Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India
Abstract
:Highlights
- What are the main findings? What is the implication of main findings?
- Hygroscopicity was primarily governed by inorganic fractions in particles;
- The abundance of individual constituent ionic species was highly responsible for aerosol water uptake.
Abstract
1. Introduction
2. Materials and Methods
2.1. Aerosol Sampling
2.2. Hygroscopicity Measurement
2.3. Chemical Composition
3. Results and Discussion
3.1. Mass–Size Distribution and Chemical Composition of Aerosols
3.2. Hygroscopic Growth Factors of Crop-Residue Burning and No-Burning Samples
3.3. Hygroscopic Growth Factors of Wheat- and Rice-Residue Burning Samples
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Dunea, D.; Iordache, S.; Pohoata, A. Fine particulate matter in urban environments: A trigger of respiratory symptoms in sensitive children. Int. J. Environ. Res. Public Health 2016, 13, 1246. [Google Scholar] [CrossRef]
- Titos, G.; del Águila, A.; Cazorla, A.; Lyamani, H.; Casquero-Vera, J.; Colombi, C.; Cuccia, E.; Gianelle, V.; Močnik, G.; Alastuey, A.; et al. Spatial and temporal variability of carbonaceous aerosols: Assessing the impact of biomass burning in the urban environment. Sci. Total Environ. 2017, 578, 613–625. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.G.; Tran, P.T.; Bolan, N.; Balasubramanian, R. Biomass burning-derived airborne particulate matter in Southeast Asia: A critical review. J. Hazard. Mater. 2021, 407, 124760. [Google Scholar] [CrossRef]
- Forster, P.; Ramaswamy, V.; Artaxo, P.; Berntsen, T.; Betts, R.; Fahey, D.W.; Haywood, J.; Lean, J.; Lowe, D.C.; Myhre, G.; et al. Changes in atmospheric constituents and in radiative forcing. In Changes in Atmospheric Constituents and in Radiative Forcing; U.S. Department of Energy Office of Scientific and Technical Information: Boulder, CO, USA, 2007; Chapter 2. [Google Scholar]
- Ramaswamy, V.; Collins, W.; Haywood, J.; Lean, J.; Mahowald, N.; Myhre, G.; Naik, V.; Shine, K.P.; Soden, B.; Stenchikov, G.; et al. Radiative forcing of climate: The historical evolution of the radiative forcing concept, the forcing agents and their quantification, and applications. Meteorol. Monogr. 2019, 59, 14.1–14.101. [Google Scholar]
- Alang, A.K.; Aggarwal, S.G.; Singh, K.; Soni, D.; Hegde, P. Light-absorbing properties of polar-and non-polar brown carbon fractions of aerosols in Delhi. Atmos. Res. 2023, 296, 107073. [Google Scholar] [CrossRef]
- Novakov, T.; Corrigan, C. Cloud condensation nucleus activity of the organic component of biomass smoke particles. Geophys. Res. Lett. 1996, 23, 2141–2144. [Google Scholar] [CrossRef]
- Engelhart, G.J.; Hennigan, C.J.; Miracolo, M.A.; Robinson, A.L.; Pandis, S.N. Cloud condensation nuclei activity of fresh primary and aged biomass burning aerosol. Atmos. Chem. Phys. 2012, 12, 7285–7293. [Google Scholar] [CrossRef]
- Nenes, A.; Ghan, S.; Abdul-Razzak, H.; Chuang, P.Y.; Seinfeld, J.H. Kinetic limitations on cloud droplet formation and impact on cloud albedo. Tellus B Chem. Phys. Meteorol. 2001, 53, 133–149. [Google Scholar] [CrossRef]
- Peng, Y.; Lohmann, U. Sensitivity study of the spectral dispersion of the cloud droplet size distribution on the indirect aerosol effect. Geophys. Res. Lett. 2003, 30. [Google Scholar] [CrossRef]
- Qiu, Y.; Zhao, C.; Guo, J.; Li, J. 8-Year ground-based observational analysis about the seasonal variation of the aerosol-cloud droplet effective radius relationship at SGP site. Atmos. Environ. 2017, 164, 139–146. [Google Scholar] [CrossRef]
- Haywood, J.; Boucher, O. Estimates of the direct and indirect radiative forcing due to tropospheric aerosols: A review. Rev. Geophys. 2000, 38, 513–543. [Google Scholar] [CrossRef]
- Ghan, S.J. Estimating aerosol effects on cloud radiative forcing. Atmos. Chem. Phys. 2013, 13, 9971–9974. [Google Scholar] [CrossRef]
- Streets, D.G.; Yarber, K.F.; Woo, J.; Carmichael, G.R. Biomass burning in Asia: Annual and seasonal estimates and atmospheric emissions. Glob. Biogeochem. Cycles 2003, 17. [Google Scholar] [CrossRef]
- Sahu, L.K.; Sheel, V. Spatio-temporal variation of biomass burning sources over South and Southeast Asia. J. Atmos. Chem. 2014, 71, 1–19. [Google Scholar] [CrossRef]
- Venkataraman, C.; Habib, G.; Kadamba, D.; Shrivastava, M.; Leon, J.; Crouzille, B.; Boucher, O.; Streets, D.G. Emissions from open biomass burning in India: Integrating the inventory approach with high-resolution Moderate Resolution Imaging Spectroradiometer (MODIS) active-fire and land cover data. Glob. Biogeochem. Cycles 2006, 20. [Google Scholar] [CrossRef]
- Shaik, D.S.; Kant, Y.; Mitra, D.; Singh, A.; Chandola, H.; Sateesh, M.; Babu, S.S.; Chauhan, P. Impact of biomass burning on regional aerosol optical properties: A case study over northern India. J. Environ. Manag. 2019, 244, 328–343. [Google Scholar] [CrossRef] [PubMed]
- Prenni, A.J.; Petters, M.D.; Kreidenweis, S.M.; DeMott, P.J.; Ziemann, P.J. Cloud droplet activation of secondary organic aerosol. J. Geophys. Res. Atmos. 2007, 112. [Google Scholar] [CrossRef]
- Zhao, D.F.; Buchholz, A.; Kortner, B.; Schlag, P.; Rubach, F.; Kiendler-Scharr, A.; Tillmann, R.; Wahner, A.; Flores, J.M.; Rudich, Y.; et al. Size-dependent hygroscopicity parameter (κ) and chemical composition of secondary organic cloud condensation nuclei. Geophys. Res. Lett. 2015, 42, 10920–10928. [Google Scholar] [CrossRef]
- Slade, J.H.; Shiraiwa, M.; Arangio, A.; Su, H.; Pöschl, U.; Wang, J.; Knopf, D.A. Cloud droplet activation through oxidation of organic aerosol influenced by temperature and particle phase state. Geophys. Res. Lett. 2017, 44, 1583–1591. [Google Scholar] [CrossRef]
- Mochida, M.; Kawamura, K. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef]
- Svenningsson, B.; Rissler, J.; Swietlicki, E.; Mircea, M.; Bilde, M.; Facchini, M.C.; Decesari, S.; Fuzzi, S.; Zhou, J.; Mønster, J.; et al. Hygroscopic growth and critical supersaturations for mixed aerosol particles of inorganic and organic compounds of atmospheric relevance. Atmos. Chem. Phys. 2006, 6, 1937–1952. [Google Scholar] [CrossRef]
- Wu, Z.J.; Nowak, A.; Poulain, L.; Herrmann, H.; Wiedensohler, A. Hygroscopic behavior of atmospherically relevant water-soluble carboxylic salts and their influence on the water uptake of ammonium sulfate. Atmos. Chem. Phys. 2011, 11, 12617–12626. [Google Scholar] [CrossRef]
- Hansen, A.M.K.; Hong, J.; Raatikainen, T.; Kristensen, K.; Ylisirniö, A.; Virtanen, A.; Petäjä, T.; Glasius, M.; Prisle, N.L. Hygroscopic properties and cloud condensation nuclei activation of limonene-derived organosulfates and their mixtures with ammonium sulfate. Atmos. Chem. Phys. 2015, 15, 14071–14089. [Google Scholar] [CrossRef]
- Estillore, A.D.; Hettiyadura, A.P.S.; Qin, Z.; Leckrone, E.; Wombacher, B.; Humphry, T.; Stone, E.A.; Grassian, V.H. Water uptake and hygroscopic growth of organosulfate aerosol. Environ. Sci. Technol. 2016, 50, 4259–4268. [Google Scholar] [CrossRef]
- Aggarwal, S.G.; Mochida, M.; Kitamori, Y.; Kawamura, K. Chemical closure study on hygroscopic properties of urban aerosol particles in Sapporo, Japan. Environ. Sci. Technol. 2007, 41, 6920–6925. [Google Scholar] [CrossRef]
- Kumar, N. Agriculture situation in Punjab: An analysis of transformations from labour intensive farming to capital intensive farming. Econ. Aff. 2019, 64, 431–439. [Google Scholar] [CrossRef]
- Ravindra, K.; Singh, T.; Mor, S.; Singh, V.; Mandal, T.K.; Bhatti, M.S.; Gahlawat, S.K.; Dhankhar, R.; Mor, s.; Beig, G. Real-time monitoring of air pollutants in seven cities of North India during crop residue burning and their relationship with meteorology and transboundary movement of air. Sci. Total Environ. 2019, 690, 717–729. [Google Scholar] [CrossRef]
- Aggarwal, S.G.; Kawamura, K.; Umarji, G.S.; Tachibana, E.; Patil, R.S.; Gupta, P.K. Organic and inorganic markers and stable C-, N-isotopic compositions of tropical coastal aerosols from megacity Mumbai: Sources of organic aerosols and atmospheric processing. Atmos. Chem. Phys. 2013, 13, 4667–4680. [Google Scholar] [CrossRef]
- Sharma, A.R.; Badarinath, K.V.S.; Kharol, S.K.; Singh, D. Impact of agriculture crop residue burning on atmospheric aerosol loading—A study over Punjab State, India. Ann. Geophys. 2010, 28, 367–379. [Google Scholar] [CrossRef]
- Vadrevu, K.P.; Ellicott, E.; Badarinath, K.; Vermote, E. MODIS derived fire characteristics and aerosol optical depth variations during the agricultural residue burning season, north India. Environ. Pollut. 2011, 159, 1560–1569. [Google Scholar] [CrossRef]
- Kaskaoutis, D.G.; Kumar, S.; Sharma, D.; Singh, R.P.; Kharol, S.K.; Sharma, M.; Singh, D. Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J. Geophys. Res. Atmos. 2014, 119, 5424–5444. [Google Scholar] [CrossRef]
- Mittal, S.K.; Singh, N.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Ambient air quality during wheat and rice crop stubble burning episodes in Patiala. Atmos. Environ. 2009, 43, 238–244. [Google Scholar] [CrossRef]
- Singh, N.; Mittal, S.K.; Agarwal, R.; Awasthi, A.; Gupta, P.K. Impact of rice crop residue burning on levels of SPM, SO2 and NO2 in the ambient air of Patiala (India). Int. J. Environ. Anal. Chem. 2010, 90, 829–843. [Google Scholar] [CrossRef]
- Gysel, M.; Weingartner, E.; Baltensperger, U. Hygroscopicity of aerosol particles at low temperatures. 2. Theoretical and experimental hygroscopic properties of laboratory generated aerosols. Environ. Sci. Technol. 2002, 36, 63–68. [Google Scholar] [CrossRef] [PubMed]
- Mikhailov, E.; Vlasenko, S.; Martin, S.T.; Koop, T.; Pöschl, U. Amorphous and crystalline aerosol particles interacting with water vapor: Conceptual framework and experimental evidence for restructuring, phase transitions and kinetic limitations. Atmos. Chem. Phys. 2009, 9, 9491–9522. [Google Scholar] [CrossRef]
- Hu, D.; Qiao, L.; Chen, J.; Ye, X.; Yang, X.; Cheng, T.; Fang, W. Hygroscopicity of inorganic aerosols: Size and relative humidity effects on the growth factor. Aerosol Air Qual. Res. 2010, 10, 255–264. [Google Scholar] [CrossRef]
- Wu, Z.J.; Zheng, J.; Shang, D.J.; Du, Z.F.; Wu, Y.S.; Zeng, L.M.; Wiedensohler, A.; Hu, M. Particle hygroscopicity and its link to chemical composition in the urban atmosphere of Beijing, China, during summertime. Atmos. Chem. Phys. 2016, 16, 1123–1138. [Google Scholar] [CrossRef]
- Kim, N.; Yum, S.S.; Park, M.; Park, J.S.; Shin, H.J.; Ahn, J.Y. Hygroscopicity of urban aerosols and its link to size-resolved chemical composition during spring and summer in Seoul, Korea. Atmos. Chem. Phys. 2020, 20, 11245–11262. [Google Scholar] [CrossRef]
- Nair, V.S.; Ajith, T.; Jayachandran, V.; Kompalli, S.K.; Gogoi, M.M.; Babu, S.S. Effects of South Asian outflow on aerosol hygroscopicity and cloud droplet activation over the northern Indian Ocean. Atmos. Environ. 2024, 327, 120500. [Google Scholar] [CrossRef]
- Han, J.H.; Hung, H.M.; Martin, S.T. Size effect of hematite and corundum inclusions on the efflorescence relative humidities of aqueous ammonium nitrate particles. J. Geophys. Res. Atmos. 2002, 107, AAC 3-1–AAC 3-9. [Google Scholar] [CrossRef]
- Reid, J.S.; Koppmann, R.; Eck, T.F.; Eleuterio, D.P. A review of biomass burning emissions part II: Intensive physical properties of biomass burning particles. Atmos. Chem. Phys. 2005, 5, 799–825. [Google Scholar] [CrossRef]
- Chakrabarty, R.K.; Moosmüller, H.; Garro, M.A.; Arnott, W.P.; Walker, J.; Susott, R.A.; Babbitt, R.E.; Wold, C.E.; Lincoln, E.N.; Hao, W.M. Emissions from the laboratory combustion of wildland fuels: Particle morphology and size. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Kaku, K.C.; Hegg, D.A.; Covert, D.S.; Santarpia, J.L.; Jonsson, H.; Buzorius, G.; Collins, D.R. Organics in the Northeastern Pacific and their impacts on aerosol hygroscopicity in the subsaturated and supersaturated regimes. Atmos. Chem. Phys. 2006, 6, 4101–4115. [Google Scholar] [CrossRef]
- Semeniuk, T.A.; Wise, M.E.; Martin, S.T.; Russell, L.M.; Buseck, P.R. Hygroscopic behavior of aerosol particles from biomass fires using environmental transmission electron microscopy. J. Atmos. Chem. 2007, 56, 259–273. [Google Scholar] [CrossRef]
- Carrico, C.M.; Petters, M.D.; Kreidenweis, S.M.; Sullivan, A.P.; McMeeking, G.R.; Levin, E.J.T.; Engling, G.; Malm, W.C.; Collett, J.L. Water uptake and chemical composition of fresh aerosols generated in open burning of biomass. Atmos. Chem. Phys. 2010, 10, 5165–5178. [Google Scholar] [CrossRef]
- Lei, T.; Zuend, A.; Cheng, Y.; Su, H.; Wang, W.; Ge, M. Hygroscopicity of organic surrogate compounds from biomass burning and their effect on the efflorescence of ammonium sulfate in mixed aerosol particles. Atmos. Chem. Phys. 2018, 18, 1045–1064. [Google Scholar] [CrossRef]
- Akhtar, M.S.; Memon, M. Biomass and nutrient uptake by rice and wheat: A three-way interaction of potassium, ammonium and soil type. Pak. J. Bot. 2009, 41, 2965–2974. [Google Scholar]
- Dhaliwal, M.K.; Dhaliwal, S.S.; Thind, H.S.; Gupta, R.K. Long term effect of manure and fertilizers on concentration and uptake of Zn, Cu, Fe and Mn in rice and wheat grains under rice-wheat system. Int. J. Sci. Environ. Technol. 2014, 3, 1592–1601. [Google Scholar]
- Zhang, H.; Ye, X.; Cheng, T.; Chen, J.; Yang, X.; Wang, L.; Zhang, R. A laboratory study of agricultural crop residue combustion in China: Emission factors and emission inventory. Atmos. Environ. 2008, 42, 8432–8441. [Google Scholar] [CrossRef]
- Jing, B.; Wang, Z.; Tan, F.; Guo, Y.; Tong, S.; Wang, W.; Zhang, Y.; Ge, M. Hygroscopic behavior of atmospheric aerosols containing nitrate salts and water-soluble organic acids. Atmos. Chem. Phys. 2018, 18, 5115–5127. [Google Scholar] [CrossRef]
Sampling Duration | Sampling Site | Event | Sample I.D. |
---|---|---|---|
29 April 2008 | Sanauri Adda | Wheat-residue burning | S5 |
15–17 May 2008 | Sidhuwal | Wheat-residue burning | S4 |
15–18 September 2008 | Sidhuwal | No burning | S3 |
10–12 October 2008 | Sidhuwal | Rice-residue burning | S6 |
17–19 October 2008 | Military Area | Rice-residue burning | S7 |
17–20 April 2009 | Sidhuwal | Wheat-residue burning | S1 |
4–10 May 2009 | Sidhuwal | Wheat-residue burning | S2 |
7–9 August 2009 | Sidhuwal | No burning | S10 |
24–26 October 2009 | Sidhuwal | Rice-residue burning | S8 |
14–16 November 2009 | Sidhuwal | Rice-residue burning | S9 |
Chemical Components | Crop-Residue Burning Samples (n = 8) | No-Burning Samples (n = 2) | ||||
---|---|---|---|---|---|---|
Range | Average | SD | Range | Average | SD | |
PM0.4 | 7.8–19 | 11 | 4.6 | 5–8.6 | 6.8 | 2.5 |
PM2.1 | 68–97 | 82 | 13.4 | 43–44 | 43 | 0.2 |
PM9 | 134–162 | 150 | 10.3 | 85–92 | 88 | 4.5 |
OC | 4.3–15.6 | 10 | 4.2 | 4–5 | 4.5 | 0.5 |
EC | 0.01–4 | 1.4 | 1.3 | 0–0.002 | - | - |
SO42− | 0.2–2.3 | 1 | 0.8 | 0–0.7 | 0.4 | 0.5 |
NO3− | 0.2–1.7 | 1 | 0.4 | 0.02–0.3 | 0.1 | 0.2 |
Cl− | 0.03–2.4 | 0.7 | 0.8 | 0–0.2 | 0.1 | 0.1 |
F− | 0.1–1.6 | 1 | 0.5 | 0–1.5 | 0.7 | 1 |
MSA | 0.01–0.06 | 0 | 0 | 0–0.03 | - | - |
K+ | 0.1–2 | 1 | 0.6 | 0–0.1 | - | - |
Na+ | 0.5–2 | 1.5 | 0.4 | 0–1.7 | 1 | 1 |
NH4+ | 0–0.3 | 0.1 | 0.1 | - | - | - |
Mg2+ | 0.05–0.3 | 0.1 | 0 | 0–0.1 | 0.1 | - |
Ca2+ | 0.4–2.4 | 1 | 0.7 | 0.3–0.9 | 0.7 | 0.4 |
Total WSI | 4.6–13 | 7.3 | 3 | 0.5–5.8 | 3 | 3.7 |
g(RH) @ 85% | g(RH) @ 50% | |||
---|---|---|---|---|
Humidification | Dehumidification | Humidification | Dehumidification | |
Average (range) | Average (range) | Average (range) | Average (range) | |
Crop-residue burning (n = 8) | 1.35 (1.25 to 1.49) | 1.39 (1.21 to 1.68) | 1.04 (1.0 to 1.21) | 1.08 (0.98 to 1.29) |
No-burning (n = 2) | 1.31 (1.27 to 1.33) | 1.34 | 1.01 (1.0 to 1.02) | 1.06 |
g(RH) @ 85% | g(RH) @ 50% | |||
---|---|---|---|---|
Humidification | Dehumidification | Humidification | Dehumidification | |
Average (range) | Average (range) | Average (range) | Average (range) | |
Wheat-residue burning (n = 4) | 1.38 (1.32 to 1.48) | 1.37 (1.23 to 1.45) | 1.08 (1.03 to 1.21) | 1.06 (0.98 to 1.14) |
Rice-residue burning (n = 4) | 1.30 (1.26 to 1.37) | 1.33 (1.32 to 1.34) | 1.04 (1.0 to 1.21) | 1.02 (1.01 to 1.04) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Alang, A.K.; Aggarwal, S.G.; Singh, K.; Johri, P.; Agarwal, R.; Kawamura, K. Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India. Atmosphere 2024, 15, 835. https://doi.org/10.3390/atmos15070835
Alang AK, Aggarwal SG, Singh K, Johri P, Agarwal R, Kawamura K. Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India. Atmosphere. 2024; 15(7):835. https://doi.org/10.3390/atmos15070835
Chicago/Turabian StyleAlang, Ashmeet Kaur, Shankar G. Aggarwal, Khem Singh, Prabha Johri, Ravinder Agarwal, and Kimitaka Kawamura. 2024. "Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India" Atmosphere 15, no. 7: 835. https://doi.org/10.3390/atmos15070835
APA StyleAlang, A. K., Aggarwal, S. G., Singh, K., Johri, P., Agarwal, R., & Kawamura, K. (2024). Hygroscopic Properties of Water-Soluble Counterpart of Ultrafine Particles from Agriculture Crop-Residue Burning in Patiala, Northwestern India. Atmosphere, 15(7), 835. https://doi.org/10.3390/atmos15070835