Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Data
2.3. Method
2.3.1. Urban Heat Island
2.3.2. Ecological Cold Source
2.3.3. Surface Roughness Length
2.3.4. Sky View Factor
2.3.5. Urban Ventilation Potential
3. Results
3.1. Characteristics of Urban Climate
3.2. Assessment of Urban Wind Environment
3.2.1. Wind Rose in Zhengzhou City
3.2.2. Background of Wind Environment
3.2.3. Refine Wind Environment
3.3. Assessment of Urban Thermal Environment
3.3.1. Urban Heat Island
3.3.2. Ecological Cold Source
3.4. Assessment of Urban Ventilation Environment
3.4.1. Surface Roughness Length
3.4.2. Sky View Factor
3.4.3. Urban Ventilation Potential
3.5. Construction of Urban Ventilation Corridor
3.5.1. Construction Principle of Ventilation Corridor
3.5.2. Urban Ventilation Corridor System in Zhengzhou
4. Discussion
5. Conclusions
Author Contributions
Funding
Data Availability Statement
Conflicts of Interest
References
- Kalnay, E.; Cai, M. Impact of urbanization and land-use change on climate. Nature 2003, 423, 528–531. [Google Scholar] [CrossRef] [PubMed]
- Karl, T.; Diaz, H.; Kukla, G. Urbanization: Its detection and effect in the United States climate record. J. Clim. 1988, 1, 1099–1123. [Google Scholar] [CrossRef]
- Lim, Y.; Cai, M.; Kalnay, E.; Zhou, L. Observational evidence of sensitivity of surface climate changes to land types and urbanization. Geophy Res. Lett. 2005, 32, L22712. [Google Scholar] [CrossRef]
- Yang, X.; Hou, Y.; Chen, B. Observed surface warming induced by urbanization in east China. J. Geophys. Res. 2011, 116, D14113. [Google Scholar] [CrossRef]
- Sun, Y.; Zhang, X.; Ren, G.; Francis, W.; Hu, T. Contribution of urbanization to warming in China. Nat. Clim. Chang. 2016, 6, 706–709. [Google Scholar] [CrossRef]
- Miles, V.; Esau, I.; Miles, M. The urban climate of the largest cities of the European Arctic. Urban Clim. 2023, 48, 101423. [Google Scholar] [CrossRef]
- Han, L.; Zhou, W.; Li, W.; Li, L. Impact of urbanization level on urban air quality: A case of fine particles (PM2.5) in Chinese cities. Environ. Pollut. 2014, 194, 163–170. [Google Scholar] [CrossRef]
- Patra, S.; Sahoo, S.; Mishra, P.; Mahapatra, S. Impacts of urbanization on land use/cover changes and its probable implications on local climate and groundwater level. J. Urban Manag. 2018, 7, 70–84. [Google Scholar] [CrossRef]
- Song, B.; Park, K. Temperature trend analysis associated with land-cover changes using time-series data (1980–2019) from 38 weather stations in South Korea. Sustain. Cities Soc. 2021, 65, 102615. [Google Scholar] [CrossRef]
- Cui, L.; Shi, J. Urbanization and its environmental effects in Shanghai, China. Urban Clim. 2012, 2, 1–15. [Google Scholar] [CrossRef]
- Svensson, M.; Eliasson, I. Diurnal air temperatures in built-up areas in relation to urban planning. Landsc. Urban Plan. 2002, 61, 37–54. [Google Scholar] [CrossRef]
- Ngarambe, J.; Nganyiyimana, J.; Kim, I.; Santamouris, M.; Yun, G. Synergies between urban heat island and heat waves in Seoul: The role of wind speed and land use characteristics. PLoS ONE 2020, 15, e0243571. [Google Scholar] [CrossRef]
- Kumari, P.; Gary, V.; Kumar, R.; Kumar, K. Impact of urban heat island formation on energy consumption in Delhi. Urban Clim. 2021, 36, 100763. [Google Scholar] [CrossRef]
- Li, X.; Zhou, Y.; Yu, S.; Jia, G.; Li, H.; Li, W. Urban heat island impacts on building energy consumption: A review of approaches and findings. Energy 2019, 174, 407–419. [Google Scholar] [CrossRef]
- Heaviside, C.; Macintyre, H.; Vardoulakis, S. The Urban Heat Island: Implications for Health in a Changing Environment. Curr. Environ Health Rpt. 2017, 4, 296–305. [Google Scholar] [CrossRef] [PubMed]
- Badach, J.; Voordeckers, D.; Nyka, L.; Acker, M. A framework for Air Quality Management Zones—Useful GIS-based tool for urban planning: Case studies in Antwerp and Gdansk. Build. Environ. 2020, 174, 106743. [Google Scholar] [CrossRef]
- Ng, E.; Yuan, C.; Chen, L.; Ren, C.; Fung, J. Improving the wind environment in high-density cities by understanding urban morphology and surface roughness: A study in Hong Kong. Landsc. Urban Plan. 2011, 101, 59–74. [Google Scholar] [CrossRef]
- Yang, F.; Qian, F.; Lau, S. Urban form and density as indicators for summertime outdoor ventilation potential: A case study on high-rise housing in Shanghai. Build. Environ. 2013, 70, 122–137. [Google Scholar] [CrossRef]
- Gao, Y.; Yao, R.; Li, B.; Turkbeyler, E.; Luo, Q.; Short, A. Field studies on the effect of built forms on urban wind environments. Renew. Energy 2012, 46, 148–154. [Google Scholar] [CrossRef]
- Hang, J.; Li, Y. Ventilation strategy and air change rates in idealized high-rise compact urban areas. Build. Environ. 2010, 45, 2754–2767. [Google Scholar] [CrossRef]
- Rajagopalan, P.; Lim, K.; Jamei, E. Urban heat island and wind flow characteristics of a tropical city. Sol. Energy 2014, 107, 159–170. [Google Scholar] [CrossRef]
- Tong, Z.; Chen, Y.; Malkawi, A. Estimating natural ventilation potential for high-rise buildings considering boundary layer meteorology. Appl. Energ. 2017, 193, 276–286. [Google Scholar] [CrossRef]
- Matzarakis, A.; Mayer, H. Mapping of urban air paths for planning in Munich. Wiss. Ber. Inst. Meteorol. Klimafor Univ. Karlsr. 1992, 16, 13–22. [Google Scholar]
- Gál, T.; Unger, J. Detection of ventilation paths using high-resolution roughness parameter mapping in a large urban area. Build. Environ. 2009, 44, 198–206. [Google Scholar] [CrossRef]
- Suder, A.; Szymanowski, M. Determination of ventilation channels in urban area: A case study of Wrocław (Poland). Pure Appl. Geophys. 2014, 171, 965–975. [Google Scholar] [CrossRef]
- Osińska, K.; Zawalich, J. Analysis of land use changes of urban ventilation corridors in Warsaw in 1992–2015. Geogr Pol. 2016, 89, 345–358. [Google Scholar]
- Marzena, W.; Andreas, W.; Katarzyna, O. Detection of ventilation corridors using a spatio-temporal approach aided by remote sensing data. Eur. J. Remote Sens. 2017, 50, 254–267. [Google Scholar]
- Son, J.; Eum, J.; Kim, S. Wind corridor planning and management strategies using cold air characteristics: The application in Korean cities. Sustain. Cities Soc. 2022, 77, 103512. [Google Scholar] [CrossRef]
- Diem, N.; Diem, P.; Thien, P.; Downes, N. Monitoring Urban Heat Island Spatial Variability over Urban Structure Types–A Case Study from a Fast-growing City in the Vietnamese Mekong Delta. IOP Conf. Ser. Earth Environ. Sci. 2024, 1345, 012001. [Google Scholar] [CrossRef]
- Diem, P.; Hong, T.; Diem, N.; Downes, N. Assessing the Relationship Between Land Surface Temperature and Air Temperature for Thermal Comfort Analysis in Can Tho City: Implications for Sustainable Spatial Planning. IOP Conf. Ser. Earth Environ. Sci. 2024, 1345, 012002. [Google Scholar] [CrossRef]
- Katzschner, A.; Diem, N.K.; Dang, T.; Downes, N. The Challenge of Cooling Rapidly Growing Cities: The Case of Densification and Peri-Urbanisation in Ho Chi Minh City and Adaptation Responses. In Climate Change and Cooling Cities; Springer Nature: Singapore, 2023; pp. 115–127. [Google Scholar]
- Katzschner, L.; Burghardt, R.; Kupski, S.; Campe, S. Urban climate. Sustainable Ho Chi Minh City: Climate Policies for Emerging Mega Cities; Springer: Cham, Switzerland, 2016; pp. 117–131. [Google Scholar]
- Ng, E.; Katzschner, L.; Wang, U. Initial methodology of urban climatic mapping-urban climatic map and standards for wind environment-feasibility study. Tech. Rep. Plan. Dep. HKSAR 2007. [Google Scholar]
- Kress, R. Regional Luftaustauschprozesse und Ihre Bedeutung fur die Raumliche Planung; Institue fur Umwelschutz der Universitat Dortmund: Dortmund, Germany, 1979; pp. 154–168. [Google Scholar]
- Ren, C.; Yang, R.; Cheng, C.; Xing, P.; Fang, X.; Zhang, S.; Wang, H.; Shi, Y.; Zhang, X.; Kwok, Y.; et al. Creating breathing cities by adopting urban ventilation assessment and wind corridor plan—The implementation in Chinese cities. J. Wind. Eng. Ind. Aerod. 2018, 182, 170–188. [Google Scholar] [CrossRef]
- Ng, E. Policies and technical guidelines for urban planning of high-density cities—Air ventilation assessment (AVA) of Hong Kong. Build. Environ. 2009, 44, 1478–1488. [Google Scholar] [CrossRef]
- Liu, Y.; Xuan, C.; Xu, Y.; Fu, N.; Xiong, F.; Gan, L. Local climate effects of urban wind corridors in Beijing. Urban Clim. 2022, 43, 101181. [Google Scholar] [CrossRef]
- Gong, D.; Dai, X.; Zhou, L. Satellite-Based Optimization and Planning of Urban Ventilation Corridors for a Healthy Microclimate Environment. Sustainability 2023, 15, 15653. [Google Scholar] [CrossRef]
- Xie, P.; Liu, D.; Liu, Y.; Liu, Y. A Least Cumulative Ventilation Cost Method for Urban Ventilation Environment Analysis. Complexity 2020, 2020, 9015923. [Google Scholar] [CrossRef]
- Fang, Y.; Gu, K.; Qian, Z.; Sun, Z.; Wang, Y.; Wang, A. Performance evaluation on multi-scenario urban ventilation corridors based on least cost path. J. Urban Manag. 2021, 10, 3–15. [Google Scholar] [CrossRef]
- Zhang, S.; Fang, X.; Cheng, C.; Chen, L.; Zhang, L.; Yu, Y.; Li, L.; Luo, H. Research on the Planning Method and Strategy of Urban Wind and Heat Environment Optimization—Taking Shenzhen, a Sub-Tropical Megacity in Southern China, as an Example. Atmosphere 2022, 13, 1395. [Google Scholar] [CrossRef]
- Wang, W.; Wang, D.; Chen, H.; Wang, B.; Chen, X. Identifying urban ventilation corridors through quantitative analysis of ventilation potential and wind characteristics. Build. Environ. 2022, 214, 108943. [Google Scholar] [CrossRef]
- Liu, X.; Huang, B.; Li, R.; Zhang, J.; Gou, Q.; Zhou, T.; Huang, Z. Wind environment assessment and planning of urban natural ventilation corridors using GIS: Shenzhen as a case study. Urban Clim. 2022, 42, 101091. [Google Scholar] [CrossRef]
- Guo, F.; Zhang, H.; Fan, Y.; Zhu, P.; Wang, S.; Lu, X.; Jin, Y. Detection and evaluation of a ventilation path in a mountainous city for a sea breeze: The case of Dalian. Build. Environ. 2018, 145, 177–195. [Google Scholar] [CrossRef]
- Dang, B.; Liu, Y.; Lyu, H.; Zhou, X.; Du, W.; Xuan, C.; Xing, P.; Yang, R.; Xiong, F. Assessment of Urban Climate Environment and Configuration of Ventilation Corridor: A Refined Study in Xi’an. J. Meteor. Res. 2022, 36, 914–930. [Google Scholar] [CrossRef]
- Liu, Y.; Cheng, P.; Chen, P.; Zhang, S. Detection of wind corridors based on “Climatopes”: A study in central Ji’nan. Theor. Appl. Climatol. 2020, 142, 869–884. [Google Scholar] [CrossRef]
- Carpentieri, M.; Robins, A. Influence of urban morphology on air flow over building arrays. J. Wind. Eng. Ind. Aerodyn. 2015, 145, 61–74. [Google Scholar] [CrossRef]
- Palusci, O.; Monti, P.; Cecere, C.; Montazeri, H.; Blocken, B. Impact of morphological parameters on urban ventilation in compact cities: The case of the Tuscolano-Don Bosco district in Rome. Sci. Total Environ. 2022, 807, 150490. [Google Scholar] [CrossRef]
- Guo, A.; Yue, W.; Yang, J.; Li, M.; Xie, P.; He, T.; Zhang, M.; Yu, H. Quantifying the impact of urban ventilation corridors on thermal environment in Chinese megacities. Ecol. Indic. 2023, 156, 111072. [Google Scholar] [CrossRef]
- Gu, K.; Fang, Y.; Qian, Z.; Sun, Z.; Wang, A. Spatial planning for urban ventilation corridors by urban climatology. Ecosyst. Health Sust. 2020, 6, 1747946. [Google Scholar] [CrossRef]
- Li, X.; Lin, K.; Shu, Y.; Lin, X. Comparison of the influences of different ventilation corridor forms on the thermal environment in Wuhan City in summer. Sci. Rep. 2023, 13, 13416. [Google Scholar] [CrossRef]
- Chen, Y.; Lin, T.; Lin, C. A simple approach for the development of urban climatic maps based on the urban characteristics in Tainan, Taiwan. Int. J. Biometeorol. 2017, 61, 1029–1041. [Google Scholar] [CrossRef]
- Johnson, G.; Hunter, L. Urban wind flows: Wind tunnel and numerical simulations—A preliminary comparison. Environ. Modell. Softw. 1998, 13, 279–286. [Google Scholar] [CrossRef]
- Xu, W.; Zhao, L.; Zhang, Y.; Gu, Z. Investigation on air ventilation within idealized urban wind corridors and the influence of structural factors with numerical simulations. Sustainability 2023, 15, 13817. [Google Scholar] [CrossRef]
- Zheng, Z.; Ren, G.; Gao, H.; Yang, Y. Urban ventilation planning and its associated benefits based on numerical experiments: A case study in beijing, China. Build. Environ. 2022, 222, 109383. [Google Scholar] [CrossRef]
- Xu, Y.; Wang, W.; Chen, B.; Chang, M.; Wang, X. Identification of ventilation corridors using backward trajectory simulations in Beijing. Sustain. Cities Soc. 2021, 70, 102889. [Google Scholar] [CrossRef]
- Antoniou, N.; Montazeri, H.; Wigo, H.; Neophytou, M.; Blocken, B.; Sandberg, M. CFD and wind-tunnel analysis of outdoor ventilation in a real compact heterogeneous urban area: Evaluation using “air delay”. Build. Environ. 2017, 126, 355–372. [Google Scholar] [CrossRef]
- Chang, S.; Jiang, Q.; Zhao, Y. Integrating CFD and GIS into the Development of Urban Ventilation Corridors: A Case Study in Changchun City, China. Sustainability 2018, 10, 1814. [Google Scholar] [CrossRef]
- Hsieh, C.; Huang, H. Mitigating urban heat islands: A method to identify potential wind corridor for cooling and ventilation. Comput. Environ. Urban 2016, 57, 130–143. [Google Scholar] [CrossRef]
- Chen, L.; Hang, J.; Sandberg, M.; Claesson, L.; Sabatino, S.; Wigo, H. The impacts of building height variations and building packing densities on flow adjustment and city breathability in idealized urban models. Build. Environ. 2017, 118, 344–361. [Google Scholar] [CrossRef]
- Liu, W.; Zhang, G.; Jiang, Y.; Wang, J. Effective range and driving factors of the urban ventilation corridor effect on urban thermal comfort at unified scale with multisource data. Remote Sens. 2021, 13, 1783. [Google Scholar] [CrossRef]
- Wong, M.; Nichol, J.; To, P.; Wang, J. A simple method for designation of urban ventilation corridors and its application to urban heat island analysis. Build. Environ. 2010, 45, 1880–1889. [Google Scholar] [CrossRef]
- Yuan, C.; Ren, C.; Ng, E. GIS-based surface roughness evaluation in the urban planning system to improve the wind environment—A study in Wuhan, China. Urban Clim. 2014, 10, 585–593. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Cheng, C.; Luan, Q.; Du, W.; Xiao, X.; Wang, H. Research and application of city ventilation assessments based on satellite data and GIS technology: A case study of the Yanqi Lake Eco-city in Huairou District, Beijing. Meteorol. Appl. 2016, 23, 320–327. [Google Scholar] [CrossRef]
- Zhao, H.; Zhang, H.; Miao, C.; Ye, X.; Min, M. Linking Heat Source–Sink Landscape Patterns with Analysis of Urban Heat Islands: Study on the Fast-Growing Zhengzhou City in Central China. Remote Sens. 2018, 10, 1268. [Google Scholar] [CrossRef]
- Cai, E.; Bi, Q.; Lu, J.; Hou, H. The spatiotemporal characteristics and rationality of emerging megacity urban expansion: A case study of Zhengzhou in Central China. Front. Environ. Sci. 2022, 10, 860814. [Google Scholar] [CrossRef]
- Liu, Y.; Fang, X.; Xu, Y.; Zhang, S.; Luan, Q. Assessment of surface urban heat island across China’s three main urban agglomerations. Theor. Appl. Climatol. 2018, 133, 473–488. [Google Scholar] [CrossRef]
- Grimmond, C.; Oke, T. Aerodymamic Properties of Urban Areas Derived from Analysis of Surface Form. J. Appl. Meteorol. 1998, 38, 1262–1292. [Google Scholar] [CrossRef]
- Zakšek, K.; Oštir, K.; Kokalj, Ž. Sky-View Factor as a Relief Visualization Technique. Remote Sens. 2011, 3, 398–415. [Google Scholar] [CrossRef]
- Nichol, J.; Wong, M. Spatial variability of air temperature and appropriate resolution for satellite-derived air temperature estimation. Int. J. Remote Sens. 2008, 29, 7213–7223. [Google Scholar] [CrossRef]
- Huang, H.; Yang, H.; Chen, Y.; Chen, T.; Bai, L.; Peng, Z. Urban green space optimization based on a climate health risk appraisal—A case study of Beijing city, China. Urban For. Urban Gree. 2021, 62, 127154. [Google Scholar] [CrossRef]
- Hathway, E.; Sharples, S. The interaction of rivers and urban form in mitigating the Urban Heat Island effect: A UK case study. Build. Environ. 2012, 58, 14–22. [Google Scholar] [CrossRef]
- Yu, C.; Hien, W. Thermal benefits of city parks. Energy Buildings 2006, 38, 105–120. [Google Scholar] [CrossRef]
- Cheng, Y.; Shen, L.; Teng, M.; Liu, H.; Cheng, W.; Zhang, B.; Wu, C. How to use lake breeze circulations to improve urban natural ventilation: A case study in a typical inland multi-lake megacity. Landsc. Urban Plan. 2023, 230, 104628. [Google Scholar] [CrossRef]
Grade | Iday/°C | Imth,ssn/°C | Significance |
---|---|---|---|
1 | (∞, −7.0] | (∞, −5.0] | ESCI |
2 | (−7.0, −5.0] | (−5.0, −3.0] | MSCI |
3 | (−5.0, −3.0] | (−3.0, −1.0] | WCI |
4 | (−3.0, 3.0] | (−1.0, 1.0] | N |
5 | (3.0, 5.0] | (1.0, 3.0] | WHI |
6 | (5.0, 7.0] | (3.0, 5.0] | MSHI |
7 | (7.0, ∞) | (5.0, ∞) | ESHI 1 |
Grade | Land-Use-Types | S/m2 | Significance |
---|---|---|---|
0 | - | (∞, 3600) | N |
1 | Water body | [3600, ∞) | ESECS |
2 | Forest or green land | [20,000, ∞) | MSECS |
3 | Forest or green land | [16,000, 20,000) | GECS |
4 | Forest or green land | [12,000, 16,000) | WECS 1 |
Crops | [12,000, ∞) |
Grade | Z0/m | SVF | Significance |
---|---|---|---|
1 | (1.0, ∞) | -- | None or poor |
2 | (0.5, 1.0] | (0.65, ∞) | Relatively poor |
3 | (0.5, 1.0] | [0.65, ∞) | General |
4 | (∞, 0.5] | (∞, 0.65) | Relatively high |
5 | (∞, 0.5] | [0.65, ∞) | High |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Pan, P.; Li, F.; Zhu, Y.; Xu, P.; Shang, Y.; Liao, R. Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China. Atmosphere 2024, 15, 1034. https://doi.org/10.3390/atmos15091034
Pan P, Li F, Zhu Y, Xu P, Shang Y, Liao R. Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China. Atmosphere. 2024; 15(9):1034. https://doi.org/10.3390/atmos15091034
Chicago/Turabian StylePan, Pan, Fengxiu Li, Yeyu Zhu, Pengpeng Xu, Yulong Shang, and Rongwei Liao. 2024. "Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China" Atmosphere 15, no. 9: 1034. https://doi.org/10.3390/atmos15091034
APA StylePan, P., Li, F., Zhu, Y., Xu, P., Shang, Y., & Liao, R. (2024). Identification of Urban Ventilation Corridor System Using Meteorology and GIS Technology: A Case Study in Zhengzhou, China. Atmosphere, 15(9), 1034. https://doi.org/10.3390/atmos15091034