An Interseasonal Comparison of Soil Respiration in Xeric and Mesic Pine Forest Ecosystems in Central Siberia
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Field Measurements
2.3. Data Analysis
3. Results
3.1. Meteorological Characteristics
- HTC > 1.0—“Wet seasons”: 2015, 2017, 2020–2022;
- HTC < 1.0—“Dry seasons”: 2012, 2013, 2016.
3.2. Soil CO2 Emission Dynamics in Lichen Pine Forest
3.3. Soil CO2 Emission Dynamics in Feather Moss Pine Forest
3.4. Soil Microclimate Factors and Emission Rates
3.5. Inter-Seasonal Soil Emissions
4. Discussion
4.1. Seasonal Soil CO2 Emission Dynamics of the Xeric and Mesic Sites: Dry and Wet Seasons
4.2. Microclimatic Factors Impact on Soil CO2 Emissions
4.3. Cumulative CO2 Emissions during Dry and Wet Seasons
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Hisano, M.; Ryo, M.; Chen, X.; Chen, H.Y.H. Rapid functional shifts across high latitude forests over the last 65 years. Glob. Chang. Biol. 2021, 27, 3846–3858. [Google Scholar] [CrossRef]
- Sulla-Menashe, D.; Woodcock, C.E.; Friedl, M.A. Canadian boreal forest greening and browning trends: An analysis of biogeographic patterns and the relative roles of disturbance versus climate drivers. Environ. Res. Lett. 2018, 13, 014007. [Google Scholar] [CrossRef]
- Fan, S.; Gloor, M.; Mahlman, J.; Pacala, S.; Sarmiento, J.; Takashi, T.; Peng, T. A large terrestrial carbon sink in North America implied by atmospheric and oceanic carbon dioxide data and models. Science 1998, 282, 442–446. [Google Scholar] [CrossRef]
- Pan, Y.; Birdsey, R.; Fang, J.; Houghton, R.; Kauppi, P.E.; Kurz, W.A.; Phillips, O.L.; Shvidenko, A.; Lewis, S.L.; Canadell, J.G.; et al. A large and persistent carbon sink in the world’s forests. Science 2011, 333, 988–993. [Google Scholar] [CrossRef] [PubMed]
- Tupek, B.; Launiainen, S.; Peltoniemi, M.; Sievänen, R.; Perttunen, J.; Kulmala, L.; Penttilä, T.; Lindroos, A.J.; Hashimoto, S.; Lehtonen, A. Evaluating CENTURY and Yasso soil carbon models for CO2 emissions and organic carbon stocks of boreal forest soil with Bayesian multi-model inference. Eur. J. Soil Sci. 2019, 70, 847–858. [Google Scholar] [CrossRef]
- Jones, A.; Stolbovoy, V.; Tarnocai, C.; Broll, G.; Spaargaren, O.; Montanarella, L. Soil Atlas of the Northern Circumpolar Region; European Commission, Office for Official Publications of the European Communities: Luxembourg, 2009; 142p. [Google Scholar]
- De Vos, B.; Cools, N.; Ilvesniemi, H.; Vesterdal, L.; Vanguelova, E.; Camicelli, S. Benchmark values for forest soil carbon stocks in Europe: Results from a large scale forest soil survey. Geoderma 2015, 251, 33–46. [Google Scholar] [CrossRef]
- Raich, J.; Schlesinger, W.H. The global carbon dioxide flux in soil respiration and its relationship to vegetation and climate. Tellus B Chem. Phys. Meteorol. 1992, 44, 81–99. [Google Scholar] [CrossRef]
- Crowther, T.W.; Todd-Brown, K.E.O.; Rowe, C.W.; Wieder, W.R.; Carey, J.C.; Machmuller, M.B.; Snoek, B.L.l; Fang, S.; Zhou, G.; Allison, S.D.; et al. Quantifying global soil carbon losses in response to warming. Nature 2016, 104, 104–111. [Google Scholar] [CrossRef] [PubMed]
- Janssens, I.A.; Lankreijer, H.; Matteucci, G.; Kowalski, A.S.; Buchmann, N.; Epron, D.; Pilegaard, K.; Kutsch, W.; Longdoz, B.; Grunwald, T.; et al. Productivity overshadows temperature in determining soil and ecosystem respiration across european forests. Glob. Chang. Biol. 2001, 7, 269–278. [Google Scholar] [CrossRef]
- Xu, W.; Hisano, M. Spatial variation in boreal forest responses to global environmental change in western Canada. Agric. For. Meteorol. 2024, 355, 110140. [Google Scholar] [CrossRef]
- Kuzyakov, Y. Sources of CO2 efflux from soil and review of partitioning methods. Soil Biol. Biochem. 2006, 38, 425–448. [Google Scholar] [CrossRef]
- Kutsch, W.L.; Aubinet, M.; Buchmann, N.; Smith, P.; Osborne, B.; Eugster, W.; Wattenbach, M.; Schrumpf, M.; Schulze, E.D.; Tomelleri, E.; et al. The net biome production of full crop rotations in Europe. Agric. Ecosyst. Environ. 2010, 139, 336–345. [Google Scholar] [CrossRef]
- Goulden, M.L.; Crill, P.M. Automated measurements of CO2 exchange at the moss surface of a black spruce forest. Tree Physiol. 1997, 17, 537–542. [Google Scholar] [CrossRef] [PubMed]
- Morén, A.-S.; Lindroth, A. CO2 exchange at the floor of a boreal forest. Agric. For. Meteorol. 2000, 101, 1–14. [Google Scholar] [CrossRef]
- Kulmala, L.; Pumpanen, J.; Kolari, P.; Muukkonen, P.; Hari, P.; Vesala, T. Photosynthetic production of ground vegetation indifferent-aged scots pine (Pinus sylvestris) forests. Can. J. For. Res. 2011, 41, 2020–2030. [Google Scholar] [CrossRef]
- Kulmala, L.; Pumpanen, J.; Kolari, P.; Dengel, S.; Berninger, F.; Koster, K.; Matkala, L.; Vanhatalo, A.; Vesala, T.; Back, J. Inter- and intra-annual dynamics of photosynthesis differ between forest floor vegetation and tree canopy in a subarctic Scots pine stand. Agric. For. Meteorol. 2019, 271, 1–11. [Google Scholar] [CrossRef]
- Griffis, T.J.; Black, T.A.; Gaumont-Guay, D.; Drewitt, G.B.; Nesic, Z.; Barr, A.G.; Morgenstern, K.; Kljun, N. Seasonal variation and partitioning of ecosystem respiration in a southern boreal aspen forest. Agric. For. Meteorol. 2004, 125, 207–223. [Google Scholar] [CrossRef]
- Reichstein, M.; Ciais, P.; Papale, D.; Valentini, R.; Running, S.; Viovy, N.; Cramer, W.; Granier, A.; Ogée, J.; Allard, V.; et al. Reduction of ecosystem productivity and respiration during the European summer 2003 climate anomaly: A joint flux tower, remote sensing and modelling analysis. Glob. Chang. Biol. 2007, 13, 634–651. [Google Scholar] [CrossRef]
- Allen, C.D.; Macalady, A.K.; Chenchouni, H.; Bachelet, D.; McDowell, N.; Vennetier, M.; Kitzberger, T.; Rigling, A.; Breshears, D.D.; Hogg, E.H.; et al. A global overview of drought and heat-induced tree mortality reveals emerging climate change risks for forests. For. Ecol. Manag. 2010, 259, 660–684. [Google Scholar] [CrossRef]
- Ma, Z.H.; Peng, C.; Zhu, Q.; Chen, H.; Yu, G.; Li, W.; Zhou, X.; Wang, W.; Zhang, W. Regional drought-induced reduction in the biomass carbon sink of Canada’s boreal forests. Proc. Natl. Acad. Sci. USA 2012, 109, 2423–2427. [Google Scholar] [CrossRef]
- Zhang, F.; Quan, Q.; Ma, F.; Tian, D.; Hoover, D.; Zhou, Q.; Niu, S. When does extreme drought elicit extreme ecological responses? J. Ecol. 2019, 107, 2553–2563. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Shibistova, O.; Lloyd, J.; Evgrafova, S.; Savushkina, N.; Zrazhevskaya, G.; Arneth, A.; Knohl, A.; Kolle, O.; Schulze, E.D. Seasonal and spatial variability in soil CO2 efflux rates for a Central Siberian Pinus sylvestris forest. Tellus B 2002, 54, 552–567. [Google Scholar] [CrossRef]
- Kotani, A.; Saito, A.; Kononov, A.V.; Petrov, R.E.; Maximov, T.C.; Iijima, Y.; Ohta, T. Impact of unusually wet permafrost soil on understory vegetation and CO2 exchange in a larch forest in eastern Siberia. Agric. For. Meteorol. 2019, 265, 295–309. [Google Scholar] [CrossRef]
- Chi, J.; Zhao, P.; Klosterhalfen, A.; Jocher, G.; Kljun, N.; Nilsson, M.B.; Peichl, M. Forest floor fluxes drive differences in the carbon balance of contrasting boreal forest stands. Agric. For. Meteorol. 2021, 306, 108454. [Google Scholar] [CrossRef]
- Martínez-García, E.; Nilsson, M.B.; Laudon, H.; Lundmark, T.; Fransson, J.E.S.; Wallerman, J.; Peichl, M. Overstory dynamics regulate the spatial variability in forest-floor CO2 fluxes across a managed boreal forest landscape. Agric. For. Meteorol. 2022, 318, 108916. [Google Scholar] [CrossRef]
- Subke, J.-A.; Tenhunen, J.D. Direct measurements of CO2 flux below a spruce forest canopy. Agric. For. Meteorol. 2004, 126, 157–168. [Google Scholar] [CrossRef]
- Ikawa, H.; Nakai, T.; Busey, R.C.; Kim, Y.; Kobayashi, H.; Nagai, S.; Ueyama, M.; Saito, K.; Nagano, H.; Suzuki, R.; et al. Understory CO2, sensible heat, and latent heat fluxes in a black spruce forest in interior Alaska. Agric. For. Meteorol. 2015, 214–215, 80–90. [Google Scholar] [CrossRef]
- Gorham, E. On the acidity and salinity of rain. Geochim. Cosmochim. Acta 1955, 7, 231–239. [Google Scholar] [CrossRef]
- Tamm, C.O. Growth, Yield and Nutrition in Carpets of a Forest Moss (Hylocomium splendens). Medd. Skogsforskn. Inst. Stockh. 1953, 43, 1–140. Available online: https://publications.slu.se/?file=publ/show&id=125109 (accessed on 10 April 2024).
- Pleshikov, F.I. (Ed.) Forest Ecosystems of the Yenisey Meridian; Nauka: Novosibirsk, Russia, 2002; 356p. (In Russian) [Google Scholar]
- Polosukhina, D.A.; Prokushkin, A.S. Comparative characteristics of reserves and isotopic composition of soil organic matter in forest biogeocenoses in the footprint zone of the ZOTTO tall tower. In Proceedings of the Lomonosov Readings in Altai: Fundamental Problems of Science and Education, Barnaul, Russia, 14–17 November 2017. (In Russian). [Google Scholar]
- Bezkorovainaya, I.N.; Ivanova, G.A.; Tarasov, P.A.; Sorokin, N.D.; Bogorodskaya, A.V.; Ivanov, V.A.; Konard, S.G.; McRae, D.J. Pyrogenic Transformation of pine stand soil in middle taiga of Krasnoyarsk region. Contemp. Probl. Ecol. 2005, 12, 143–152. (In Russian) [Google Scholar]
- R Core Team. R: A Language and Environment for Statistical Computing; R Foundation for Statistical Computing: Vienna, Austria, 2020; Available online: http://www.r-project.org (accessed on 10 April 2024).
- Selyaninov, G.T. About climate agricultural estimation. Proc. Agric. Meteorol. 1928, 20, 165–177. (In Russian) [Google Scholar]
- Esseen, P.-A.; Olsson, T.; Coxson, D.; Gauslaa, Y. Morphology influences water storage in hair lichens from boreal forest canopies. Fungal Ecol. 2015, 18, 26–35. [Google Scholar] [CrossRef]
- Subke, J.-A.; Reichstein, M.; Tenhunen, J.D. Explaining temporal variation in soil CO2 efflux in a mature spruce forest in Southern Germany. Soil Biol. Biochem. 2003, 35, 1467–1483. [Google Scholar] [CrossRef]
- Gaumont-Guay, D.; Andrew Black, T.; Griffis, T.J.; Barr, A.G.; Jassal, R.S.; Nesic, Z. Influence of temperature and drought on seasonal and interannual variations of soil, bole and ecosystem respiration in a boreal aspen stand. Agric. For. Meteorol. 2006, 140, 220–235. [Google Scholar] [CrossRef]
- Manzoni, S.; Schimel, J.P.; Porporato, A. Responses of soil microbial communities to water stress: Results from a meta-analysis. Ecology 2012, 93, 930–938. [Google Scholar] [CrossRef] [PubMed]
- Lindroos, A.-J.; Makipaa, R.; Merila, P. Soil carbon stock changes over 21 years in intensively monitored boreal forest stands in Finland. Ecol. Indic. 2022, 144, 109551. [Google Scholar] [CrossRef]
- Lindroth, A.; Holst, J.; Linderson, M.-L.; Aurela, M.; Biermann, T.; Heliasz, M.; Chi, J.; Ibrom, A.; Kolari, P.; Klemedtsson, L.; et al. Effects of drought and meteorological forcing on carbon and water fluxes in Nordic forests during the dry summer of 2018. Philos. Trans. R. Soc. B 2020, 375, 20190516. [Google Scholar] [CrossRef] [PubMed]
- Bergeron, O.; Margolis, H.A.; Coursolle, C. Forest floor carbon exchange of a boreal black spruce forest in eastern North America. Biogeosciences 2009, 6, 1849–1864. [Google Scholar] [CrossRef]
- Ivanova, G.A.; Bezkorovaynaya, I.N.; Bogorodskaya, A.V.; Ivanov, V.A.; Ivanov, A.V.; Kovaleva, N.M.; Conard, S.G.; Krasnoshchekova, E.N.; Kukavskaya, E.A.; Macrae, D.D.; et al. The Impact of Fires on Ecosystem Components Is Medium-Taiga Pine Forests of Siberia; Evdokimenko, M.D., Ed.; Nauka: Novosibirsk, Russia, 2014; 232p. (In Russian) [Google Scholar]
- Kulmala, L.; Launiainen, S.; Pumpanen, J.; Lankreijer, H.; Lindroth, A.; Hari, P.; Vesala, T. H2O and CO2 fluxes at the floor of a boreal pine forest. Tellus B Chem. Phys. Meteorol. 2008, 60, 167–178. [Google Scholar] [CrossRef]
- Houle, G.P.; Kane, E.S.; Kasischke, E.S.; Gibson, C.M.; Turetsky, M.R. Recovery of carbon pools a decade after wildfire in black spruce forests of interior Alaska: Effects of soil texture and landscape position. Can. J. For. Res. 2018, 48, 1–10. [Google Scholar] [CrossRef]
- Feiziene, D.; Feiza, V.; Vaideliene, A.; Polivaitis, V.; Antanaitis, S. Soil surface carbon dioxide exchange rate as affected by soil texture, different long-term tillage application and weather. Agriculture 2010, 97, 25–42. [Google Scholar]
- Ryhti, K.; Kulmala, L.; Pumpanen, J.; Isotalo, J.; Pihlatie, M.; Helmisaari, H.S.; Leppalammi-Kujansuu, J.; Kieloaho, A.J.; B¨ack, J.; Heinonsalo, J. Partitioning of forest floor CO2 emissions reveals the belowground interactions between different plant groups in a Scots pine stand in southern Finland. Agric. For. Meteorol. 2021, 297, 108266. [Google Scholar] [CrossRef]
- Song, Y.; Zhou, D.; Zhang, H.; Li, G.; Jin, Y.; Li, Q. Effects of vegetation height and density on soil temperature variations. Chin. Sci. Bull. 2013, 58, 907–912. [Google Scholar] [CrossRef]
- Trumbore, S. Age of soil organic matter and soil respiration: Radiocarbon constraints on belowground c dynamics. Ecol. Appl. 2000, 10, 399–411. [Google Scholar] [CrossRef]
- Han, G.; Zhou, G.; Xu, Z.; Yang, Y.; Liu, J.; Shi, K. Biotic and abiotic factors controlling the spatial and temporal variation of soil respiration in an agricultural ecosystem. Soil Biol. Biochem. 2007, 39, 418–425. [Google Scholar] [CrossRef]
- Vargas, R.; Allen, M.F. Environmental controls and the influence of vegetation type, fine roots and rhizomorphs on diel and seasonal variation in soil respiration. New Phytol. 2008, 179, 460–471. [Google Scholar] [CrossRef] [PubMed]
- Makhnykina, A.V.; Vaganov, E.A.; Panov, A.V.; Koshurnikova, N.N.; Prokushkin, A.S. The pulses of soil CO2 emission in response to rainfall events in Central Siberia: Revisiting the overall frost-free season CO2 flux. Forests 2024, 15, 355. [Google Scholar] [CrossRef]
- Harel, A.; Sylvain, J.-D.; Drolet, G.; Thiffault, E.; Thiffault, N.; Tremblay, S. Fine scale assessment of seasonal, intra-seasonal and spatial dynamics of soil CO2 effluxes over a balsam fir-dominated perhumid boreal landscape. Agric. For. Meteorol. 2023, 335, 109469. [Google Scholar] [CrossRef]
- Tagesson, T. Seasonal Variation and Controlling Factors of Soil Carbon Effluxes in Six Vegetation Types in Southeast of Sweden; Swedish Nuclear Fuel and Waste Management Co.: Stockholm, Sweden, 2006; 39p. [Google Scholar]
- Khoroshaev, D.A.; Kurganova, I.N.; Lopes de Gerenyua, V.O. Heterotrophic soil respiration response to the summer precipitation regime and different depths of snow cover in a temperate continental climate. Eurasian Soil Sci. 2023, 56, 1667–1682. [Google Scholar] [CrossRef]
- Curiel Yuste, J.; Flores-Rentería, D.; García-Angulo, D.; Hereş, A.-M.; Bragă, C.; Petritan, A.-M.; Petritan, I. Cascading effects associated with climate-change-induced conifer mortality in mountain temperate forests result in hot-spots of soil CO2 emissions. Soil Biol. Biochem. 2019, 133, 50–59. [Google Scholar] [CrossRef]
- Launiainen, S.; Rinne, J.; Pumpanen, J.; Kulmala, L.; Kolari, P.; Keronen, P.; Siivola, S.; Pohja, T.; Hari, P.; Vesala, T. Eddy covariance measurements of CO2 and sensible and latent heat fluxes during a full year in a boreal pine forest trunk-space, Bor. Boreal Environ. Res. 2005, 10, 569–588. [Google Scholar]
- Gaumont-Guay, D.; Black, T.A.; Barr, A.G.; Griffis, T.J.; Jassal, R.S.; Krishnan, P.; Grant, N.; Nesic, Z. Eight years of forest-floor CO2 exchange in a boreal black spruce forest: Spatial integration and long-term temporal trends. Agric. For. Meteorol. 2014, 184, 25–35. [Google Scholar] [CrossRef]
- Venäläinen, A.; Lehtonen, I.; Laapas, M.; Ruosteenoja, K.; Tikkanen, O.P.; Viiri, H.; Ikonen, V.P.; Peltola, H. Climate change induces multiple risks to boreal forests and forestry in Finland: A literature review. Glob. Chang. Biol. 2020, 26, 4178–4196. [Google Scholar] [CrossRef]
- Rapalee, G.; Steyaert, L.T.; Hall, F.G. Moss and lichen cover mapping at local and regional scales in the boreal forest ecosystem of central Canada. J. Geophys. Res. 2001, 106, 33551–33563. [Google Scholar] [CrossRef]
- Lucas-Borja, M.E.; Candel, D.; Jindo, K.; Moreno, J.L.; Andres, M.; Bastida, F. Soil microbial community structure and activity in monospecific and mixed forest stands, under Mediterranean humid conditions. Plant Soil 2012, 354, 359–370. [Google Scholar] [CrossRef]
- Kolstela, J.; Aakala, T.; Maclean, I.; Niittynen, P.; Kemppinen, J.; Luoto, M.; Rissanen, T.; Tyystjärvi, V.; Gregow, H.; Vapalahti, O.; et al. Revealing fine-scale variability in boreal forest temperatures using a mechanistic microclimate model. Agric. For. Meteorol. 2024, 350, 109995. [Google Scholar] [CrossRef]
- Roby, M.C.; Scott, R.L.; Moore, D.J.P. High vapor pressure deficit decreases the productivity and water use efficiency of rain-induced pulses in semiarid ecosystems. J. Geophys. Res. Biogeosci. 2020, 125, e2020JG005665. [Google Scholar] [CrossRef]
- Priputinaa, I.V.; Frolov, P.V.; Shanin, V.N.; Bykhovets, S.S.; Kurganova, I.N.; Lopes de Gerenyua, V.O.; Sapronov, D.V.; Zubkova, E.V.; Myakshina, T.N.; Khoroshaev, D.A. Simulation modeling of forest soil respiration: Case study of entic carbic podzol under coniferous–broadleaved forest in the south of Moscow oblast. Eurasian Soil Sci. 2023, 56, 1291–1303. [Google Scholar] [CrossRef]
- Makhnykina, A.V.; Tychkov, I.I.; Prokushkin, A.S.; Pyzhev, A.I.; Vaganov, E.A. Factors of soil CO2 emission in boreal forests: Evidence from Central Siberia. iForest 2023, 16, 86–94. [Google Scholar] [CrossRef]
- Gudko, V.; Usatov, A.; Ioshpa, A.; Denisenko, Y.; Shevtsova, V.; Azarin, K. Agro-climatic conditions of the Southern Federal District of Russia in the context of climate change. Theor. Appl. Climatol. 2021, 145, 989–1006. [Google Scholar] [CrossRef]
- Gril, E.; Spicher, F.; Greiser, C.; Ashcroft, M.B.; Pincebourde, S.; Durrieu, S.; Nicolas, M.; Richard, B.; Decocq, G.; Marrec, R.; et al. Slope and equilibrium: A parsimonious and flexible approach to model microclimate. Methods Ecol. Evol. 2023, 14, 885–897. [Google Scholar] [CrossRef]
- Houghton, R.A.; Roy, J.; Saugier, B.; Mooney, H.A. Global Terrestrial Productivity and Carbon Balance; Terrestrial Global Productivity; Academic Press: San Diego, CA, USA, 2001; pp. 499–520. [Google Scholar] [CrossRef]
- Zhu, B.; Wang, X.; Fang, J.; Piao, S.; Shen, H.; Zhao, S.; Peng, C. Altitudinal changes in carbon storage of temperate forests on Mt Changbai, Northeast China. J. Plant Res. 2010, 123, 439–452. [Google Scholar] [CrossRef] [PubMed]
- Li, F.; Liu, Y.; Zhang, C.; Sa, R.; Tie, N. Precipitation and understory vegetation diversity drive variations in soil organic carbon density: Results from field surveys and satellite data of two different periods in the Greater Khingan Mountains of northeast China. Appl. Ecol. Environ. Res. 2022, 20, 2303–2328. [Google Scholar] [CrossRef]
Characteristic | LPF | FMPF |
---|---|---|
Elevation, m a.s.l. | 116 | 117 |
Forest composition | 10P * | 10P * |
Tree species | Pinus sylvestris L. | Pinus sylvestris L. |
Stand density, trees per ha | 1301 | 1146 |
Forest age, years | 73 | 119 |
Ground cover | Cladonia stellaris (Opiz) Pouzar et Vezda, Cl. arbuscula (Wallr) Flot | Pleurozium schreberi (Brid.) Mitt, Dicranum polysetum Michx., Hylocomium splendens (Hedw.) Schimp. |
Soil carbon pool, g per m2 (top 50 cm) | 1960 | 1930 |
Carbon pool in ground cover, g per m2 ** | 445–470 | 240–300 |
Mean soil temperature, °C | 13.9 ± 0.9 | 11.6 ± 1.2 |
Mean soil water content, m3 m−3 | 0.23 ± 0.01 | 0.29 ± 0.01 |
Factor | LPF | FMPF |
---|---|---|
Soil temperature: | ||
Dry seasons | R2adj. = 0.027 | R2adj. = 0.31 |
Wet seasons | R2adj. = 0.41 | R2adj. = 0.14 |
Soil moisture: | ||
Dry seasons | R2adj. = 0.18 | R2adj. = −0.0075 |
Wet seasons | R2adj. = −0.019 | R2adj. = −0.0066 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Makhnykina, A.; Vaganov, E.; Panov, A.; Polosukhina, D.; Prokushkin, A. An Interseasonal Comparison of Soil Respiration in Xeric and Mesic Pine Forest Ecosystems in Central Siberia. Atmosphere 2024, 15, 988. https://doi.org/10.3390/atmos15080988
Makhnykina A, Vaganov E, Panov A, Polosukhina D, Prokushkin A. An Interseasonal Comparison of Soil Respiration in Xeric and Mesic Pine Forest Ecosystems in Central Siberia. Atmosphere. 2024; 15(8):988. https://doi.org/10.3390/atmos15080988
Chicago/Turabian StyleMakhnykina, Anastasia, Eugene Vaganov, Alexey Panov, Daria Polosukhina, and Anatoly Prokushkin. 2024. "An Interseasonal Comparison of Soil Respiration in Xeric and Mesic Pine Forest Ecosystems in Central Siberia" Atmosphere 15, no. 8: 988. https://doi.org/10.3390/atmos15080988
APA StyleMakhnykina, A., Vaganov, E., Panov, A., Polosukhina, D., & Prokushkin, A. (2024). An Interseasonal Comparison of Soil Respiration in Xeric and Mesic Pine Forest Ecosystems in Central Siberia. Atmosphere, 15(8), 988. https://doi.org/10.3390/atmos15080988