Black Carbon along a Highway and in a Residential Neighborhood during Rush-Hour Traffic in a Cold Climate
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Site
2.2. BC Monitoring Campaigns Design
- Walking Highway (WH): Walking along a 2.2 km section of the MIK highway to resolve the spatial variability and potential exposure of pedestrians and cyclists. The traffic varied from 40,000 to 47,500 vehicles per day, and the canyon width ranged from 50 to 160 m. The walking path meandered along the highway, being both next to the curb and as far as 70 m from the centerline, and sometimes on the inside of a side berm for acoustic protection (Figure 2b,c). The long-term urban traffic station GRE was located 80 m from the centerline of the highway on a secondary artery.
- Walking Residential (WR): Walking within an adjacent residential neighborhood to assess the spatial reach of the traffic-related pollution, the urban background level and potential residential exposure. The Hlíðar neighborhood was chosen as the highway canyon was at its narrowest (Figure 1), and because the residential streets were parallel to the highway, allowing the assessment of a concentration profile with distance from the highway.
- Driving Highway (DH): Driving along the same 2.2 km section of highway to capture pollution levels closest to the source (aka tailpipe of vehicles) and the potential exposure of commuting by personal car.
2.3. Reference Data
2.4. Data Preparation
2.5. Data Analyses
3. Results and Discussion
3.1. Overview of Winter and Spring Season
3.2. Stationary Campaign Summary
3.3. Mobile Campaign Summary
3.4. Linear Regression Analyses
3.5. Inner-City Spatial Variations
3.6. Residential BC
4. Final Remarks
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Europe’s Air Quality Status 2023. Available online: https://www.eea.europa.eu/publications/europes-air-quality-status-2023 (accessed on 21 June 2023).
- European Environment Agency [EEA]. Air Quality in Europe—2020 Report; Publications Office of the European Union: Luxembourg, 2020. [Google Scholar]
- Park, M.; Joo, H.S.; Lee, K.; Jang, M.; Kim, S.D.; Kim, I.; Borlaza, L.J.S.; Lim, H.; Shin, H.; Chung, K.H.; et al. Differential Toxicities of Fine Particulate Matters from Various Sources. Sci. Rep. 2018, 8, 17007. [Google Scholar] [CrossRef]
- Janssen, N.A.H.; Gerlofs-Nijland, M.E.; Lanki, T.; Salonen, R.O.; Cassee, F.; Hoek, G.; Fischer, P.; Brunekreef, B.; Krzyzanowski, M. Health Effects of Black Carbon; World Health Organization [WHO]—Regional Office for Europe: Copenhagen, Denmark, 2012. [Google Scholar]
- Samoli, E.; Atkinson, R.W.; Analitis, A.; Fuller, G.W.; Green, D.C.; Mudway, I.; Anderson, H.R.; Kelly, F.J. Associations of Short-Term Exposure to Traffic-Related Air Pollution with Cardiovascular and Respiratory Hospital Admissions in London, UK. Occup. Environ. Med. 2016, 73, 300–307. [Google Scholar] [CrossRef] [PubMed]
- Atkinson, R.W.; Analitis, A.; Samoli, E.; Fuller, G.W.; Green, D.C.; Mudway, I.S.; Anderson, H.R.; Kelly, F.J. Short-Term Exposure to Traffic-Related Air Pollution and Daily Mortality in London, UK. J. Expo. Sci. Environ. Epidemiol. 2016, 26, 125–132. [Google Scholar] [CrossRef] [PubMed]
- Schwartz, J.; Bind, M.-A.; Koutrakis, P. Estimating Causal Effects of Local Air Pollution on Daily Deaths: Effect of Low Levels. Environ. Health Perspect. 2017, 125, 23–29. [Google Scholar] [CrossRef] [PubMed]
- World Health Organization. WHO Global Air Quality Guidelines: Particulate Matter (PM2.5 and PM10), Ozone, Nitrogen Dioxide, Sulfur Dioxide and Carbon Monoxide; World Health Organization: Geneva, Switzerland, 2021; ISBN 978-92-4-003422-8. [Google Scholar]
- Enroth, J.; Saarikoski, S.; Niemi, J.; Kousa, A.; Ježek, I.; Močnik, G.; Carbone, S.; Kuuluvainen, H.; Rönkkö, T.; Hillamo, R.; et al. Chemical and Physical Characterization of Traffic Particles in Four Different Highway Environments in the Helsinki Metropolitan Area. Atmos. Chem. Phys. 2016, 16, 5497–5512. [Google Scholar] [CrossRef]
- Wiesner, A.; Pfeifer, S.; Merkel, M.; Tuch, T.; Weinhold, K.; Wiedensohler, A. Real World Vehicle Emission Factors for Black Carbon Derived from Longterm In-Situ Measurements and Inverse Modelling. Atmosphere 2021, 12, 31. [Google Scholar] [CrossRef]
- Liang, M.S.; Keener, T.C.; Birch, M.E.; Baldauf, R.; Neal, J.; Yang, Y.J. Low-Wind and Other Microclimatic Factors in near-Road Black Carbon Variability: A Case Study and Assessment Implications. Atmos. Environ. 2013, 80, 204–215. [Google Scholar] [CrossRef]
- Chen, Y.; Schleicher, N.; Fricker, M.; Cen, K.; Liu, X.-L.; Kaminski, U.; Yu, Y.; Wu, X.-F.; Norra, S. Long-Term Variation of Black Carbon and PM2.5 in Beijing, China with Respect to Meteorological Conditions and Governmental Measures. Environ. Pollut. 2016, 212, 269–278. [Google Scholar] [CrossRef]
- Segersson, D.; Eneroth, K.; Gidhagen, L.; Johansson, C.; Omstedt, G.; Nylén, A.E.; Forsberg, B. Health Impact of PM10, PM2.5 and Black Carbon Exposure Due to Different Source Sectors in Stockholm, Gothenburg and Umea, Sweden. Int. J. Environ. Res. Public Health 2017, 14, 742. [Google Scholar] [CrossRef]
- Chambliss, S.E.; Preble, C.V.; Caubel, J.J.; Cados, T.; Messier, K.P.; Alvarez, R.A.; LaFranchi, B.; Lunden, M.; Marshall, J.D.; Szpiro, A.A.; et al. Comparison of Mobile and Fixed-Site Black Carbon Measurements for High-Resolution Urban Pollution Mapping. Environ. Sci. Technol. 2020, 54, 7848–7857. [Google Scholar] [CrossRef]
- Tessum, M.W.; Sheppard, L.; Larson, T.V.; Gould, T.R.; Kaufman, J.D.; Vedal, S. Improving Air Pollution Predictions of Long-Term Exposure Using Short-Term Mobile and Stationary Monitoring in Two US Metropolitan Regions. Environ. Sci. Technol. 2021, 55, 3530–3538. [Google Scholar] [CrossRef]
- Van den Hove, A.; Verwaeren, J.; Van den Bossche, J.; Theunis, J.; De Baets, B. Development of a Land Use Regression Model for Black Carbon Using Mobile Monitoring Data and Its Application to Pollution-Avoiding Routing. Environ. Res. 2020, 183, 108619. [Google Scholar] [CrossRef]
- Dons, E.; Panis, L.I.; Poppel, M.V.; Theunis, J.; Wets, G. Personal Exposure to Black Carbon in Transport Microenvironments. Atmos. Environ. 2012, 55, 392–398. [Google Scholar] [CrossRef]
- Rivas, I.; Donaire-Gonzalez, D.; Bouso, L.; Esnaola, M.; Pandolfi, M.; de Castro, M.; Viana, M.; Àlvarez-Pedrerol, M.; Nieuwenhuijsen, M.; Alastuey, A.; et al. Spatiotemporally Resolved Black Carbon Concentration, Schoolchildren’s Exposure and Dose in Barcelona. Indoor Air 2016, 26, 391–402. [Google Scholar] [CrossRef] [PubMed]
- Janhäll, S.; Olofson, K.F.G.; Andersson, P.U.; Pettersson, J.B.C.; Hallquist, M. Evolution of the Urban Aerosol during Winter Temperature Inversion Episodes. Atmos. Environ. 2006, 40, 5355–5366. [Google Scholar] [CrossRef]
- Olofson, K.F.G.; Andersson, P.U.; Hallquist, M.; Ljungström, E.; Tang, L.; Chen, D.; Pettersson, J.B.C. Urban Aerosol Evolution and Particle Formation during Wintertime Temperature Inversions. Atmos. Environ. 2009, 43, 340–346. [Google Scholar] [CrossRef]
- Liu, B.; Ma, Y.; Gong, W.; Zhang, M.; Shi, Y. The Relationship between Black Carbon and Atmospheric Boundary Layer Height. Atmos. Pollut. Res. 2019, 10, 65–72. [Google Scholar] [CrossRef]
- Savadkoohi, M.; Pandolfi, M.; Reche, C.; Niemi, J.V.; Mooibroek, D.; Titos, G.; Green, D.C.; Tremper, A.H.; Hueglin, C.; Liakakou, E.; et al. The Variability of Mass Concentrations and Source Apportionment Analysis of Equivalent Black Carbon across Urban Europe. Environ. Int. 2023, 178, 108081. [Google Scholar] [CrossRef] [PubMed]
- Environment Agency Iceland [EIA]. Informative Inventory Report: Emissions of Air Pollutants in Iceland from 1990 to 2021; Umhverfisstofnun: Reykjavík, Iceland, 2023. [Google Scholar]
- Andradóttir, H.Ó.; Hjartardóttir, B. Sót í Reykjavík—Forrannsókn (English: Black Carbon in Reykjavík—Pilot Study); University of Iceland: Reykjavík, Iceland, 2018. [Google Scholar]
- Icelandic Transport Authority. Traffic Statistics by Type of Car, Type of Fuel. Available online: https://island.is/oennur-toelfraedi-samgoengustofu (accessed on 21 June 2023).
- Thorsteinsson, T.; Gísladóttir, G.; Bullard, J.; McTainsh, G. Dust Storm Contributions to Airborne Particulate Matter in Reykjavík, Iceland. Atmos. Environ. 2011, 45, 5924–5933. [Google Scholar] [CrossRef]
- Environment Agency Iceland [EIA]. Loftgæði á Íslandi—Ársskýrsla 2017 (English: Air Quality in Iceland—Annual Report 2017); Umhverfisstofnun: Reykjavík, Iceland, 2019. [Google Scholar]
- Environment Agency Iceland [EIA]. Loftgæði á Íslandi—Ársskýrsla 2018 (English: Air Quality in Iceland—Annual Report 2018); Umhverfisstofnun: Reykjavík, Iceland, 2020. [Google Scholar]
- Höskuldsson, P.; Thorlacius, A. Uppruni svifryks í Reykjavík (English: Particle Matter Sources in Icleand); Efla Consulting: Reykjavík, Iceland, 2017. [Google Scholar]
- Mendoza, D.L.; Hill, L.D.; Blair, J.; Crosman, E.T. A Long-Term Comparison between the AethLabs MA350 and Aerosol Magee Scientific AE33 Black Carbon Monitors in the Greater Salt Lake City Metropolitan Area. Sensors 2024, 24, 965. [Google Scholar] [CrossRef] [PubMed]
- Holder, A.; Seay, B.; Brashear, A.; Yelveton, T.; Blair, J.; Blair, S. Evaluation of a Multi-Wavelength Black Carbon (BC) Sensor; Clean Air Society of Australia and New Zealand: Melbourne, Australia, 2018. [Google Scholar]
- Environment Agency Iceland [EIA]. Air Quality Data Grensás Urban Traffic Site from 2010 to 2019; Environment Agency Iceland [EIA]: Reykjavík, Iceland, 2023. [Google Scholar]
- Icelandic Meteorological Office [IMO]. Hourly Weather and Rain at Reykjavík Automatic Station Nr. 1475 From1997 to 2019; Icelandic Meteorological Office [IMO]: Reykjavík, Iceland, 2020. [Google Scholar]
- Icelandic Meteorological Office [IMO]. Hourly Radiation and Soil Temperature in Reykjavík; Icelandic Meteorological Office [IMO]: Reykjavík, Iceland, 2019. [Google Scholar]
- Icelandic Road Administration [IRA]. Traffic Counts on Miklabraut during Mobile Monitoring Campaigns; Icelandic Road Administration [IRA]: Reykjavík, Iceland, 2018. [Google Scholar]
- Icelandic Road Administration [IRA]. Traffic Counts on Hringbraut Section Nr. 49-05 Eastbound and Section Nr. 49-04 Westbound; Icelandic Road Administration [IRA]: Reykjavík, Iceland, 2023. [Google Scholar]
- Feiccabrino, J.; Graff, W.; Lundberg, A.; Sandström, N.; Gustafsson, D. Meteorological Knowledge Useful for the Improvement of Snow Rain Separation in Surface Based Models. Hydrology 2015, 2, 266–288. [Google Scholar] [CrossRef]
- Bar-Yehuda, Z. Matlab Function for Plotting a Google Map on the Background of a Figure. Available online: https://github.com/zoharby/plot_google_map (accessed on 21 June 2022).
- Boniardi, L.; Dons, E.; Campo, L.; Van Poppel, M.; Int Panis, L.; Fustinoni, S. Annual, Seasonal, and Morning Rush Hour Land Use Regression Models for Black Carbon in a School Catchment Area of Milan, Italy. Environ. Res. 2019, 176, 108520. [Google Scholar] [CrossRef] [PubMed]
- Zhu, Y.; Hinds, W.C.; Kim, S.; Shen, S.; Sioutas, C. Study of Ultrafine Particles near a Major Highway with Heavy-Duty Diesel Traffic. Atmos. Environ. 2002, 36, 4323–4335. [Google Scholar] [CrossRef]
- Aldrin, M.; Haff, I.H. Generalised Additive Modelling of Air Pollution, Traffic Volume and Meteorology. Atmos. Environ. 2005, 39, 2145–2155. [Google Scholar] [CrossRef]
- Barr, B.C.; Andradóttir, H.Ó.; Thorsteinsson, T.; Erlingsson, S. Mitigation of Suspendable Road Dust in a Subpolar, Oceanic Climate. Sustainability 2021, 13, 9607. [Google Scholar] [CrossRef]
- Andradottir, H.O.; Thorsteinsson, T. Repeated Extreme Particulate Matter Episodes Due to Fireworks in Iceland and Stakeholders’ Response. J. Clean. Prod. 2019, 236, 117511. [Google Scholar] [CrossRef]
- Okokon, E.O.; Yli-Tuomi, T.; Turunen, A.W.; Taimisto, P.; Pennanen, A.; Vouitsis, I.; Samaras, Z.; Voogt, M.; Keuken, M.; Lanki, T. Particulates and Noise Exposure during Bicycle, Bus and Car Commuting: A Study in Three European Cities. Environ. Res. 2017, 154, 181–189. [Google Scholar] [CrossRef] [PubMed]
- Merritt, A.-S.; Georgellis, A.; Andersson, N.; Bero Bedada, G.; Bellander, T.; Johansson, C. Personal Exposure to Black Carbon in Stockholm, Using Different Intra-Urban Transport Modes. Sci. Total Environ. 2019, 674, 279–287. [Google Scholar] [CrossRef]
- Matthaios, V.N.; Kramer, L.J.; Crilley, L.R.; Sommariva, R.; Pope, F.D.; Bloss, W.J. Quantification of Within-Vehicle Exposure to NOx and Particles: Variation with Outside Air Quality, Route Choice and Ventilation Options. Atmos. Environ. 2020, 240, 117810. [Google Scholar] [CrossRef]
- Campagnolo, D.; Borghi, F.; Fanti, G.; Keller, M.; Rovelli, S.; Spinazzè, A.; Cattaneo, A.; Cavallo, D.M. Factors Affecting In-Vehicle Exposure to Traffic-Related Air Pollutants: A Review. Atmos. Environ. 2023, 295, 119560. [Google Scholar] [CrossRef]
- Helin, A.; Niemi, J.V.; Virkkula, A.; Pirjola, L.; Teinilä, K.; Backman, J.; Aurela, M.; Saarikoski, S.; Rönkkö, T.; Asmi, E.; et al. Characteristics and Source Apportionment of Black Carbon in the Helsinki Metropolitan Area, Finland. Atmos. Environ. 2018, 190, 87–98. [Google Scholar] [CrossRef]
- Lundberg, J.; Gustafsson, M.; Janhäll, S.; Eriksson, O.; Blomqvist, G.; Erlingsson, S. Temporal Variation of Road Dust Load and Its Size Distribution—A Comparative Study of a Porous and a Dense Pavement. Water Air Soil Pollut. 2020, 231, 561. [Google Scholar] [CrossRef]
- Luoma, K.; Niemi, J.V.; Aurela, M.; Fung, P.L.; Helin, A.; Hussein, T.; Kangas, L.; Kousa, A.; Rönkkö, T.; Timonen, H.; et al. Spatiotemporal Variation and Trends in Equivalent Black Carbon in the Helsinki Metropolitan Area in Finland. Atmospheric Chem. Phys. 2021, 21, 1173–1189. [Google Scholar] [CrossRef]
- Friman, M.; Aurela, M.; Saarnio, K.; Teinilä, K.; Kesti, J.; Harni, S.D.; Saarikoski, S.; Hyvärinen, A.; Timonen, H. Long-Term Characterization of Organic and Elemental Carbon at Three Different Background Areas in Northern Europe. Atmos. Environ. 2023, 310, 119953. [Google Scholar] [CrossRef]
Median (Mean ± S.D.) Uncorrected BC | TAF | GRE Station | ||||||||
---|---|---|---|---|---|---|---|---|---|---|
WH | WR | DH | WR | DH | NO2 | PM10 | ||||
Season | Mo. | Day | Time | (µg/m3) | (µg/m3) | (µg/m3) | (-) | (-) | (µg/m3) | (µg/m3) |
Winter (N = 12) | 12 | 13 | MRH | 2.9 (4.1 ± 5.0) | 1.9 (1.9 ± 1.1) | 4.1 (4.1 ± 0.8) | 0.61 | 0.70 | 102 * | 18 |
12 | 13 | ARH | 8.8 (9.6 ± 5.4) | 4.7 (5.1 ± 1.8) | 11.4 (10.0 ± 4.7) | 0.98 | 1.19 | 209 * | 35 | |
12 | 14 | MRH | 6.3 (7.8 ± 5.6) | - | 7.0 (7.8 ± 2.3) | - | 0.99 | 174 * | 24 | |
12 | 14 | ARH | 6.9 (8.0 ± 5.9) | 3.0 (3.2 ± 1.3) | 6.0 (6.3 ± 2.7) | 0.94 | 0.94 | 211 * | 28 | |
12 | 15 | MRH | 3.6 (4.6 ± 4.8) | 0.3 (0.6 ± 1.7) | 2.7 (2.8 ± 1.0) | 1.19 | 1.12 | 129 * | 10 | |
12 | 15 | ARH | 3.9 (4.5 ± 3.2) | 2.1 (2.4 ± 1.6) | 3.2 (3.8 ± 1.9) | 1.41 | 1.17 | 121 * | 12 | |
1 | 16 | MRH | 0.3 (0.9 ± 2.3) | 0.1 (0.1 ± 0.4) | 0.9 (1.3 ± 1.2) | 1.48 | 1.48 | 37 | 10 | |
1 | 18 | MRH | 2.8 (3.6 ± 3.0) | 0.9 (1.6 ± 2.6) | 2.6 (3.4 ± 2.2) | 1.01 | 2.06 | 90 * | 12 | |
1 | 18 | ARH | 2.9 (3.7 ± 3.3) | 1.5 (2.3 ± 3.0) | 3.7 (3.8 ± 2.7) | 0.61 | 0.58 | 94 * | 11 | |
1 | 19 | ARH | 5.7 (6.2 ± 3.2) | 4.5 (5.0 ± 2.3) | 5.2 (5.3 ± 0.7) | 0.99 | 0.88 | 203 * | 27 | |
2 | 1 | MRH | 1.7 (2.7 ± 3.5) | 0.7 (1.0 ± 0.9) | 3.2 (3.4 ± 2.1) | 0.97 | 1.26 | 85 | 6 | |
2 | 1 | ARH | 1.2 (2.4 ± 6.1) | 0.3 (0.4 ± 0.5) | 1.3 (1.6 ± 1.2) | 1.09 | 1.09 | 29 | 9 | |
Spring (N = 8) | 3 | 1 | MRH | 0.6 (1.2 ± 2.3) | 0.3 (0.4 ± 0.7) | 2.3 (3.7 ± 3.9) | 1.16 | 1.13 | 20 | 21 |
3 | 1 | ARH | 1.7 (2.5 ± 2.9) | 0.8 (1.0 ± 0.8) | 5.3 (5.7 ± 2.7) | 0.75 | 0.82 | 54 | 67 * | |
3 | 2 | MRH | 3.6 (4.2 ± 2.7) | 1.0 (1.8 ± 4.8) | 2.8 (3.2 ± 1.1) | 1.20 | 1.20 | 123 | 199 * | |
3 | 2 | ARH | 1.2 (1.8 ± 2.3) | 0.3 (0.6 ± 2.1) | 1.6 (1.6 ± 1.3) | 1.80 | 1.53 | 28 | 97 * | |
3 | 23 | ARH | 1.0 (2.1 ± 3.9) | 0.5 (0.7 ± 2.4) | 3.0 (3.2 ± 1.3) | 1.43 | 1.92 | 49 | 42 | |
4 | 3 | ARH | 0.9 (1.6 ± 2.7) | 0.3 (0.8 ± 1.9) | 2.1 (3.5 ± 3.3) | 1.01 | 1.01 | 22 | 29 | |
4 | 9 | MRH | 1.4 (1.7 ± 1.6) | 0.5 (0.6 ± 0.7) | 2.4 (2.8 ± 1.5) | 1.80 | 2.24 | 21 | 29 * | |
4 | 9 | ARH | 1.0 (1.5 ± 1.7) | 0.8 (0.8 ± 0.6) | 1.5 (1.6 ± 0.7) | 1.34 | 1.34 | 29 | 112 * |
Stationary | Mobile | ||||||
---|---|---|---|---|---|---|---|
External Conditions | Parameter | Unit | All (N = 563) | 9 AM-7 PM (N = 259) | WH (N = 20) | WR (N = 19) | DH (N = 20) |
Traffic | Volume | veh./h | 0.55 *** | 0.29 *** | 0.09 | 0.38 | 0.19 |
Weather | dT/dz | °C/m | 0.17 *** | 0.19 ** | 0.80 *** | 0.67 ** | 0.64 ** |
Tair | °C | −0.09 * | −0.10 | −0.40 | −0.34 | −0.18 | |
W10 | m/s | −0.36 *** | −0.45 *** | −0.67 ** | −0.64 ** | −0.73 *** | |
WD | ° | 0.04 | 0.07 | −0.05 | 0.01 | 0.05 | |
RH | % | 0.04 | 0.15 * | 0.40 | 0.40 | 0.35 | |
Rad | W/m2 | 0.11 * | −0.16 * | −0.46 * | −0.38 | −0.30 | |
Rain | mm/h | −0.13 ** | −0.19 ** | - | - | - | |
Snow | mm/h | 0.04 | 0.06 | - | - | - | |
Stationary | NO2 | µg/m3 | 0.84 *** (2) | 0.82 *** (2) | 0.96 *** | 0.88 *** | 0.75 *** |
Air Quality (1) | SO2 | µg/m3 | - | - | 0.94 *** | 0.85 *** | 0.73 *** |
PM10 | µg/m3 | 0.40 *** (2) | 0.37 *** (2) | −0.02 | −0.09 | −0.11 | |
PM2.5 | µg/m3 | 0.15 ** | −0.03 | 0.03 | −0.16 | −0.21 |
Stationary | Mobile | |||||
---|---|---|---|---|---|---|
Parameter | <Nov. 6 | Nov. 6–12 | Nov. 14–20 | WH | WR | DH |
Traffic vol. | 0.57 *** | 0.57 *** | 0.61 *** | - | - | - |
NO2 | 0.048 *** | 0.035 *** | 0.039 *** | 0.032 *** | 0.016 *** | 0.035 *** |
City/Country | Lat. (°N) | BC Source | Monitoring Period | Tair (°C) | BC (µg/m3) Max. (Median) | Data Origin |
---|---|---|---|---|---|---|
Reykjavík/Iceland | 64 | T | MRH and ARH 13 December–9 April | −6 to +6 | 4.9 | This study |
Helsinki/Finland | 60 | FF | Jan. | −9 | 3.7 * (0.6) | [48] |
T | November–March | −15 to +9 | 2.4 * (0.65 **) | [50] | ||
Milan/Italy | 45 | T, HH | MRH (7–9 AM) | 3 to 10 | 4.3 (3.9) | [39] |
7 January–12 February | 3 to 10 | 3.2 (3.0) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Andradóttir, H.Ó.; Hjartardóttir, B.; Thorsteinsson, T. Black Carbon along a Highway and in a Residential Neighborhood during Rush-Hour Traffic in a Cold Climate. Atmosphere 2024, 15, 312. https://doi.org/10.3390/atmos15030312
Andradóttir HÓ, Hjartardóttir B, Thorsteinsson T. Black Carbon along a Highway and in a Residential Neighborhood during Rush-Hour Traffic in a Cold Climate. Atmosphere. 2024; 15(3):312. https://doi.org/10.3390/atmos15030312
Chicago/Turabian StyleAndradóttir, Hrund Ólöf, Bergljót Hjartardóttir, and Throstur Thorsteinsson. 2024. "Black Carbon along a Highway and in a Residential Neighborhood during Rush-Hour Traffic in a Cold Climate" Atmosphere 15, no. 3: 312. https://doi.org/10.3390/atmos15030312
APA StyleAndradóttir, H. Ó., Hjartardóttir, B., & Thorsteinsson, T. (2024). Black Carbon along a Highway and in a Residential Neighborhood during Rush-Hour Traffic in a Cold Climate. Atmosphere, 15(3), 312. https://doi.org/10.3390/atmos15030312