spiegel, J.K.; Zieger, P.; Bukowiecki, N.; Hammer, E.; Weingartner, E.; Eugster, W. Evaluating the capabilities and uncertainties of droplet measurements for the fog droplet spectrometer (FM-100). Atmos. Meas. Technol. 2012, 5, 2237–2260. [Google Scholar] [CrossRef]
- Liu, Y.L.; Zhao, J.P. A Correction Algorithm for Atmospheric Visibility Based on Fog Droplet Size Data Obtained on a Moving Ship During 2016 Arctic Cruise. J. Ocean Univ. China 2019, 18, 596–604. [Google Scholar] [CrossRef]
- Koike, M.; Ukita, J.; Strom, J.; Tunved, P.; Shiobara, M.; Vitale, V.; Lupi, A.; Baumgardner, D.; Ritter, C.; Hermansen, O.; et al. Yearround in situ measurements of arctic low-level clouds: Microphysical properties and their relationships with aerosols. Geophys. Res. Atmos. 2019, 124, 1798–1822. [Google Scholar] [CrossRef]
- Duplessis, P.; Bhatia, S.; Hartery, S.; Wheeler, M.J.; Chang, R.Y.-W. Microphysics of aerosol, fog and droplet residuals on the Canadian Atlantic coast. Atmos. Res. 2021, 264, 105859. [Google Scholar] [CrossRef]
- Hansen, J.E.; Travis, L.D. Light scattering in planetary atmospheres. Space Sci. Rev. 1974, 16, 527–610. [Google Scholar] [CrossRef]
- Reid, J.S.; Hobbs, P.V.; Rangno, A.L.; Hegg, D.A. Relationships between cloud droplet effective radius, liquid water content, and droplet concentration for warm clouds in Brazil embedded in biomass smoke. J. Geophys. Res. 1999, 104, 6145–6153. [Google Scholar] [CrossRef]
- Koschmieder, H. Theorie der horizontalen Sichtweite. In Beiträge zur Physik der freien Atmosphäre; Keim & Nemnich: Diedorf, Germany, 1924; Volume 12, pp. 33–53. [Google Scholar]
- McCartney, E.J. Optics of the Atmosphere: Scattering by Molecules and Particles; John Wiley and Sons, Inc.: New York, NY, USA, 1976. [Google Scholar] [CrossRef]
- Stoelinga, M.T.; Warner, T.T. Nonhydrostatic, mesobeta-scale model simulations of cloud ceiling and visibility for an east coast winter precipitation event. J. Appl. Meteorol. Climatol. 1999, 38, 385–404. [Google Scholar] [CrossRef]
- Mie, G. Beiträge zur Optik trüber Medien, speziell kolloidaler Metallösungen. Ann. Phys. 1908, 330, 377–445. [Google Scholar] [CrossRef]
- Draper, N.R.; Smith, H. Applied Regression Analysis, 2nd ed.; John Wiley and Sons: New York, NY, USA, 1981. [Google Scholar] [CrossRef]
- Goodin, D.S. The Cambridge Dictionary of Statistics; Cambridge University Press: Cambridge, UK, 2006. [Google Scholar]
- He, J.X.; Ren, X.Y.; Wang, H.; Shi, Z.; Zhang, F.G.; Hu, L.J.; Zeng, Q.Y.; Jin, X. Analysis of the Microphysical Structure and Evolution Characteristics of a Typical Sea Fog Weather Event in the Eastern Sea of China. Remote Sens. 2022, 14, 5604. [Google Scholar] [CrossRef]
- Zhang, W.; Chen, D.H.; Hu, Y.J.; Xun, A.P.; Jiang, Y.C.; Sun, X.J. Microphysical Structure Analysis of a Spring Sea Fog Event in Southern Coastal Area of Fujian. Meteorol. Mon. 2021, 47, 157–169. (In Chinese) [Google Scholar]
- Huang, H.J.; Huang, J.; Mao, W.K.; Liao, F.; Li, X.N.; Lü, W.H.; Yang, Y.Q. Evolution characteristics of water content in sea fog and its relationship with atmospheric horizontal visibility in Maoming area. Haiyang Xuebao 2010, 32, 40–53. (In Chinese) [Google Scholar]
- Lv, J.J.; Niu, S.J.; Zhang, Y.; Xu, F. Evolution characteristics of the macro-/micro-structure and the boundary layer during a spring heavy sea fog episode in Donghai Island in Zhanjiang. Acta Meteor. Sin. 2014, 2, 350–365. (In Chinese) [Google Scholar]
- Lu, Q.Q.; Zheng, F.Q.; Bi, R.D.; Lu, X.T. Analysis of four outfield observation data of sea fog on Weizhou Island in 2021. J. Meteor. Res. Appl. 2013, 27, 609–622. (In Chinese) [Google Scholar]
- Gultepe, I.; Müller, M.D.; Boybeyi, Z. A new visibility parameterization for warm-fog applications in numerical weather prediction models. J. Appl. Meteorol. Climatol. 2006, 45, 1469–1480. [Google Scholar] [CrossRef]
- Eldridge, R.G. Haze and fog aerosol distributions. J. Atmos. Sci. 1966, 23, 605–613. [Google Scholar] [CrossRef]
- Kunkel, B.A. Parameterization of droplet terminal velocity and extinction coefficient in fog models. J. Appl. Meteorol. Climatol. 1984, 23, 34–41. [Google Scholar] [CrossRef]
Fog Stage | Time (UTC) | Vis (m) | Nd (cm−3) | LWC (g m−3) | rm (μm) | re (μm) |
---|---|---|---|---|---|---|
Whole Process | 27 June 17:56−28 June 08:35 | 883 (147−15517) | 190.62 (1.43−440.88) | 0.026 (0.001−0.068) | 2.84 (2.07−3.54) | 3.44 (2.35−9.52) |
Formation Stage (S1) | 27 June 17:56−20:11 | 1961 (393−15517) | 99.76 (1.43−259.10) | 0.012 (0−0.030) | 2.73 (2.46−3.04) | 3.80 (2.91−9.52) |
Development Stage (S2) | 27 June 20:12−28 June 00:35 | 277 (170−929) | 238.77 (75.76−381.19) | 0.044 (0.007−0.067) | 3.21 (2.48−3.54) | 3.89 (2.93−5.07) |
Maturity Stage (S3) | 28 June 00:36−04:47 | 469 (147−2293) | 248.58 (39.71−440.88) | 0.031 (0.003−0.068) | 2.81 (2.30−3.37) | 3.33 (2.64−4.85) |
Dissipation Stage (S4) | 28 June 04:48−08:35 | 1368 (362−5758) | 123.47 (10.40−256.77) | 0.012 (0−0.037) | 2.58 (2.07−3.01) | 2.92 (2.35−4.10) |
Function Type | Accuracy Metrics | Whole Process | Formation Stage | Development Stage | Maturity Stage | Dissipation Stage |
---|---|---|---|---|---|---|
Gamma | RMSE (km) | 5.34 | 8.91 | 7.66 | 6.28 | 8.12 |
R2 | 0.926 | 0.49 | 0.87 | 0.91 | 0.62 | |
G-exponential | RMSE (km) | 0.94 | 8.22 | 5.42 | 3.34 | 7.45 |
R2 | 0.998 | 0.57 | 0.93 | 0.97 | 0.68 |
Name | Function | MAE (km) | RMSE (km) |
---|---|---|---|
VisGam | / | 0.16 | 0.24 |
VisGex | / | 0.15 | 0.23 |
VisGN | 44.989(Nd) −1.1592 [30] | 0.33 | 0.39 |
VisEdg | 0.024(LWC) −0.65 [31] | 0.17 | 0.23 |
Visk84 | 0.027(LWC) −0.88 [32] | 0.26 | 0.36 |
VisGNL | 1.002(Nd·LWC) −0.6743 [30] | 0.13 | 0.27 |
VisFRAM | 0.8771(Nd·LWC) −0.49034 [4] | 0.10 | 0.18 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2025 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, X.; Yi, L.; Zhang, S.; Shi, X.; Liu, Y.; Liu, Y.; Wang, X.; Jiang, Y. Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer. Atmosphere 2025, 16, 308. https://doi.org/10.3390/atmos16030308
Shi X, Yi L, Zhang S, Shi X, Liu Y, Liu Y, Wang X, Jiang Y. Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer. Atmosphere. 2025; 16(3):308. https://doi.org/10.3390/atmos16030308
Chicago/Turabian StyleShi, Xiaoyu, Li Yi, Suping Zhang, Xiaomeng Shi, Yingchen Liu, Yilin Liu, Xiaoyu Wang, and Yuechao Jiang. 2025. "Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer" Atmosphere 16, no. 3: 308. https://doi.org/10.3390/atmos16030308
APA StyleShi, X., Yi, L., Zhang, S., Shi, X., Liu, Y., Liu, Y., Wang, X., & Jiang, Y. (2025). Microphysical Characteristics of a Sea Fog Event with Precipitation Along the West Coast of the Yellow Sea in Summer. Atmosphere, 16(3), 308. https://doi.org/10.3390/atmos16030308