Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts
Abstract
:1. Introduction
2. Materials and Methods
2.1. Vehicle Chassis Dynamometer Experiments
2.2. Photochemical Smog Chamber
2.2.1. Facility
2.2.2. Light Source
2.2.3. Instrumentation
2.2.4. Experimental Procedures
2.2.5. Data Analysis
3. Results and Discussion
3.1. Primary Gas and Particle Emissions
3.2. Primary and Photochemical Reacted Exhaust
3.3. Effects of Ammonia Mitigation
3.3.1. NH4NO3 Particle Formation
3.3.2. Aerosol Acidity
3.3.3. SOA Formation
3.3.4. O3 Formation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Fujitani, Y.; Takahashi, K.; Saitoh, K.; Fushimi, A.; Hasegawa, S.; Kondo, Y.; Tanabe, K.; Takami, A.; Kobayashi, S. Contribution of industrial and traffic emissions to ultrafine, fine, coarse particles in the vicinity of industrial areas in Japan. Environ. Adv. 2021, 5, 100101. [Google Scholar] [CrossRef]
- Achebak, H.; Garatachea, R.; Pay, M.T.; Jorba, O.; Guevara, M.; García-Pando, C.P.; Ballester, J. Geographic sources of ozone air pollution and mortality burden in Europe. Nat. Med. 2024, 30, 1732–1738. [Google Scholar] [CrossRef]
- Fujitani, Y.; Furuyama, A.; Tanabe, K.; Hirano, S. Comparison of oxidative abilities of PM2.5 collected at traffic and residential sites in Japan. Contribution of transition metals and primary and secondary aerosols. Aerosol Air Qual. Res. 2017, 17, 574–587. [Google Scholar] [CrossRef]
- Shiraiwa, M.; Ueda, K.; Pozzer, A.; Lammel, G.; Kampf, C.J.; Fushimi, A.; Enami, S.; Arangio, A.M.; Frohlich-Nowoisky, J.; Fujitani, Y.; et al. Aerosol health effects from molecular to global scales. Environ. Sci. Technol. 2017, 51, 13545–13567. [Google Scholar] [CrossRef]
- Künzi, L.; Krapf, M.; Daher, N.; Dommen, J.; Jeannet, N.; Schneider, S.; Platt, S.; Slowik, J.G.; Baumlin, N.; Salathe, M.; et al. Toxicity of aged gasoline exhaust particles to normal and diseased airway epithelia. Sci. Rep. 2015, 5, 11801. [Google Scholar] [CrossRef] [PubMed]
- Lau, Y.S.; Poon, H.Y.; Organ, B.; Chuang, H.C.; Chan, M.-N.; Guo, H.; Ho, S.S.; Ho, K.-F. Toxicological effects of fresh and aged gasoline exhaust particles in Hong Kong. J. Hazard Mater. 2023, 441, 129846. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Favez, O.; Perraudin, E.; Villenave, E.; Albinet, A. Comparison of Measurement-Based Methodologies to Apportion Secondary Organic Carbon (SOC) in PM2.5: A Review of Recent Studies. Atmosphere 2018, 9, 452. [Google Scholar] [CrossRef]
- Hayes, P.L.; Carlton, A.G.; Baker, K.R.; Ahmadov, R.; Washenfelder, R.A.; Alvarez, S.; Rappenglück, B.; Gilman, J.B.; Kuster, W.C.; de Gouw, J.A.; et al. Modeling the formation and aging of secondary organic aerosols in Los Angeles during CalNex 2010. Atmos. Chem. Phys. 2015, 15, 5773–5801. [Google Scholar] [CrossRef]
- Jathar, S.H.; Gordon, T.D.; Hennigan, C.J.; Pye, H.O.; Pouliot, G.; Adams, P.J.; Donahue, N.M.; Robinson, A.L. Unspeciated organic emissions from combustion sources and their influence on the secondary organic aerosol budget in the United States. Proc. Natl. Acad. Sci. USA 2014, 111, 10473–10478. [Google Scholar] [CrossRef]
- Jathar, S.H.; Woody, M.; Pye, H.O.T.; Baker, K.R.; Robinson, A.L. Chemical transport model simulations of organic aerosol in southern California: Model evaluation and gasoline and diesel source contributions. Atmos. Chem. Phys. 2017, 17, 4305–4318. [Google Scholar] [CrossRef]
- Gentner, D.R.; Jathar, S.H.; Gordon, T.D.; Bahreini, R.; Day, D.A.; Haddad, I.E.; Haynes, P.L.; Pieber, S.M.; Platt, S.M.; De Gouw, J.; et al. Review of urban secondary organic aerosol formation from gasoline and diesel motor vehicle emissions. Environ. Sci. Technol. 2017, 51, 1074–1093. [Google Scholar] [CrossRef] [PubMed]
- Dunmore, R.E.; Hopkins, J.R.; Lidster, R.T.; Lee, J.D.; Evans, M.J.; Rickard, A.R.; Lewis, A.C.; Hamilton, J.F. Diesel-related hydrocarbons can dominate gas phase reactive carbon in megacities. Atmos. Chem. Phys. 2015, 15, 9983–9996. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Pieber, M.; Zardini, A.A.; Suarez-Bertoa, R.; Clairotte, M.; Daellenbach, K.R.; Huang, R.J.; Slowwik, J.G.; Hellebust, S.; et al. Gasoline cars produce more carbonaceous particulate matter than modern filter-equipped diesel cars. Sci. Rep. 2017, 7, 4926. [Google Scholar] [CrossRef] [PubMed]
- Nordin, E.Z.; Eriksson, A.C.; Roldin, P.; Nilsson, P.T.; Carlsson, J.E.; Kajos, M.K.; Hellén, H.; Wittbom, C.; Rissler, J.; Löndahl, J.; et al. Secondary organic aerosol formation from idling gasoline passenger vehicle emissions investigated in a smog chamber. Atmos. Chem. Phys. 2013, 13, 6101–6116. [Google Scholar] [CrossRef]
- Platt, S.M.; El Haddad, I.; Zardini, A.A.; Clairotte, M.; Astorga, C.; Wolf, R.; Slowik, J.G.; Temime-Roussel, B.; Marchand, N.; Ježek, I.; et al. Secondary organic aerosol formation from gasoline vehicle emissions in a new mobile environmental reaction chamber. Atmos. Chem. Phys. 2013, 13, 9141–9158. [Google Scholar] [CrossRef]
- Gordon, T.D.; Presto, A.A.; May, A.A.; Nguyen, N.T.; Lipsky, E.M.; Donahue, N.M.; Gutierrez, A.; Zhang, M.; Maddox, C.; Rieger, P.; et al. Secondary organic aerosol formation exceeds primary particulate matter emissions for light-duty gasoline vehicles. Atmos. Chem. Phys. 2014, 14, 4661–4678. [Google Scholar] [CrossRef]
- Vu, D.; Roth, P.; Berte, T.; Yang, J.; Cocker, D.; Durbin, T.D.; Karavalakis, G.; Asa-Awuku, A. Using a new Mobile Atmospheric Chamber (MACh) to investigate the formation of secondary aerosols from mobile sources: The case of gasoline direct injection vehicles. J. Aerosol Sci. 2019, 133, 1–11. [Google Scholar] [CrossRef]
- Zhao, Y.; Saleh, R.; Saliba, G.; Presto, A.A.; Gordon, T.D.; Drozd, G.T.; Goldstein, A.H.; Donahue, N.M.; Robinson, A.L. Reducing secondary organic aerosol formation from gasoline vehicle exhaust. Proc. Natl. Acad. Sci. USA 2017, 114, 6984–6989. [Google Scholar] [CrossRef]
- Morino, Y.; Li, Y.; Fujitani, Y.; Sato, K.; Inomata, S.; Tanabe, K.; Jathar, S.H.; Kondo, Y.; Nakayama, T.; Fushimi, A.; et al. Secondary organic aerosol formation from gasoline and diesel vehicle exhaust under light and dark conditions. Environ. Sci. Atmos. 2022, 2, 46–64. [Google Scholar] [CrossRef]
- Liu, T.; Wang, X.; Deng, W.; Hu, Q.; Ding, X.; Zhang, Y.; He, Q.; Zhang, Z.; Lü, S.; Bi, X.; et al. Secondary organic aerosol formation from photochemical aging of light-duty gasoline vehicle exhausts in a smog chamber. Atmos. Chem. Phys. 2015, 15, 9049–9062. [Google Scholar] [CrossRef]
- Pieber, S.M.; Kumar, N.K.; Klein, F.; Comte, P.; Bhattu, D.; Dommen, J.; Bruns, E.A.; Kılıç, D.; El Haddad, I.; Keller, A.; et al. Gas-phase composition and secondary organic aerosol formation from standard and particle filter-retrofitted gasoline direct injection vehicles investigated in a batch and flow reactor. Atmos. Chem. Phys. 2018, 18, 9929–9954. [Google Scholar] [CrossRef]
- Roth, P.; Yang, J.; Fofie, E.; Cocker, D.R.; Durbin, T.D.; Brezny, R.; Geller, M.; Asa-Awuku, A.; Karavalakis, G. Catalyzed gasoline particulate filters reduce secondary organic aerosol production from gasoline direct injection vehicles. Environ. Sci. Technol. 2019, 53, 3037–3047. [Google Scholar] [CrossRef] [PubMed]
- Drozd, G.T.; Zhao, Y.; Saliba, G.; Frodin, B.; Maddox, C.; Oliver Chang, M.C.; Maldonado, H.; Sardar, S.; Weber, R.J.; Robinson, A.L.; et al. Detailed speciation of intermediate volatility and semivolatile organic compound emissions from gasoline vehicles: Effects of cold-starts and implications for secondary organic aerosol formation. Environ. Sci. Technol. 2019, 53, 1706–1714. [Google Scholar] [CrossRef] [PubMed]
- Karjalainen, P.; Timonen, H.; Saukko, E.; Kuuluvainen, H.; Saarikoski, S.; Aakko-Saksa, P.; Murtonen, T.; Bloss, M.; Dal Maso, M.; Simonen, P.; et al. Time-resolved characterization of primary particle emissions and secondary particle formation from a modern gasoline passenger car. Atmos. Chem. Phys. 2016, 16, 8559–8570. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Platt, S.M.; Hellebust, S.; Pieber, S.M.; El Haddad, I.; Temime-Roussel, B.; Baltensperger, U.; Marchand, N.; Prévôt, A.S.H.; et al. Primary Emissions and Secondary Organic Aerosol Formation from the Exhaust of a Flex-Fuel (Ethanol) Vehicle. Atmos. Environ. 2015, 117, 200–211. [Google Scholar] [CrossRef]
- Roth, P.; Yang, J.; Peng, W.; Cocker III, D.R.; Durbin, T.D.; Asa-Awuku, A.; Karavalakis, G. Intermediate and high ethanol blends reduce secondary organic aerosol formation from gasoline direct injection vehicles. Atmos. Environ. 2020, 220, 117064. [Google Scholar] [CrossRef]
- Wang, H.; Guo, S.; Yu, Y.; Shen, R.; Zhu, W.; Tang, R.; Tan, R.; Liu, K.; Song, K.; Zhang, W.; et al. Secondary aerosol formation from a Chinese gasoline vehicle: Impacts of fuel (E10, gasoline) and driving conditions (idling, cruising). Sci. Total Environ. 2021, 795, 148809. [Google Scholar] [CrossRef]
- Hartikainen, A.; Ihalainen, M.; Yli-Pirila, P.; Hao, L.; Kortelainen, M.; Pieber, S.; Sippula, O. Photochemical Transformation and Secondary Aerosol Formation Potential of Euro6 Gasoline and Diesel Passenger Car Exhaust Emissions. J. Aerosol Sci. 2023, 171, 106159. [Google Scholar] [CrossRef]
- Farren, N.J.; Davison, J.; Rose, R.A.; Wagner, R.L.; Carslaw, D.C. Underestimated ammonia emissions from road vehicles. Environ. Sci. Technol. 2020, 54, 15689–15697. [Google Scholar] [CrossRef]
- Suarez-Bertoa, R.; Zardini, A.A.; Astorga, C. Ammonia exhaust emissions from spark ignition vehicles over the New European Driving Cycle. Atmos. Environ. 2014, 97, 43–53. [Google Scholar] [CrossRef]
- Bajwa, A.; Shankar, V.; Leach, F. Ammonia Emissions from Combustion in Gasoline Engines; 2023-01-1655; SAE Technical Paper: Pittsburgh, PA, USA, 2023. [Google Scholar] [CrossRef]
- Chow, J.C.; Watson, J.G.; Crow, D.; Lowenthal, D.H.; Merrifield, T. Comparison of IMPROVE and NIOSH Carbon Measurements. Aerosol Sci. Technol. 2001, 34, 23–34. [Google Scholar] [CrossRef]
- Japan Automobile Manufacturers Association, Inc. The Motor Industry of Japan. 2023. Available online: https://www.jama.or.jp/english/reports/docs/MIoJ2023_e.pdf (accessed on 16 August 2024).
- Kaltsonoudis, C.; Jorga, S.D.; Louvaris, E.; Florou, K.; Pandis, S.N. A portable dual-smog-chamber system for atmospheric aerosol field studies. Atmos. Meas. Tech. 2019, 12, 2733–2743. [Google Scholar] [CrossRef]
- Kelly, N.A. Characterization of Fluorocarbon-Film Bags as Smog Chambers. Environ. Sci. Technol. 1982, 16, 763–770. [Google Scholar] [CrossRef]
- Paulsen, D.; Dommen, J.; Kalberer, M.; Prevot, A.S.H.; Richter, R.; Sax, M.; Steinbacher, M.; Weingartner, E.; Baltensperger, U. Secondary organic aerosol formation by irradiation of 1,3,5- trimethylbenzene-NOx-H2O in a new reaction chamber for atmospheric chemistry and physics. Environ. Sci. Technol. 2005, 39, 2668–2678. [Google Scholar] [CrossRef]
- Carter, W.P.; Cockeriii, D.R., III; Fitz, D.R.; Malkina, I.L.; Bumiller, K.; Sauer, C.G.; Pisano, J.; Bufalino, C.; Song, C. A new environmental chamber for evaluation of gas-phase chemical mechanisms and secondary aerosol formation. Atmos. Environ. 2005, 39, 7768–7788. [Google Scholar] [CrossRef]
- Wang, X.; Liu, T.; Bernard, F.; Ding, X.; Wen, S.; Zhang, Y.; Zhang, Z.; He, Q.; Lü, S.; Chen, J.; et al. Design and characterization of a smog chamber for studying gas-phase chemical mechanisms and aerosol formation. Atmos. Meas. Tech. 2014, 7, 301–313. [Google Scholar] [CrossRef]
- Peng, J.; Hu, M.; Du, Z.; Wang, Y.; Zheng, J.; Zhang, W.; Yang, Y.; Qin, Y.; Zheng, R.; Xiao, Y.; et al. Gasoline aromatics: A critical determinant of urban secondary organic aerosol formation. Atmos. Chem. Phys. 2017, 17, 10743–10752. [Google Scholar] [CrossRef]
- Atkinson, R.; Baulch, D.L.; Cox, R.A.; Crowley, J.N.; Hampson, R.F.; Hynes, R.G.; Jenkin, M.E.; Rossi, M.J.; Troe, J. Evaluated kinetic and photochemical data for atmospheric chemistry: Volume I—gas phase reactions of Ox, HOx, NOx and SOx species. Atmos. Chem. Phys. 2004, 4, 1461–1738. [Google Scholar] [CrossRef]
- Atkinson, R.; Arey, J. Atmospheric degradation of volatile organic compounds. Chem. Rev. 2003, 103, 4605–4638. [Google Scholar] [CrossRef]
- Villena, G.; Bejan, I.; Kurtenbach, R.; Wiesen, P.; Kleffmann, J. Interferences of commercial NO2 instruments in the urban atmosphere and in a smog chamber. Atmos. Meas. Tech. 2012, 5, 145–159. [Google Scholar] [CrossRef]
- Alam, M.S.; Crilley, L.R.; Lee, J.D.; Kramer, L.J.; Pfrang, C.; Vázquez-Moreno, M.; Ródenas, M.; Muñoz, A.; Bloss, W.J. Interference from alkenes in chemiluminescent NOX measurements. Atmos. Meas. Tech. 2020, 13, 5977–5991. [Google Scholar] [CrossRef]
- Jordan, N.; Garner, N.M.; Matchett, L.C.; Tokarek, T.W.; Osthoff, H.D.; Odame-Ankrah, C.A.; Rosentreter, B.W. Potential interferences in photolytic nitrogen dioxide converters for ambient air monitoring: Evaluation of a prototype. J. Air Waste Manage. Assoc. 2020, 70, 753–764. [Google Scholar] [CrossRef]
- Delon, C.; Galy-Lacaux, C.; Serça, D.; Loubet, B.; Camara, N.; Gardrat, E.; Saneh, I.; Fensholt, R.; Tagesson, T.; Le Dantec, V.; et al. Soil and vegetation-atmosphere exchange of NO, NH3, and N2O from field measurements in a semi arid grazed ecosystem in Senegal. Atmos. Environ. 2017, 156, 36–51. [Google Scholar] [CrossRef]
- William, P.L. Carter. Development of the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Nenes, A.; Pandis, S.N.; Pilinis, C. ISORROPIA: A new thermodynamic equilibrium model for multiphase multicomponent inorganic aerosols. Aquat. Geoch. 1998, 4, 123–152. [Google Scholar] [CrossRef]
- Xing, J.; Shao, L.; Zhang, W.; Peng, J.; Wang, W.; Shuai, S.; Hu, M.; Zhang, D. Morphology and size of the particles emitted from a gasoline-direct-injection-engine vehicle and their ageing in an environmental chamber. Atmos. Chem. Phys. 2020, 20, 2781–2794. [Google Scholar] [CrossRef]
- McMurry, P.H.; Grosjean, D. Gas and Aerosol Wall Losses in Teflon Film Smog Chambers. Environ. Sci. Technol. 1985, 19, 1176–1182. [Google Scholar] [CrossRef] [PubMed]
- Mendoza, D.L.; Hill, L.D.; Blair, J.; Crosman, E.T. A Long-Term Comparison between the AethLabs MA350 and Aerosol Magee Scientific AE33 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area. Sensors 2024, 24, 965. [Google Scholar] [CrossRef]
- Cocker, D.; Flagan, R.; Seinfeld, J. State-of-the-art chamber facility for studying atmospheric aerosol chemistry. Environ. Sci. Technol. 2001, 35, 2594–2601. [Google Scholar] [CrossRef]
- Gordon, T.D.; Presto, A.A.; Nguyen, N.T.; Robertson, W.H.; Na, K.; Sahay, K.N.; Zhang, M.; Maddox, C.; Rieger, P.; Chattopadhyay, S.; et al. Secondary Organic Aerosol Production from Diesel Vehicle Exhaust: Impact of Aftertreatment, Fuel Chemistry and Driving Cycle. Atmos. Meas. Tech. 2014, 14, 4643–4659. [Google Scholar] [CrossRef]
- Pang, Y.; Turpin, B.J.; Gundel, L.A. On the Importance of Organic Oxygen for Understanding Organic Aerosol Particles. Aerosol Sci. Technol. 2006, 40, 128–133. [Google Scholar] [CrossRef]
- Aiken, A.C.; DeCarlo, P.F.; Jimenez, J.L. Elemental Analysis of Organic Species with Electron Ionization High-Resolution Mass Spectrometry. Anal. Chem. 2007, 79, 8350–8358. [Google Scholar] [CrossRef]
- Aiken, A.C.; DeCarlo, P.F.; Kroll, J.H.; Worsnop, D.R.; Huffman, J.A.; Docherty, K.S.; Ulbrich, I.M.; Mohr, C.; Kimmel, J.R.; Sueper, D.; et al. O/C and OM/OC Ratios of Primary, Secondary, and Ambient Organic Aerosols with High-Resolution Time-of-Flight Aerosol Mass Spectrometry. Environ. Sci. Technol. 2008, 42, 4478–4485. [Google Scholar] [CrossRef] [PubMed]
- Hayes, P.L.; Ortega, A.M.; Cubison, M.J.; Froyd, K.D.; Zhao, Y.; Cliff, S.S.; Hu, W.W.; Toohey, D.W.; Flynn, J.H.; Lefer, B.L.; et al. Organic Aerosol Composition and Sources in Pasadena, California, during the 2010 CalNex Campaign. J. Geophys. Res. Atmos. 2013, 118, 9233–9257. [Google Scholar] [CrossRef]
- Park, G.; Kim, K.; Park, T.; Kang, S.; Ban, J.; Choi, S.; Yu, D.G.; Lee, S.; Lim, Y.; Kim, S.; et al. Primary and Secondary Aerosols in Small Passenger Vehicle Emissions: Evaluation of Engine Technology, Driving Conditions, and Regulatory Standards. Environ. Pollut. 2021, 286, 117195. [Google Scholar] [CrossRef] [PubMed]
- Nakamura, K.; Dardiotis, C.; Kandlhofer, C.; Arndt, M. Challenges related to the measurement of particle emissions of gasoline direct injection engines under cold-start and low-temperature conditions. Int. J. Auto. Eng. 2019, 10, 332–339. [Google Scholar] [CrossRef]
- Yang, J.; Roth, P.; Durbin, T.D.; Johnson, K.C.; Cocker, D.R., III; Asa-Awuku, A.; Brezny, R.; Geller, M.; Karavalakis, G. Gasoline particulate filters as an effective tool to reduce particulate and PAH emissions from GDI vehicles: A case study with two GDI vehicles. Environ. Sci. Technol. 2018, 52, 3275–3284. [Google Scholar] [CrossRef] [PubMed]
- Calvert, J.G.; Stockwell, W.R. Acid generation in the troposphere by gas-phase chemistry. Environ. Sci. Technol. 1983, 17, 428A–443A. [Google Scholar] [CrossRef]
- Stockwell, W.R.; Kirchner, F.; Kuhn, M.; Seefeld, S. A new mechanism for regional atmospheric chemistry modeling. J. Geophys. Res. Atmos. 1997, 102, 25847–25879. [Google Scholar] [CrossRef]
- Geyer, A.; Alicke, B.; Ackermann, R.; Martinez, M.; Harder, H.; Brune, W.; di Carlo, P.; Williams, E.; Jobson, T.; Hall, S.; et al. Direct observations of daytime NO3. Implications for urban boundary layer chemistry. J. Geophys. Res. Atmos. 2003, 108, 4368. [Google Scholar] [CrossRef]
- Brown, S.S.; Osthoff, H.D.; Stark, H.; Dubé, W.P.; Ryerson, T.B.; Warneke, C.; de Gouw, J.A.; Wollny, A.G.; Parrish, D.D.; Fehsenfeld, F.C.; et al. Aircraft observations of daytime NO3 and N2O5 and their implications for tropospheric chemistry. J. Photochem. Photobiol. A Chem. 2005, 176, 270–278. [Google Scholar] [CrossRef]
- Osthoff, H.D.; Sommariva, R.; Baynard, T.; Pettersson, A.; Williams, E.J.; Lerner, B.M.; Roberts, J.M.; Stark, H.; Goldan, P.D.; Kuster, W.C.; et al. Observation of daytime N2O5 in the marine boundary layer during New England Air Quality Study–Intercontinental Transport and Chemical Transformation 2004. J. Geophys. Res. Atmos. 2006, 111, D23S14. [Google Scholar] [CrossRef]
- Meng, Z.; Dabdub, D.; Seinfeld, J.H. Chemical coupling between atmospheric ozone and particulate matter. Science 1997, 277, 116–119. [Google Scholar] [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Thermodynamic prediction of the water activity, NH4HO3 dissociation constant, density and refractive index for the NH4NO3–(NH4)2SO4H2O system at 25 °C. Atmos. Environ. 1982, 16, 2507–2514. [Google Scholar] [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Relative humidity and temperature dependence of the ammonium nitrate dissociation constant. Atmos. Environ. 1982, 16, 983–992. [Google Scholar] [CrossRef]
- Stelson, A.W.; Seinfeld, J.H. Relative humidity and pH dependence of the vapor pressure of ammonium nitrate–nitric acid solutions at 25 °C. Atmos. Environ. 1982, 16, 993–1000. [Google Scholar] [CrossRef]
- Peng, C.; Chen, L.; Tang, M. A database for deliquescence and efflorescence relative humidities of compounds with atmospheric relevance. Fundam. Res. 2022, 2, 578–587. [Google Scholar] [CrossRef]
- Gong, J.; Rutland, C. Three Way Catalyst Modeling with Ammonia and Nitrous Oxide Kinetics for A Lean Burn Spark Ignition Direct Injection (Sidi) Gasoline Engine; 2013−01−1572; SAE Technical Paper: Pittsburgh, PA, USA, 2013. [Google Scholar] [CrossRef]
- Heeb, N.V.; Forss, A.M.; Bruhlmann, S.; Luscher, R.; Saxer, C.J.; Hug, P. Three-way catalyst-induced formation of ammonia-velocity and acceleration-dependent emission factors. Atmos. Environ. 2006, 40, 5986–5997. [Google Scholar] [CrossRef]
- Gandhi, H.S.; Graham, G.W.; McCabe, R.W. Automotive exhaust catalysis. J. Catal. 2003, 216, 433–442. [Google Scholar] [CrossRef]
- Schlatter, J.C.; Taylor, K.C. Platinum and palladium addition to supported rhodium catalysts for automotive emission control. J. Catal. 1977, 49, 42–50. [Google Scholar] [CrossRef]
- Kobylinski, T.P.; Taylor, B.W. The catalytic chemistry of nitric oxide: II. Reduction of nitric oxide over noble metal catalysts. J. Catal. 1974, 33, 376–384. [Google Scholar] [CrossRef]
- Renème, Y.; Dhainaut, F.; Granger, P. Kinetics of the NO/H2/O2 reactions on natural gas vehicle catalysts—Influence of Rh addition to Pd. Appl. Catal. B Environ. 2012, 111–112, 424–432. [Google Scholar] [CrossRef]
- Na, K.; Song, C.; Switzer, C.; Cocker, D.R. Effect of ammonia on secondary organic aerosol formation from α-pinene ozonolysis in dry and humid conditions. Environ. Sci. Technol. 2007, 41, 6096–6102. [Google Scholar] [CrossRef] [PubMed]
- Na, K.; Song, C.; Cocker, D.R. Formation of secondary organic aerosol from the reaction of styrene with ozone in the presence and absence of ammonia and water. Atmos. Environ. 2006, 40, 1889–1900. [Google Scholar] [CrossRef]
- Qiao, M.; Xiaoxiao, L.; Chengqiang, Y.; Bo, L.; Yanbo, G.; Weijun, Z. The influences of ammonia on aerosol formation in the ozonolysis of styrene: Roles of Criegee intermediate reactions. R. Soc. Open Sci. 2018, 5, 5172171. [Google Scholar] [CrossRef]
- McDonald, B.C.; de Gouw, J.A.; Gilman, J.B.; Jathar, S.H.; Akherati, A.; Cappa, C.D.; Jimenez, J.L.; Lee-Taylor, J.; Hayes, P.L.; McKeen, S.A.; et al. Volatile chemical products emerging as largest petrochemical source of urban organic emissions. Science 2018, 359, 760–764. [Google Scholar] [CrossRef] [PubMed]
- Srivastava, D.; Vu, T.V.; Tong, S.; Shi, Z.; Harrison, R.M. Formation of secondary organic aerosols from anthropogenic precursors in laboratory studies. NPJ Clim. Atmos. Sci. 2022, 5, 22. [Google Scholar] [CrossRef]
- Pankow, J.F. An absorption-model of gas-particle partitioning of organic compounds in the atmosphere. Atmos. Environ. 1994, 28, 185–188. [Google Scholar] [CrossRef]
- Pankow, J.F. An absorption-model of the gas aerosol partitioning involved in the formation of secondary organic aerosol. Atmos. Environ. 1994, 28, 189–193. [Google Scholar] [CrossRef]
- Odum, J.R.; Jungkamp, T.P.W.; Griffin, R.J.; Forstner, H.J.L.; Flagan, R.C.; Seinfeld, J.H. Aromatics, reformulated gasoline, and atmospheric organic aerosol formation. Environ. Sci. Technol. 1997, 31, 1890–1897. [Google Scholar] [CrossRef]
- Takekawa, H.; Minoura, H.; Yamazaki, S. Temperature Dependence of Secondary Organic Aerosol Formation by Photo-Oxidation of Hydrocarbons. Atmos Environ. 2003, 37, 3413–3424. [Google Scholar] [CrossRef]
- Svendby, T.M.; Lazaridis, M.; Tørseth, K. Temperature dependent secondary organic aerosol formation from terpenes and aromatics. J. Atmos. Chem. 2008, 59, 25–46. [Google Scholar] [CrossRef]
- Bao, Z.E.; Xu, H.F.; Li, K.W.; Chen, L.H.; Zhang, X.; Wu, X.C.; Gao, X.; Azzi, M.; Cen, K.F. Effects of NH3 on secondary aerosol formation from toluene/NOx photo-oxidation in different O3 formation regimes. Atmos. Environ. 2021, 261, 11. [Google Scholar] [CrossRef]
- Carter, W.P.L.; Atkinson, R. Computer modeling study of incremental hydrocarbon reactivity. Environ. Sci. Technol. 1989, 23, 864–880. [Google Scholar] [CrossRef]
- Chang, T.Y.; Rudy, S.J. Ozone-forming potential of organic emissions from alternative-fueled vehicles. Atmos. Environ. 1990, 24, 2421–2430. [Google Scholar] [CrossRef]
- Carter, W.P.L. Development of ozone reactivity scales for volatile organic compounds. J. Air Waste Manage. 1994, 44, 881–899. [Google Scholar] [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the United States from 1988 to 2010. J. Air Waste Manage. 2018, 68, 1301–1316. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Y.; Xue, L.; Carter, W.P.L.; Pei, C.; Chen, T.; Mu, J.; Wang, Y.; Zhang, Q.; Wang, W. Development of ozone reactivity scales for volatile organic compounds in a Chinese megacity. Atmos. Chem. Phys. 2021, 21, 11053–11068. [Google Scholar] [CrossRef]
- Yamada, H.; Inomata, S.; Tanimoto, H. Refueling emissions from cars in Japan: Compositions, temperature dependence and effect of vapor liquefied collection system. Atmos. Environ. 2015, 120, 455–462. [Google Scholar] [CrossRef]
- Yamada, H.; Inomata, S.; Tanimoto, H.; Hata, H.; Tonokura, K. Estimation of refueling emissions based on theoretical model and effects of E10 fuel on refueling and evaporative emissions from gasoline cars. Sci. Total Environ. 2018, 622, 467–473. [Google Scholar] [CrossRef]
- Black, F.; Tejada, S.; Gurevich, M. Alternative fuel motor vehicle tailpipe and evaporative emissions composition and ozone potential. J. Air Waste Manag. Assoc. 1998, 48, 578–591. [Google Scholar] [CrossRef] [PubMed]
- Kajima, K.; Hirota, T.; Yakushiji, K.; Iwakiri, Y.; Oda, K.; Akutsu, Y. Effect of reformulated gasoline and methanol on exhaust emissions. SAE Tech. Pap. 1991, 100, 912431. [Google Scholar] [CrossRef]
- Hata, H.; Okada, M.; Funakubo, C.; Hoshi, J. Tailpipe VOC Emissions from late model gasoline passenger vehicles in the Japanese market. Atmosphere 2019, 10, 621. [Google Scholar] [CrossRef]
- Carter, W.P.L.; Heo, G. Development of revised SAPRC aromatics mechanisms. Report to the California Air Resources Board Contracts No. 07-730 and 08-326. 12 April 2012. Available online: https://intra.engr.ucr.edu/~carter/SAPRC/scales11.xls (accessed on 29 August 2024).
- Carter, W.P.L.; Heo, G. Development of revised SAPRC aromatic mechanisms. Atmos. Environ. 2013, 77, 404–414. [Google Scholar] [CrossRef]
Source | Condition | Temperature | NMHC | NOx | NH3 | EC | POA | SOA | NH4NO3 | O3 | SOA Yields | OH Exposure |
---|---|---|---|---|---|---|---|---|---|---|---|---|
[°C] | [mg kg-fuel−1] | [−] | [Molecules cm−3 h−1] | |||||||||
This study *1 | Base case | 23 | 161 | 97 | 25 | 2.3 | 1.1 | 46 | 189 | 1015 | 0.731 | 6.2 × 107 |
23 | 164 | 112 | 28 | 2.0 | 1.0 | 54 | 228 | 1091 | 0.833 | 6.0 × 107 | ||
NH3 denuder | 23 | 187 | 116 | 4 | 2.5 | 1.1 | 63 | 2 | 1093 | 0.866 | 6.3 × 107 | |
Base case | 0 | 562 | 119 | 25 | 3.6 | 1.5 | 74 | 82 | 587 | 0.597 | 3.3 × 107 | |
0 | 521 | 119 | 40 | 13.4 | 2.5 | 73 | 66 | 519 | 0.503 | 3.7 × 107 | ||
NH3 denuder | 0 | 546 | 109 | 0.6 | 7.1 | 1.9 | 79 | 3 | 585 | 0.729 | 3.0 × 107 | |
Base case | –7 | 763 | 92 | 23 | 11.0 | 2.3 | 36 | 47 | 215 | 0.372 | 1.9 × 107 | |
–7 | 1210 | 97 | 73 | 20.6 | 2.7 | 86 | 52 | 262 | 0.593 | 2.2 × 107 | ||
NH3 denuder | –7 | 1196 | 89 | 0.8 | 14.5 | 2.6 | 43 | 19 | 234 | 0.390 | 1.7 × 107 | |
Ref.a *2 | NEDC *3 | 22 | 1676–2064 | 123–131 | 94–102 | 0–0.4 | 0–0.4 | 1.3–2 | N.A. *4 | N.A. | 0.07–0.7 | 0.1 × 107 |
–7 | 5362–5778 | 384–408 | 111 | 4.5–5.1 | 1–4.9 | 13.4–38.2 | N.A. | N.A. | 0.18–0.35 | 0.1 × 107 | ||
Ref. *5 | 25 | 1750 ± 210 | 890 ± 140 | N.A. | 11.2–20.0 | 25.8–40.5 | 344–347 | N.A. | N.A. | N.A. | 1.2 × 107 | |
Ref. *6 | CSC70 | 23 | 4–360 | 34–352 | 4–223 | 0.08–62 | N.A. | 0–2154 | 0–5300 | N.A. | N.A. | 0.2–0.9 × 107 |
Ref. *7 | CVS-75 | 22 | 283–819 | 224–2702 | N.A. | 1.2–10 | 0.1–11 | 28–66 | 65–153 | N.A. | N.A. | 2.5 × 108 |
NEDC | 22 | 283–3104 | 224–2702 | N.A. | 0.9–12.5 | 0.1–9.8 | 12–66 | 20–135 | N.A. | N.A. | 2.5 × 108 | |
Ref. *8 | Pre–LEV | 25 | 2680–34,980 | 5440–19,640 | N.A. | 2.4–44.4 | 0.5–136.3 | 26.9–108 | N.A. | N.A. | N.A. | 0.5 × 107 |
LEV I | 25 | 230–17,820 | 1250–21,970 | N.A. | 0.8–122.2 | 0.1–106.2 | 10.1–131 | N.A. | N.A. | N.A. | 0.5 × 107 | |
LEV II | 25 | 80–740 | 80–630 | N.A. | 1.1–35.2 | 0.3–4.8 | 1.6–54.6 | N.A. | N.A. | N.A. | 0.5 × 107 | |
Ref. *9 | NEDC | 25 | N.A. | N.A. | N.A. | N.A. | 0.001–0.12 | 1–44 | N.A. | N.A. | 0.038–0.17 | 0.5 × 107 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Hagino, H.; Uchida, R. Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts. Atmosphere 2024, 15, 1061. https://doi.org/10.3390/atmos15091061
Hagino H, Uchida R. Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts. Atmosphere. 2024; 15(9):1061. https://doi.org/10.3390/atmos15091061
Chicago/Turabian StyleHagino, Hiroyuki, and Risa Uchida. 2024. "Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts" Atmosphere 15, no. 9: 1061. https://doi.org/10.3390/atmos15091061
APA StyleHagino, H., & Uchida, R. (2024). Effects of Ammonia Mitigation on Secondary Organic Aerosol and Ammonium Nitrate Particle Formation in Photochemical Reacted Gasoline Vehicle Exhausts. Atmosphere, 15(9), 1061. https://doi.org/10.3390/atmos15091061