Risk Assessment of Compound Dry–Hot Events for Maize in Liaoning Province
Abstract
:1. Introduction
2. Study Area and Data Sources
2.1. Study Area
2.2. Data Sources
3. Methodology
3.1. CDHE Construction
3.2. Mann–Kendall Mutation Test
3.3. Maize Yield Loss
3.4. Coefficient of Variation in Maize Yield Reduction
3.5. Yield Loss Risk Index
3.6. Frequency of CDHEs at Reduced Yields
3.7. Maize CDHE Loss Risk Index
4. Results and Analysis
4.1. Spatial and Temporal Variation Characterizations of CDHEs during Maize Growth
4.1.1. Time Variation Characteristics
4.1.2. Spatial Characteristics
4.2. Maze Yield Variation Characteristics
4.2.1. Variation Characteristics of Maize Yield
4.2.2. Spatial Characteristics of the Coefficient of Variation of Maize Yield Reduction
4.2.3. Spatial Distribution of the Yield Loss Risk
4.3. Spatial Distribution of CDHE Frequency during Yield Reduction
4.4. Risk Assessment of CDHEs for Maize
5. Discussion
6. Conclusions
- We revealed the temporal characteristics of CDHEs over the maize reproductive period. From 2005 to 2020, only 2012 did not have a CDHE. The ratios of CDHEs in 2009 and 2014 were the largest, at 46.43% and 51.79%, respectively. CDHEs occurred most frequently during the twelfth leaf stage, with a significant increasing trend. The second-highest number of CDHEs occurred during the tasseling stage. The spatial distribution characteristics were as follows: The frequency of CDHEs in central Liaoning Province was low. Western Liaoning Province was generally prone to CDHEs.
- The areas with high coefficients of variation for maize yield reduction were mainly located in eastern Liaoning Province, with several concentrated in central and western Liaoning Province. There were differences in the spatial distribution of the YLRI and the coefficient of variation of maize yield reduction, with the high-value areas in western and southern Liaoning Province.
- There was some variability in the spatial distribution characteristics of the maize CDHE risk index and the maize-growing period compound dry and heat index. The low-risk region was large, mainly in the central and northern regions of Liaoning Province. Chaoyang City in western Liaoning Province was a high-risk region for maize CDHEs, and Panjin City and Huludao City were the second-highest-risk regions.
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Ray, D.K.; Gerber, J.S.; MacDonald, G.K.; West, P.C. Climate variation explains a third of global crop yield variability. Nat. Commun. 2015, 6, 5989. [Google Scholar] [CrossRef]
- Frieler, K.; Schauberger, B.; Arneth, A.; Balkovic, J.; Chryssanthacopoulos, J.; Deryng, D.; Elliott, J.; Folberth, C.; Khabarov, N.; Müller, C.; et al. Understanding the weather signal in national crop-yield variability. Earths Future 2017, 5, 605–616. [Google Scholar] [CrossRef] [PubMed]
- Lesk, C.; Rowhani, P.; Ramankutty, N. Influence of extreme weather disasters on global crop production. Nature 2016, 529, 84–87. [Google Scholar] [CrossRef]
- Xu, K.; Zhu, X.; Liu, Y.; Guo, R.; Chen, L. Effects of drought on maize yield under climate change in China. Trans. Chin. Soc. Agric. Eng. 2020, 36, 149–158. [Google Scholar]
- Lesk, C.; Anderson, W.; Rigden, A.; Coast, O.; Jägermeyr, J.; McDermid, S.; Davis, K.F.; Konar, M. Compound heat and moisture extreme impacts on global crop yields under climate change. Nat. Rev. Earth Environ. 2022, 3, 872–889. [Google Scholar] [CrossRef]
- Tao, P.; Zhang, Y. Large-scale circulation features associated with the heat wave over Northeast China in summer 2018. Atmos. Ocean. Sci. Lett. 2019, 12, 254–260. [Google Scholar] [CrossRef]
- Ridder, N.N.; Ukkola, A.M.; Pitman, A.J.; Perkins-Kirkpatrick, S.E. Increased occurrence of high impact compound events under climate change. NPJ Clim. Atmos. Sci. 2022, 5, 3. [Google Scholar] [CrossRef]
- Lesk, C.; Anderson, W. Decadal variability modulates trends in concurrent heat and drought over global croplands. Environ. Res. Lett. 2021, 16, 055024. [Google Scholar] [CrossRef]
- Sarhadi, A.; Ausín, M.C.; Wiper, M.P.; Touma, D.; Diffenbaugh, N.S. Multidimensional risk in a nonstationary climate: Joint probability of increasingly severe warm and dry conditions. Sci. Adv. 2018, 4, eaau3487. [Google Scholar] [CrossRef]
- Zscheischler, J.; Martius, O.; Westra, S.; Bevacqua, E.; Raymond, C.; Horton, R.M.; van den Hurk, B.; AghaKouchak, A.; Jézéquel, A.; Mahecha, M.D.; et al. A typology of compound weather and climate events. Nat. Rev. Earth Environ. 2020, 1, 333–347. [Google Scholar] [CrossRef]
- He, Y.; Hu, X.; Xu, W.; Fang, J.; Shi, P. Increased probability and severity of compound dry and hot growing seasons over world’s major croplands. Sci. Total Environ. 2022, 824, 153885. [Google Scholar] [CrossRef]
- Wu, Y.; Miao, C.; Sun, Y.; AghaKouchak, A.; Shen, C.; Fan, X. Global observations and CMIP6 simulations of compound extremes of monthly temperature and precipitation. GeoHealth 2021, 5, e2021GH000390. [Google Scholar] [CrossRef]
- Glotter, M.; Elliott, J. Simulating US agriculture in a modern Dust Bowl drought. Nat. Plants 2016, 3, 16193. [Google Scholar] [CrossRef] [PubMed]
- Haqiqi, I.; Grogan, D.S.; Hertel, T.W.; Schlenker, W. Quantifying the impacts of compound extremes on agriculture. Hydrol. Earth Syst. Sci. 2021, 25, 551–564. [Google Scholar] [CrossRef]
- Wu, H.; Su, X.; Singh, V.P. Blended dry and hot events index for monitoring dry- hot events over global land areas. Geophys. Res. Lett. 2021, 48, e2021GL096181. [Google Scholar] [CrossRef]
- Wu, R.N.; Zhang, X.; Cao, Y.; Wang, Y. Spatiotemporal distribution characteristics and comprehensive risk assessment of maize drought disaster in Liaoning Province. Acta Ecol. Sin. 2022, 42, 6731–6744. [Google Scholar]
- Cheng, Y.; Zhang, K.; Chao, L. Compound dry-hot events on Qinghai-Tibet Plateau and their effects on vegetation. Water Resour. Prot. 2023, 39, 52–58. [Google Scholar]
- Hao, Z.; Hao, F.; Singh, V.P.; Zhang, X. Changes in the severity of compound drought and hot extremes over global land areas. Environ. Res. Lett. 2018, 13, 124022. [Google Scholar] [CrossRef]
- Qian, T.; Lu, J.; Su, X.; Wu, H. Risk assessment of compound dry—Hot events in northwest China based on compound event indexes. J. Water Resour. Water Eng. 2024, 35, 82–89. [Google Scholar]
- Zscheischler, J.; Westra, S.; Van Den Hurk, B.J.J.M.; Seneviratne, S.I.; Ward, P.J.; Pitman, A.; AghaKouchak, A.; Bresch, D.N.; Leonard, M.; Wahl, T.; et al. Future climate risk from compound events. Nat. Clim. Chang. 2018, 8, 469–477. [Google Scholar] [CrossRef]
- Albright, T.P.; Pidgeon, A.M.; Rittenhouse, C.D.; Clayton, M.K.; Flather, C.H.; Culbert, P.D.; Radeloff, V.C. Heat waves measured with MODIS land surface temperature data predict changes in avian community structure. Remote Sens. Environ. 2011, 115, 245–254. [Google Scholar] [CrossRef]
- Wu, X.Y.; Hao, Z.C.; Zhang, X.; Li, C.; Hao, F.H. Evaluation of severity changes of compound dry and hot events in China based on a multivariate multi-index approach. J. Hydrol. 2020, 583, 124580. [Google Scholar] [CrossRef]
- Mukherjee, S.; Ashfaq, M.; Mishra, A.K. Compound drought and heatwaves at a global scale: The role of natural climate variability-associated synoptic patterns and land-surface energy budget anomalies. JGR Atmos. 2020, 125, e2019JD031943. [Google Scholar] [CrossRef]
- Hao, Z.; Hao, F.; Xia, Y.; Singh, V.P.; Zhang, X. A monitoring and prediction system for compound dry and hot events. Environ. Res. Lett. 2019, 14, 114034. [Google Scholar] [CrossRef]
- Li, J.; Wang, Z.; Wu, X.; Zscheischler, J.; Guo, S.; Chen, X. A standardized index for assessing sub-monthly compound dry and hot conditions with application in China. Hydrol. Earth Syst. Sci. 2021, 25, 1587–1601. [Google Scholar] [CrossRef]
- Li, X.; Wen, R.; Wang, L.; Cai, K.; Li, X.; Li, B.; Gao, X.; Xu, M. Analysis of agricultural climatic factors of maize planting and study on fine climatic zoning in Liaoning Province. J. Maize Sci. 2022, 30, 126–134. [Google Scholar]
- Wang, Y.; Lv, J.; Sun, H.; Qu, Y.; Su, Z. Risk Assessment of Maize Drought in Liaoning Province based on APSIM Model. J. Catastrophology 2017, 32, 230–234. [Google Scholar]
- Lobell, D.B.; Gourdji, S.M. The influence of climate change on global crop productivity. Plant Physiol. 2012, 160, 1686–1697. [Google Scholar] [CrossRef] [PubMed]
- Wang, C.; Zhang, J.; Huo, Z.; Cai, J.; Liu, X.; Zhang, Q. Prospects and progresses in the research of risk assessment of agro-meteorological disasters. Acta Meteorol. Sin. 2015, 73, 1–19. [Google Scholar]
- Li, Y.; Ye, W.; Wang, M.; Yan, X. Climate change and drought: A risk assessment of crop-yield impacts. Clim. Res. 2009, 39, 31–46. [Google Scholar] [CrossRef]
- Zhao, H.; Gao, G.; Yan, X.; Zhang, Q.; Hou, M.; Zhu, Y.; Tian, Z. Risk assessment of agricultural drought using the CERES-Wheat model: A case study of Henan Plain, China. Clim. Res. 2011, 50, 247–256. [Google Scholar] [CrossRef]
- Guo, E.; Liu, X.; Zhang, J.; Wang, Y.; Wang, C.; Wang, R.; Li, D. Assessing spatiotemporal variation of drought and its impact on maize yield in Northeast China. J. Hydrol. 2017, 553, 231–247. [Google Scholar] [CrossRef]
- Li, X.; Fang, S.; Wu, D.; Zhu, Y.; Wu, Y. Risk analysis of maize yield losses in mainland China at the county level. Sci. Rep. 2020, 10, 10684. [Google Scholar] [CrossRef] [PubMed]
- Li, E.; Zhao, J.; Zhang, W.M.; Yang, X.G. Spatial-temporal patterns of high temperature and drought during the maize growing season under current and future climate changes in northeast China. J. Sci. Food Agric. 2023, 103, 5709–5716. [Google Scholar] [CrossRef] [PubMed]
- Hauser, M.; Orth, R.; Seneviratne, S.I. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia. Geophys. Res. Lett. 2016, 43, 2819–2826. [Google Scholar] [CrossRef]
- Sharma, S.; Mujumdar, P. Increasing frequency and spatial extent of concurrent meteorological droughts and heatwaves in India. Sci. Rep. 2017, 7, 15582. [Google Scholar] [CrossRef]
- Li, X.; You, Q.; Ren, G.; Wang, S.; Zhang, Y.; Yang, J.; Zheng, G. Concurrent droughts and hot extremes in northwest China from 1961 to 2017. Int. J. Climatol. 2019, 39, 2186–2196. [Google Scholar] [CrossRef]
- Kong, Q.; Guerreiro, S.B.; Blenkinsop, S.; Li, X.-F.; Fowler, H.J. Increases in summertime concurrent drought and heatwave in Eastern China. Weather Clim. Extrem. 2020, 28, 100242. [Google Scholar] [CrossRef]
- Wahl, T.; Jain, S.; Bender, J.; Meyers, S.D.; Luther, M.E. Increasing risk of compound flooding from storm surge and rainfall for major US cities. Nat. Clim. Chang. 2015, 5, 1093–1097. [Google Scholar] [CrossRef]
- Van Den Hurk, B.; Van Meijgaard, E.; De Valk, P.; Van Heeringen, K.J.; Gooijer, J. Analysis of a compounding surge and precipitation event in the Netherlands. Environ. Res. Lett. 2015, 10, 035001. [Google Scholar] [CrossRef]
- Zheng, F.; Westra, S.; Sisson, S.A. Quantifying the dependence between extreme rainfall and storm surge in the coastal zone. J. Hydrol. 2013, 505, 172–187. [Google Scholar] [CrossRef]
- Xu, F.; Chan, T.O.; Luo, M. Different changes in dry and humid heat waves over China. Int. J. Climatol. 2021, 41, 1369–1382. [Google Scholar] [CrossRef]
- Yu, R.; Zhai, P. Changes in compound drought and hot extreme events in summer over populated eastern China. Weather Clim. Extremes 2020, 30, 100295. [Google Scholar] [CrossRef]
- Guo, J.; Mao, K.; Zhao, Y.; Lu, Z.; Lu, X. Impact of climate on food security in mainland China: A new perspective based on characteristics of major agricultural natural disasters and grain loss. Sustainability 2019, 11, 869. [Google Scholar] [CrossRef]
- Chen, H.; Wang, S. Compound Dry and Wet Extremes Lead to an Increased Risk of Rice Yield Loss. Geophys. Res. Lett. 2023, 50, e2023GL105817. [Google Scholar] [CrossRef]
- Frank, D.; Reichstein, M.; Bahn, M.; Thonicke, K.; Frank, D.; Mahecha, M.D.; Smith, P.; Van der Velde, M.; Vicca, S.; Babst, F.; et al. Effects of climate extremes on the terrestrial carbon cycle: Concepts, processes and potential future impacts. Glob. Chang. Biol. 2015, 21, 2861–2880. [Google Scholar] [CrossRef] [PubMed]
- Raymond, C.; Horton, R.M.; Zscheischler, J.; Martius, O.; AghaKouchak, A.; Balch, J.; Bowen, S.G.; Camargo, S.J.; Hess, J.; Kornhuber, K.; et al. Understanding and managing connected extreme events. Nat. Clim. Chang. 2020, 10, 611–621. [Google Scholar] [CrossRef]
- Saleem, F.; Arshad, A.; Mirchi, A.; Khaliq, T.; Zeng, X.; Rahman, M.M.; Dilawar, A.; Pham, Q.B.; Mahmood, K. Observed changes in crop yield associated with droughts propagation via natural and human-disturbed agro-ecological zones of Pakistan. Remote Sens. 2022, 14, 2152. [Google Scholar] [CrossRef]
- Ciais, P.; Reichstein, M.; Viovy, N.; Granier, A.; Ogée, J.; Allard, V.; Aubinet, M.; Buchmann, N.; Bernhofer, C.; Carrara, A.; et al. Europe-wide reduction in primary productivity caused by the heat and drought in 2003. Nature 2005, 437, 529–533. [Google Scholar] [CrossRef]
- Lecomte, D.U.S. Weather highlights 2012: Heat, drought, and sandy. Weatherwise 2013, 66, 12–19. [Google Scholar] [CrossRef]
- Qi, Y.; Zhang, Q.; Hu, S.; Wang, R.; Wang, H.; Zhang, K.; Zhao, H.; Ren, S.; Yang, Y.; Zhao, F.; et al. Effects of high temperature and drought stresses on growth and yield of summer maize during grain filling in North China. Agriculture 2022, 12, 1948. [Google Scholar] [CrossRef]
- Ortiz-Bobea, A.; Wang, H.; Carrillo, C.M.; Ault, T.R. Unpacking the climatic drivers of US agricultural yields. Environ. Res. Lett. 2019, 14, 064003. [Google Scholar] [CrossRef]
- Shi, Z.T.; Jia, G.S.; Zhou, Y.Y.; Xu, X.Y.; Jiang, Y. Amplified intensity and duration of heatwaves by concurrent droughts in China. Atmos. Res. 2021, 261, 105743. [Google Scholar] [CrossRef]
- Guo, Y.; Zhang, J.; Li, K.; Aru, H.; Feng, Z.; Liu, X.; Tong, Z. Quantifying hazard of drought and heat compound extreme events during maize (Zea mays L.) growing season using Magnitude Index and copula. Weather Clim. Extrem. 2023, 40, 100566. [Google Scholar] [CrossRef]
- Wu, X.Y.; Hao, Z.C.; Hao, F.H.; Li, C.; Zhang, X. Spatial and Temporal Variations of Compound Droughts and Hot Extremes in China. Atmosphere 2019, 10, 95. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, S.; Guo, H.; Wang, P.; Wang, D.; Li, J. Variations and effects of agricultural climatic resources in suitable growth period of spring maize in northeast China. Acta Agric. Jiangxi 2018, 30, 93–99. [Google Scholar]
- Zhao, S.; Ji, R.; Wang, S.; Li, X.; Zhao, S. Large-scale climate factors of compound agrometeorological disasters of spring maize in Liaoning, Northeast China. Atmosphere 2023, 14, 1414. [Google Scholar] [CrossRef]
- Jia, H.; Wang, J.; Cao, C.; Pan, D.; Shi, P. Maize drought disaster risk assessment of China based on EPIC model. Int. J. Digit. Earth 2012, 5, 488–515. [Google Scholar] [CrossRef]
- Qian, Y.; Mao, L.; Zhou, G. Changes in global main crop yields and its meteorological risk assessment. Trans. Chin. Soc. Agric. Eng. 2016, 32, 226–235. [Google Scholar]
- Lu, J.; Carbone, G.J.; Gao, P. Detrending crop yield data for spatial visualization of drought impacts in the United States, 1895–2014. Agric. For. Meteorol. 2017, 237–238, 196–208. [Google Scholar] [CrossRef]
- Han, Y.; Fang, S.; Liang, H.; Zhou, L.; Zhou, G. Disaster risk regionalization of rice based on its reduction probability in Liaoning Province. Acta Ecol. Sin. 2017, 37, 8077–8088. [Google Scholar]
- Li, X.; Fang, S.B.; Zhu, Y.C.; Wu, D. Risk analysis of wheat yield losses at the county level in Mainland China. Front. Environ. Sci. 2021, 9, 642340. [Google Scholar] [CrossRef]
- Zhang, Y.T.; Hao, Z.C.; Zhang, Y. Agricultural risk assessment of compound dry and hot events in China. Agric. Water Manag. 2023, 277, 108128. [Google Scholar] [CrossRef]
- Tang, Z.F.; Yang, T.; Lin, X.; Li, X.X.; Cao, R.; Li, W. Future changes in the risk of compound hot and dry events over China estimated with two large ensembles. PLoS ONE 2022, 17, e0264980. [Google Scholar] [CrossRef] [PubMed]
- Wang, X.; Müller, C.; Elliot, J.; Mueller, N.D.; Ciais, P.; Jägermeyr, J.; Gerber, J.; Dumas, P.; Wang, C.; Yang, H.; et al. Global irrigation contribution to wheat and maize yield. Nat. Commun. 2021, 12, 1235. [Google Scholar] [CrossRef] [PubMed]
- Vogel, E.; Donat, M.G.; Alexander, L.V.; Meinshausen, M.; Ray, D.K.; Karoly, D.; Meinshausen, N.; Frieler, K. The effects of climate extremes on global agricultural yields. Environ. Res. Lett. 2019, 14, 054010. [Google Scholar] [CrossRef]
- Zaveri, E.; Lobell, D.B. The role of irrigation in changing wheat yields and heat sensitivity in India. Nat. Commun. 2019, 10, 4144. [Google Scholar] [CrossRef]
Risk Level | Low-Risk | Medium-Risk | Second-Highest-Risk | High-Risk |
---|---|---|---|---|
M | (0, 0.23] | (0.23, 0.4] | (0.4, 0.65] | (0.65, 1] |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, R.; Zhang, X.; Cong, L.; Wang, Y.; Bai, X. Risk Assessment of Compound Dry–Hot Events for Maize in Liaoning Province. Atmosphere 2024, 15, 834. https://doi.org/10.3390/atmos15070834
Wang R, Zhang X, Cong L, Wang Y, Bai X. Risk Assessment of Compound Dry–Hot Events for Maize in Liaoning Province. Atmosphere. 2024; 15(7):834. https://doi.org/10.3390/atmos15070834
Chicago/Turabian StyleWang, Rui, Xiaoxuan Zhang, Longpeng Cong, Yilin Wang, and Xiaotian Bai. 2024. "Risk Assessment of Compound Dry–Hot Events for Maize in Liaoning Province" Atmosphere 15, no. 7: 834. https://doi.org/10.3390/atmos15070834
APA StyleWang, R., Zhang, X., Cong, L., Wang, Y., & Bai, X. (2024). Risk Assessment of Compound Dry–Hot Events for Maize in Liaoning Province. Atmosphere, 15(7), 834. https://doi.org/10.3390/atmos15070834