Evolution of Dew and Rain Water Resources in Gujarat (India) between 2005 and 2021
Abstract
:1. Introduction
2. Study Area
3. Meteorological Data and Methods
3.1. Dew Yield Estimation from Meteorological Data
Sites | Start Date | End Date | Abbreviation | Köppen Geiger Climate | Lat. | Long. | Number of Dew Days | Sum Dew (Meas; mm) | Sum Dew (Kriging; mm) | Alt (m) | Distance from the Sea (km) |
---|---|---|---|---|---|---|---|---|---|---|---|
Panandhro 1 | 08/10/05 | 17/04/06 | PH | BWh | 23°40′01″ N | 68°46′01″ E | 69 | 11.7 8; 14.2 9 | - | 52 | 39 |
Kothara 2 | 01/10/04 | 31/05/05 | KO | BWh | 23°13′23″ N | 68°45′00″ E | 72 3; 74 4 | 5.37 3; 7.24 4 | 5.74 | 5 | 21 |
Mithapur 5 | 10/2006 | 05/2007 | MI | BWh | 22°25′30″ N | 69°01′26″ E | 89 | 4.03 | - | 4 | 2 |
Suthari 10 | 01/10/05 | 31/05/06 | - | BWh | 23°02’02” N | 68°54’58″ E | - | 4.6 | 3.9 | 37 | 2 |
DA_IICT, Gandhinagar 6 | 06/12/20 | 31/03/21 | - | BSh/Aw | 23°12′23″ N | 72°38′51″ E | 95 | 4.3 | - | 76 | 15 |
DA_IICT, Gandhinagar 7 | 09/12/21 | 31/03/21 | - | BSh/Aw | 23°12′23″ N | 72°38′51″ E | 55 | 3.62 | - | 76 | 15 |
Balva 6 | 22/12/20 | 31/03/21 | - | BSh/Aw | 23°14′35″ N | 72°26′15″ E | 82 | 7.62 | - | 69 | 15 |
Mehsana 6 | 29/12/20 | 31/03/21 | - | BSh/Aw | 23°34′08″ N | 72°25′12″ E | 19 | 0.88 | - | 90 | 60 |
Ahmadabad 6 | 14/01/21 | 31/03/21 | - | BSh/Aw | 23°00′16″ N | 72°37′33″ E | 11 | 0.11 | - | 55 | 8 |
Rajkot 6 | 24/01/21 | 26/04/21 | - | BSh | 22°24′57″ N | 70°47′17″ E | 86 | 3.47 | - | 113 | 12 |
Porbandar 6 | 25/01/21 | 30/04/21 | - | BSh | 21°38′51″ N | 69°39′40″ E | 92 | 8.24 | - | 4 | 0 |
Junagadh 6 | 24/01/21 | 30/04/21 | - | BSh | 21°30′46″ N | 70°27′40″ E | 92 | 1.72 | - | 84 | 30 |
Jamnagar 6 | 25/01/21 | 30/04/21 | - | BSh | 22°31′33″ N | 69°59′05″ E | 89 | 11.98 | - | 5 | 8 |
3.2. Extraction of Meteorological Data
3.3. Dew Volume Measurements
3.4. Kriging Maps
4. Dew Results
4.1. Significant Meteorological Data
4.2. Dew Volume Maps
4.3. Dew Volume Evolution
4.4. Comparison with Direct Measurements
4.4.1. Map of Historical Dew Patterns in India
4.4.2. Kutch District
4.4.3. Other Data
4.4.4. Present Study
5. Rain Results
6. Dew–Rain Correlations
6.1. Correlation in Dew and Rain Evolutions
6.2. Ratio of Dew and Rain Volume Contributions
7. Discussion
7.1. Dew and Relative Humidity
7.2. Dew and Monsoon Interactions
7.3. Evolution and Tendencies for Future Years
8. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A. Glossary and Acronyms
Latin Symbols | Units | Definition |
L m−2 h−1 or mm h−1 | dew volumic rate per unit surface area rate during ∆t | |
m s−1 | windspeed at 10 m above the ground | |
m s−1 | windspeed at z above the ground | |
∆h | L m−2 or mm | dew volume per unit surface area per time ∆t |
∆t | hour h. | measurement period |
Card | number of elements | |
COVID-19 | COronaVIrus Disease of 2019 | |
DA-IICT | Dhirubhai Ambani Institute of Information and Communication Technology | |
h | L m−2 or mm | dew volume per unit surface area |
H | km | site elevation |
L m−2 h−1 or mm h−1 | convective heat losses air/condenser | |
LDPE | low density polyethylene | |
N | okta | cloud cover |
p | number of measured data | |
p | number of studied days | |
PVC | polyvinyl chloride | |
L m−2 h−1 or mm h−1 | radiative cooling energy | |
S0 | m | predicted location |
sum (value) | value unit × time unit | time cumulated values (integral) |
t | hour h., days d., month mth., year yr. | time |
tdew | % | fraction of dew days |
Ta | °C | air temperature |
Td | °C | dew point temperature |
tdew | number of dewy days | |
UV | Ultraviolet | |
V10 | m s−1 | wind speed at 10 m elevation |
WHO | World Health Organization | |
WU | Weather Underground | |
z | m | height above the ground |
Z(si) | value unit | measured value at the ith location |
zc | m | roughness length where V = 0 |
Greek symbols | Units | Definition |
semi-variogram | ||
ϵ(N) | mean dew ratio | |
λi | weighing coefficient |
References
- Mekonnen, M.M.; Hoekstra, A.Y. Four billion people facing severe water scarcity. Sci. Adv. 2016, 2, e1500323. [Google Scholar] [CrossRef]
- Kuzma, S.; Bierkens, M.F.P.; Lakshman, S.; Luo, T.; Saccoccia, L.; Sutanudjaja, E.H.; Van Beek, R. Aqueduct 4.0: Updated Decision-Relevant Global Water Risk Indicators; World Resources Institute: Washington, DC, USA, 2023. [Google Scholar] [CrossRef]
- Guo, Y.; Yuan, B.; Su, A.; Shao, C.; Gao, Y. Calibration for Improving the Medium-Range Soil Temperature Forecast of a Semiarid Region over Tibet: A Case Study. Atmosphere 2024, 15, 591. [Google Scholar] [CrossRef]
- Santanello, J.A., Jr.; Dirmeyer, P.A.; Ferguson, C.R.; Findell, K.L.; Tawfik, A.B.; Berg, A.; Ek, M.; Gentine, P.; Guillod, B.P.; Van Heerwaarden, C.; et al. Land–atmosphere interactions: The LoCo perspective. Bull. American Meteorol. Soc. 2018, 99, 1253–1272. [Google Scholar] [CrossRef]
- Ali, H.; Fowler, H.J.; Mishra, V. Global observational evidence of strong linkage between dew point temperature and precipitation extremes. Geophys. Res. Lett. 2018, 45, 12–320. [Google Scholar] [CrossRef]
- Guo, Y.; Shao, C.; Su, A. Comparative Evaluation of Rainfall Forecasts during the Summer of 2020 over Central East China. Atmosphere 2023, 14, 992. [Google Scholar] [CrossRef]
- Beysens, D. Dew Water; River Publishers: Gistrup, Denmark, 2018. [Google Scholar]
- Kidron, G.J.; Kronenfeld, R.; Starinsky, A.; Xiao, B.; Muselli, M.; Beysens, D. Even in a dew desert: Dewfall does not provide sufficient moisture for biocrust growth–Evidence from direct measurements and a meteorological model. J. Hydrol. 2023, 627, 130450. [Google Scholar] [CrossRef]
- Vuollekoski, H.; Vogt, M.; Sinclair, V.A.; Duplissy, J.; Järvinen, H.; Kyrö, E.M.; Makkonen, R.; Petäjä, T.; Prisle, N.L.; Räisänen, P.; et al. Estimates of global dew collection potential on artificial surfaces. Hydrol. Earth Syst. Sci. 2015, 19, 601–613. [Google Scholar] [CrossRef]
- Valjarević, A.; Filipović, D.; Valjarević, D.; Milanović, M.; Milošević, S.; Živić, N.; Lukić, T. GIS and remote sensing techniques for the estimation of dew volume in the Republic of Serbia. Meteorol. Appl. 2020, 27, e1930. [Google Scholar] [CrossRef]
- Valjarević, A.; Milanović, M.; Valjarević, D.; Basarin, B.; Gribb, W.; Lukić, T. Geographical information systems and remote sensing methods in the estimation of potential dew volume and its utilization in the United Arab Emirates. Arab. J. Geosci. 2021, 14, 1–15. [Google Scholar] [CrossRef]
- Sharan, G. Harvesting dew with radiation cooled condenser to supplement drinking water supply in semi-arid north-west India. Int. J. Serv. Learn. Eng. (IJSLE) 2011, 6, 132–152. [Google Scholar]
- Sharan, G.; Clus, O.; Singh, S.; Muselli, M.; Beysens, D. Very large dew and rain collector in the Kutch area (Gujarat, India). J. Hydrol. 2011, 405, 171–181. [Google Scholar] [CrossRef]
- Sharan, G.; Roy, A.K.; Royon, L.; Mongruel, A.; Beysens, D. Dew plant for bottling water. J. Cleaner Prod. 2017, 155, 83–92. [Google Scholar] [CrossRef]
- Sharan, G.; Beysens, D.; Milimouk-Melnytchouk, I. A study of dew water yields on Galvanized iron roofs in Kothara (North-West India). J. Arid Environ. 2007, 69, 259–269. [Google Scholar] [CrossRef]
- Sharan, G.; Shah, R.; Milimouk-Melnytchouk, I.; Beysens, D. Roofs as dew collectors: I. Corrugated galvanized iron roofs in Kothara and Suthari (NW India). In Proceedings of the 4th Conference on Fog, Fog Collection and Dew, La Serena, Chile, 23–27 July 2007; p. 301. [Google Scholar]
- Raman, C.R.V.; Venkataraman, S.; Krishnamurthy, V. Dew over India and its contribution to winter-crop water balance. Agric. Meteo. 1973, 11, 17–35. [Google Scholar] [CrossRef]
- Lekouch, I.; Lekouch, K.; Muselli, M.; Mongruel, A.; Kabbachi, B.; Beysens, D. Rooftop dew, fog and rain collection in southwest Morocco and predictive dew modeling using neural networks. J. Hydrol 2012, 448–449, 60–72. [Google Scholar] [CrossRef]
- Tuure, J.; Korpela, A.; Hautala, M.; Hakojärvi, M.; Mikkola, H.; Räsänen, M.; Duplissy, J.; Pellikka, P.; Petäjä, T.; Kulmala, M.; et al. Comparison of surface foil materials and dew collectors location in an arid area: A one-year field experiment in Kenya. Agric. Forest Meteorol. 2019, 276, 107613. [Google Scholar] [CrossRef]
- Tomaszkiewicz, M. Abou Najma, M.; Beysens, D.; Alameddine, L.; Bou Zeid, E.; El-Fadel. M. Projected climate change impacts upon dew yield in the Mediterranean basin. Sci. Total Environ 2016, 566–567, 1339–1348. [Google Scholar]
- Muselli, M.; Lekouch, I.; Beysens, D. Physical and Chemical Characteristics of Dew and Rain in North-West Africa with Focus on Morocco: Mapping Past and Future Evolution (2005–2100). Atmosphere 2022, 13, 1974. [Google Scholar] [CrossRef]
- Rasoafaniry, A.; Muselli, M.; Beysens, D. Climate Change and Dew and Rain Evolution in Semi-arid South-Western Madagascar between 1991 and 2033 (Extrapolated). Atmosphere 2024, 15, 784. [Google Scholar] [CrossRef]
- Atashi, N.; Rahimi, D.; Goortani, B.M.; Duplissy, J.; Vuollekoski, H.; Kulmala, M.; Vesala, T.; Hussein, T. Spatial and temporal investigation of dew potential based on long-term model simulations in Iran. Water 2019, 11, 2463. [Google Scholar] [CrossRef]
- Atashi, N.; Rahimi, D.; Al Kuisi, M.; Jiries, A.; Vuollekoski, H.; Kulmala, M.; Vesala, T.; Hussein, T. Modeling long-term temporal variation of dew formation in Jordan and its link to climate change. Water 2020, 12, 2186. [Google Scholar] [CrossRef]
- Duvdevani, S. An optical method of dew estimation. Q. J. R. Meteorol. Soc. 1947, 73, 282–286. [Google Scholar] [CrossRef]
- Sharan, G. Private communication. 2007. [Google Scholar]
- Weather and Climate. 2023. Available online: https://tcktcktck.org/india/gujarat#::text=Gujarat%20Cli-mate%20Summary,3.98%25%20higher%20than%20India’s%20averages (accessed on 1 April 2023).
- Beysens, D. Estimating dew yield worldwide from a few meteo data. Atmos. Res. 2016, 167, 146–155. [Google Scholar] [CrossRef]
- Trosseille, J.; Mongruel, A.; Royon, L.; Beysens, D. Effective surface emissivity during dew water condensation. Int. J. Heat Mass Transf. 2022, 183, 122078. [Google Scholar] [CrossRef]
- Available online: https://www.opur.cloud/ (accessed on 21 July 2024).
- World Meteorological Organization. 2024. Available online: https://wmo.int/about-us/governance/technical-commissions/standards-and-recommended-practices (accessed on 19 July 2024).
- Pal Arya, S. Introduction to Micrometeorology; Academic Press: San Diego, CA, USA, 1988; 307p. [Google Scholar]
- Weather Underground Database. 2022. Available online: https://www.wunderground.com (accessed on 13 February 2021).
- ERA/ECMWS Copernicus Database. Available online: https://cds.climate.copernicus.eu/cdsapp#!/dataset/reanalysis-era5-single-levels?tab=overview (accessed on 4 February 2021).
- NOAA. 2022. Available online: https://forecast.weather.gov/glossary.php (accessed on 13 February 2021).
- Monteith, J.L. Dew. Q. J. R. Meteorol. Soc. 1957, 83, 322–341. [Google Scholar] [CrossRef]
- Beysens, D.; Milimouk, I.; Nikolayev, V.; Muselli, M.; Marcillat, J. Using radiative cooling to condense atmospheric vapor: A study to improve water yield. J. Hydrol. 2003, 276, 1–11. [Google Scholar] [CrossRef]
- Howell, J.C.; Yizhaq, T.; Drechsler, N.; Zamir, Y.; Beysens, D.; Shaw, J.A. Generalized Nighttime Radiative Deficits. J. Hydrol. 2021, 603, 126971. [Google Scholar] [CrossRef]
- Maestre-Valero, J.F.; Ragab, R.; Martınez-Alvarez, V.; Baille, A. Estimation of dew yield from radiative condensers by means of an energy balance model. J. Hydrol 2012, 460–461, 103–109. [Google Scholar] [CrossRef]
- Belkiri, L.; Tiri, A.; Mouni, L. Spatial distribution of the groundwater quality using Kriging and Co-Kriging interpolations. Ground W. Sustain. Dev 2020, 11, 100473. [Google Scholar] [CrossRef]
- Martinez, W.A.; Melo, C.E.; Melo, O.O. Median Polish Kriging for space–time analysis of precipitation. Spat. Stat. 2017, 19, 1–20. [Google Scholar] [CrossRef]
- Pue, J.D.; Botula, Y.D.; Nguyen, P.M.; Meirvenne, M.V.; Cornelis, W.M. Introducing a Kriging-based Gaussian Process approach in pedotransfer functions: Evaluation for the prediction of soil water retention with temperate and tropical datasets. J. Hydrol. 2021, 597, 125770. [Google Scholar] [CrossRef]
- Amani, A.; Lebel, T. Lagrangian Kriging for the estimation of Sahelian rainfall at small time steps. J. Hydrol. 1997, 192, 125–157. [Google Scholar] [CrossRef]
- Lima, C.H.R.; Kwon, H.H.; Kim, Y.T. A Bayesian Kriging model applied for spatial downscaling of daily rainfall from GCMs. J. Hydrol. 2021, 597, 126095. [Google Scholar] [CrossRef]
- Bargaoui, Z.; Chebbi, A. Comparison of two Kriging interpolation methods applied to spatiotem-poral rainfall. J. Hydrol. 2009, 365, 56–73. [Google Scholar] [CrossRef]
- Lepioufle, J.M.; Leblois, E.; Creutin, J.D. Variography of rainfall accumulation in presence of advection. J. Hydrol 2012, 464–465, 494–504. [Google Scholar] [CrossRef]
- Van de Beek, C.Z.; Leijnse, H.; Torfs, P.J.J.F.; Uijlenhoet, R. Seasonal semi-variance of Dutch rainfall at hourly to daily scales. Adv. Water Resour. 2012, 45, 76–85. [Google Scholar] [CrossRef]
- Rahmawati, N. Space-time variogram for daily rainfall estimates using rain gauges and satellite data in mountainous tropical Island of Bali, Indonesia (Preliminary Study). J. Hydrol. 2020, 590, 125177. [Google Scholar] [CrossRef]
- Goovaerts, P. Geostatistics for Natural Resources Evaluation; Oxford University Press: New York, NY, USA, 1997; 500p. [Google Scholar]
- He, S.; Richards, K. The role of dew in the monsoon season assessed via stable isotopes in an alpine meadow in Northern Tibet. Atmos. Res. 2015, 151, 101–109. [Google Scholar] [CrossRef]
- Wenguang, Z.; Jingyi, M.; Bo, L.; Shichun, Z.; Jing, Z.; Ming, J.; Xianguo, L. Sources of monsoon precipitation and dew assessed in a semiarid area via stable isotopes. Hydrol. Proc. 2017, 31, 1990–1999. [Google Scholar] [CrossRef]
- Yang, K.; Guyennon, N.; Ouyang, L.; Tian, L.; Tartari, G.; Salerno, F. Impact of summer monsoon on the elevation-dependence of meteorological variables in the south of central Himalaya. Int. J. Clim. 2018, 38, 1748–1759. [Google Scholar] [CrossRef]
- Muselli, M.; Beysens, D. Mapping past, present and future dew and rain water resources for biocrust evolution in southern Africa. J. Hydrol. Hydromech. 2021, 69, 400–420. [Google Scholar] [CrossRef]
- Lal, M. Global climate change: India’s monsoon and its variability. J. Environ. Stud. Policy 2003, 6, 1–34. [Google Scholar]
- Loo, Y.Y.; Billa, L.; Singh, A. Effect of climate change on seasonal monsoon in Asia and its impact on the variability of monsoon rainfall in Southeast Asia. Geosci. Front. 2015, 6, 817–823. [Google Scholar] [CrossRef]
Country | Sites | Period of Data | Abbrev. | Köppen Geiger Climate | Dew (D) and/or Rain (R) | Lat. | Long. | Lat. Dec. | Long. Dec. | Alt (m) | Dew Data Time Step (h) | Distance from Sea (km) |
---|---|---|---|---|---|---|---|---|---|---|---|---|
India | Ahmadabad | 2005–2021 | AH | BSh/Aw | D/R | 23°04′38″ N | 72°38′05″ E | 23.077 | 72.635 | 58 | 0.5–1 | 83 |
India | Bhuj 1 | 2005–2021 | BH | BSh | D/R | 23°17′16″ N | 69°40′13″ E | 23.288 | 69.670 | 82 | 3 | 47 |
India | Vadodara | 2005–2021 | VA | BSh/Aw | D/R | 22°19′46″ N | 73°13′10″ E | 22.329 | 73.219 | 39 | 0.5–1 | 25 |
India | Bhavnagar 1 | 2005–2021 | BV | BSh | D/R | 21°45′08″ N | 72°11′07″ E | 21.752 | 72.185 | 13 | 3 | 12 |
India | Daman 1 | 2005–2021 | DA | Aw | D/R | 20°26′04″ N | 72°50′36″ E | 20.434 | 72.843 | 10 | 3 | 2 |
India | Jamnagar 1 | 2005–2021 | JA | BSh | D/R | 22°27′56″ N | 70°00′45″ E | 22.466 | 70.013 | 21 | 3 | 10 |
India | Kandla 1 | 2005–2021 | KA | BWh | D/R | 23°06′46″ N | 70°06′01″ E | 23.113 | 70.100 | 29 | 3 | 2 |
India | Junagadh 1 | 2005–2021 | JU | BSh | D/R | 21°19′01″ N | 70°16′13″ E | 21.317 | 70.270 | 51 | 3 | 59 |
India | Porbandar 1 | 2005–2021 | PO | BSh | D/R | 21°38′55″ N | 69°39′26″ E | 21.649 | 69.657 | 5 | 3 | 1 |
India | Rajkot 1 | 2005–2021 | RA | BSh | D/R | 22°18′33″ N | 70°46′46″ E | 22.309 | 70.779 | 135 | 3 | 71 |
India | Surat 1 | 2005–2021 | SU | Aw | D/R | 21°7′3.6″ N | 72°44′43″ E | 21.117 | 72.740 | 5 | 3 | 17 |
Pakistan | Karachi | 2005–2021 | KR | BWh | D/R 2 | 24°54′24″ N | 67°09′39″ E | 24.907 | 67.161 | 21 | 0.5 | 10 |
India | New Delhi | 2005–2021 | NE | BSh | D/R 2 | 28°33′00″ N | 77°05′00″ E | 28.550 | 77.083 | 220 | 0.5 | 925 |
India | Jaipur | 2005–2021 | JP | BSh | D/R 2 | 26°49′27″ N | 75°48′44″ E | 26.824 | 75.812 | 385 | 0.5–1 | 794 |
India | Gwalior 1 | 2005–2021 | GW | Csa | D/R 2 | 26°17′36″ N | 78°13′40″ E | 26.293 | 78.228 | 188 | 0.5–3 | 709 |
October–April | 2005–2013 (Nmeas) | 2005–2013 (N = 1) | 2014–2021 (Missing Data N = 1) | 2005–2021 (Missing Data N = 1) |
---|---|---|---|---|
min | 0.7 | 1.0 | 2.1 | 2.1 |
max | 8.4 | 10.4 | 18.0 | 12.2 |
mean | 3.4 | 3.4 | 5.8 | 4.6 |
Std. Deviation | 2.3 | 2.5 | 4.6 | 2.6 |
median | 2.1 | 2.5 | 4.6 | 3.5 |
Site | Oct. | Nov. | Dec. | Jan. | Feb. | March | April | Sum | |
---|---|---|---|---|---|---|---|---|---|
New Delhi | Sharan | 1.17 | 2.02 | 2.73 | 2.32 | 1.38 | 0.56 | 0.07 | 10.25 |
Our Study | 0.46 | 0.76 | 1.93 | 2.67 | 1.76 | 0.79 | 0.10 | 8.47 | |
Vadodara | Sharan | 0.84 | 0.51 | 0.13 | 0.08 | 0.12 | 0.07 | 0.05 | 1.79 |
Our Study | 0.34 | 0.29 | 0.41 | 0.26 | 0.11 | 0.03 | 0.06 | 1.50 | |
Surat | Sharan | 1.82 | 1.01 | 0.83 | 1.28 | 0.97 | 1.54 | 0.73 | 8.19 |
Our Study | 0.13 | 0.17 | 0.29 | 0.29 | 0.16 | 0.26 | 0.60 | 1.90 | |
Junagadh | Sharan | 0.70 | 0.57 | 0.13 | 0.36 | 0.34 | 0.20 | 0.11 | 2.42 |
Our Study | 0.99 | 0.40 | 0.33 | 0.42 | 1.05 | 1.74 | 1.88 | 6.81 | |
Rajkot | Sharan | 1.13 | 0.52 | 0.16 | 0.37 | 0.55 | 0.43 | 0.19 | 3.37 |
Our Study | 1.21 | 0.26 | 0.58 | 0.50 | 0.89 | 0.83 | 0.74 | 5.01 | |
Bhuj | Sharan | 1.62 | 0.99 | 0.67 | 0.63 | 0.82 | 0.90 | 1.37 | 6.99 |
Our Study | 0.47 | 0.10 | 0.18 | 0.25 | 0.56 | 0.90 | 0.95 | 3.41 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Budhbhatti, R.; Roy, A.K.; Muselli, M.; Beysens, D. Evolution of Dew and Rain Water Resources in Gujarat (India) between 2005 and 2021. Atmosphere 2024, 15, 989. https://doi.org/10.3390/atmos15080989
Budhbhatti R, Roy AK, Muselli M, Beysens D. Evolution of Dew and Rain Water Resources in Gujarat (India) between 2005 and 2021. Atmosphere. 2024; 15(8):989. https://doi.org/10.3390/atmos15080989
Chicago/Turabian StyleBudhbhatti, Rupal, Anil K. Roy, Marc Muselli, and Daniel Beysens. 2024. "Evolution of Dew and Rain Water Resources in Gujarat (India) between 2005 and 2021" Atmosphere 15, no. 8: 989. https://doi.org/10.3390/atmos15080989
APA StyleBudhbhatti, R., Roy, A. K., Muselli, M., & Beysens, D. (2024). Evolution of Dew and Rain Water Resources in Gujarat (India) between 2005 and 2021. Atmosphere, 15(8), 989. https://doi.org/10.3390/atmos15080989