There Is Still a Need for a Comprehensive Investigation of the Health Consequences of Exposure to Urban Air with Special Regard to Particulate Matter (PM) and Cardiovascular Effects
Abstract
:1. Why Do We (Still) Need to Deal with Urban Air Pollution? (Importance and Background)
1.1. The Components of Urban Air Pollution
1.2. Human Exposure to Urban Air Pollutants
1.3. Health Problems Related to Urban Air Pollution
1.4. Possible Mechanisms of the Development of Health Effects Associated with Exposure to Urban Air Pollutants
2. What Should Be Considered When Investigating the Health Effects of Urban Air Pollution? (Objectives)
2.1. The Particular Importance of Sampling with Special Regard to PM
2.2. Measured Air Polluting Components
2.2.1. Metallic Compounds
2.2.2. Diesel Exhaust (DE)
2.2.3. PAHs and VOCs
2.3. Selection of the Study Population
2.3.1. Age Aspects
2.3.2. Gender Aspects
2.3.3. Physical Activity
2.3.4. Lifestyle and Stress
2.3.5. Effect of the Duration of Exposure
2.4. Biomarkers of the Health Effects
- Which of the urban air pollutants play the biggest role in the development of health effects, particularly cardiovascular effects?
- The combined effects that can occur upon exposure to several harmful substances at the same time should be investigated. The impact of different concentration levels of air pollutants on the measured biomarkers, and thus on the size of the effect, should also be assessed.
- Which biomarkers have the best predictor performance, especially in early effects?
- Are there biomarkers or combinations of biomarkers that can help determine the degree of individual susceptibility and sensitivity and the dependence of these by different factors (e.g., age, gender, and physical activity)?
3. Methodology to Comprehensively Investigate the Health Consequences of Exposure to Urban Air Pollution (Implementation)
3.1. Study Design and Subjects
3.2. Medical Examinations
3.3. Collection and Analysis of Air Samples
3.4. Collection, Storage, and Analysis of Blood Samples
3.5. Urban Aerosol Characterization
3.6. Statistical Analyses and Data Management
3.7. Project Timeline
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Sicard, P.; Agathokleous, E.; Anenberg, S.C.; De Marco, A.; Paoletti, E.; Calatayud, V. Trends in urban air pollution over the last two decades: A global perspective. Sci. Total Environ. 2023, 858, 160064. [Google Scholar] [CrossRef] [PubMed]
- Yang, K.; Wu, C.; Luo, Y. The impact of COVID-19 on urban PM2.5—Taking Hubei Province as an example. Environ. Pollut. 2022, 2094, 118633. [Google Scholar] [CrossRef] [PubMed]
- Pal, S.C.; Chowdhuri, I.; Saha, A.; Ghosh, M.; Roy, P.; Das, B.; Chakrabortty, R.; Shit, M. COVID-19 strict lockdown impact on urban air quality and atmospheric temperature in four megacities of India. Geosci. Front. 2022, 13, 101368. [Google Scholar] [CrossRef] [PubMed]
- Cohen, A.J.; Brauer, M.; Burnett, R.; Anderson, H.R.; Frostad, J.; Estep, K.; Balakrishnan, K.; Brunekreef, B.; Dandona, L.; Dandona, R.; et al. Estimates and 25-year trends of the global burden of disease attributable to ambient air pollution: An analysis of data from the Global Burden of Diseases Study 2015. Lancet 2017, 389, 1907–1918. [Google Scholar] [CrossRef] [PubMed]
- EEA—European Environment Agency. Air Quality in Europe—2019 Report EEA Report No. 10/2019; Publications Office of the European Union: Luxembourg, 2019.
- Hart, J.E.; Garshick, E.; Dockery, D.W.; Smith, T.J.; Ryan, L.; Laden, F. Long-term ambient multipollutant exposures and mortality. Am. J. Respir. Crit. Care Med. 2010, 183, 73–78. [Google Scholar] [CrossRef] [PubMed]
- Beelen, R.; Hoek, G.; van den Brandt, P.A.; Goldbohm, R.A.; Fisher, P.; Schouten, L.J.; Jerrett, M.; Hughes, E.; Armstrong, B.; Brunekreef, B. Long-term effects of traffic-related air pollution on mortality in a Dutch cohort (NLCS-air study). Environ. Health Perspect. 2008, 116, 196–202. [Google Scholar] [CrossRef] [PubMed]
- Hoek, G.; Krishnan, R.M.; Beelen, R.; Peters, A.; Ostro, B.; Brunekreef, B.; Kaufman, J.D. Long-term air pollution exposure and cardio-respiratory mortality: A review. Environ. Health 2013, 12, 43–57. [Google Scholar] [CrossRef] [PubMed]
- Shah, A.S.V.; Langrish, J.P.; Nair, H.; McAllister, D.A.; Hunter, A.L.; Donaldson, K.; Newby, D.E.; Mills, N.L. Global association of air pollution and heart failure: A systematic review and meta-analysis. Lancet 2013, 382, 1039–1048. [Google Scholar] [CrossRef]
- Du, Y.; Xu, X.; Chu, M.; Guo, Y.; Wang, J. Air particulate matter and cardiovascular disease: The epidemiological, biomedical and clinical evidence. J. Thorac. Dis. 2016, 8, E8–E19. [Google Scholar]
- Available online: https://ec.europa.eu/info/funding-tenders/opportunities/portal/screen/opportunities/topic-details/horizon-hlth-2024-envhlth-02-06-two-stage (accessed on 20 February 2024).
- McDonald, K. Air pollution in the urban atmosphere: Sources and consequences. In Metropolitan Sustainability; Woodhead Publishing Series in Energy; Woodhead Publishing: Sawston, UK, 2012; pp. 231–259. [Google Scholar] [CrossRef]
- HEI Panel on the Health Effects of Traffic-Related Air Pollution. Traffic-Related Air Pollution: A Critical Review of the Literature on Emissions, Exposure, and Health Effects; HEI Special Report 17; Health Effects Institute: Boston, MA, USA, 2010. [Google Scholar]
- EPA/600/8-90/057F; Health Assessment Document for Diesel Engine Exhaust (Final 2002). U.S. Environmental Protection Agency, Office of Research and Development, National Center for Environmental Assessment, Washington Office: Washington, DC, USA, 2002.
- Cook, R.; Strum, M.; Touma, J.S.; Palma, T.; Thurman, J.; Ensley, D.; Smith, R. Inhalation exposure and risk from mobile source air toxics in future years. J. Expo. Sci. Environ. Epidemiol. 2007, 17, 95–105. [Google Scholar] [CrossRef]
- Lough, G.C.; Schauer, J.J.; Park, J.S.; Shafer, M.M.; Deminter, J.T.; Weinstein, J.P. Emissions of Metals Associated with Motor Vehicle Roadways. Environ. Sci. Technol. 2005, 39, 826–836. [Google Scholar] [CrossRef] [PubMed]
- Grigoratos, T.; Martini, G. Brake wear particle emissions: A review. Environ. Sci. Pollut. Res. 2015, 22, 2491–2504. [Google Scholar] [CrossRef] [PubMed]
- Chan, D.; Stachowiak, G.W. Review of automotive brake friction materials. Proc. Inst. Mech. Eng. D. J. Automob. Eng. 2004, 218, 953–966. [Google Scholar] [CrossRef]
- Schauer, J.J.; Lough, G.C.; Shafer, M.M.; Christensen, W.F.; Arndt, M.F.; DeMinter, J.T.; Park, J.S. Characterization of Emissions of Metals Emitted from Motor Vehicles; Research report; Health Effects Institute: Boston, MA, USA, 2006; Volume 133, pp. 1–76. [Google Scholar]
- Roubicek, V.; Raclavska, H.; Juchelkova, D.; Filip, P. Wear and environmental aspects of composite materials for automotive braking industry. Wear 2008, 265, 167–175. [Google Scholar] [CrossRef]
- Varrica, D.; Bardelli, F.; Dongarra, G.; Tamburo, E. Speciation of Sb in airborne particulate matter, vehicle brake linings, and brake pad wear residues. Atmos. Environ. 2013, 64, 18–24. [Google Scholar] [CrossRef]
- Kesselmeier, J.; Staudt, M. Biogenic volatile organic compounds (VOC): An overview on emission, physiology and ecology. J. Atmos. Chem. 1999, 33, 23–88. [Google Scholar] [CrossRef]
- Mohammed, M.O.A.; Song, W.W.; Ma, W.L.; Li, W.L.; Ambuchi, J.J.; Thabit, M.; Li, Y.F. Trends in indoor–outdoor PM2.5 research: A systematic review of studies conducted during the last decade (2003–2013). Atmos. Pollut. Res. 2015, 6, 893–903. [Google Scholar] [CrossRef]
- Belloc-Santaliestra, M.; van der Haar, R.; Molinero-Ruiz, E. Occupational exposure assessment of highway toll station workers to vehicle engine exhaust. J. Occup. Environ. Hyg. 2015, 12, 51–61. [Google Scholar] [CrossRef]
- Pilidis, G.A.; Karakitsios, S.P.; Kassomenos, P.A.; Kazos, E.A.; Stalikas, C.D. Measurements of benzene and formaldehyde in a medium sized urban environment. Indoor/outdoor health risk implications on special population groups. Environ. Monit. Assess. 2009, 150, 285–294. [Google Scholar] [CrossRef]
- Zhang, L.; Chung, F.L.; Boccia, L.; Colosimo, S.; Liu, W.; Zhang, J. Effects of garage employment and tobacco smoking on breathing-zone concentrations of carbonyl compounds. Aiha J. 2003, 64, 388–393. [Google Scholar] [CrossRef]
- Davis, M.E.; Blicharz, A.P.; Hart, J.E.; Laden, F.; Garshick, E.; Smith, T.J. Occupational exposure to volatile organic compounds and aldehydes in the U.S. trucking industry. Environ. Sci. Technol. 2007, 41, 7152–7158. [Google Scholar] [CrossRef] [PubMed]
- Sapkota, A.; Williams, D.; Buckley, T.J. Tollbooth workers and mobile source-related hazardous air pollutants: How protective is the indoor environment? Environ. Sci. Technol. 2005, 39, 2936–2943. [Google Scholar] [CrossRef] [PubMed]
- Pfeifer, G.D.; Harrison, R.M.; Lynam, D.R. Personal exposures to airborne metals in London taxi drivers and office workers in 1995 and 1996. Sci. Total Environ. 1999, 235, 253–260. [Google Scholar] [CrossRef] [PubMed]
- Huang, H.B.; Chen, G.W.; Wang, C.J.; Lin, Y.Y.; Liou, S.H.; Lai, C.H.; Wang, S.L. Exposure to heavy metals and polycyclic aromatic hydrocarbons and DNA damage in Taiwanese traffic conductors. Cancer Epidemiol. Biomark. Prev. 2013, 22, 102–108. [Google Scholar] [CrossRef] [PubMed]
- Watt, M.; Godden, D.; Cherrie, J.; Seaton, A. Individual exposure to particulate air pollution and its relevance to thresholds for health effect: A study of traffic wardens. Occup. Environ. Med. 1995, 52, 790–792. [Google Scholar] [CrossRef] [PubMed]
- Crebelli, R.; Tomei, F.; Zijno, A.; Ghittori, S.; Imbriani, M.; Gamberale, D.; Martini, A.; Carere, A. Exposure to benzene in urban workers: Environmental and biological monitoring of traffic police in Rome. Occup. Environ. Med. 2001, 58, 165–171. [Google Scholar] [CrossRef] [PubMed]
- Maitre, A.; Soulat, J.M.; Masclet, P.; Stoklov, M.; Marquès, M.; de Gaudemaris, R. Exposure to carcinogenic air pollutants among policemen working close to traffic in an urban area. Scand. J. Work Environ. Health 2002, 28, 402–410. [Google Scholar] [CrossRef]
- Han, X.; Aguilar-Villalobos, M.; Allen, J.; Carlton, C.S.; Robinson, R.; Bayer, C.; Naeher, L.P. Traffic-related occupational exposures to PM2.5, CO, and VOCs in Trujillo, Peru. Int. J. Occup. Environ. Health 2005, 11, 276–288. [Google Scholar] [CrossRef]
- Cattaneo, A.; Taronna, M.; Consonni, D.; Angius, S.; Costamagna, P.; Cavallo, D.M. Personal Exposure of Traffic Police Officers to Particulate Matter, Carbon Monoxide, and Benzene in the City of Milan, Italy. J. Occup. Environ. Hyg. 2010, 7, 342–351. [Google Scholar] [CrossRef]
- Hachem, M.; Saleh, N.; Paunescu, A.C.; Momas, I.; Bensefa-Colas, L. Exposure to traffic air pollutants in taxicabs and acute adverse respiratory effects: A systematic review. Sci. Total Environ. 2019, 693, 133439. [Google Scholar] [CrossRef]
- Bernmark, E.; Wiktorin, C.; Svartengren, M.; Lewné, M.; Aberg, S. Bicycle messengers: Energy expenditure and exposure to air pollution. Ergonomics 2006, 49, 1486–1495. [Google Scholar] [CrossRef] [PubMed]
- Boogaard, H.; Patton, A.P.; Atkinson, R.W.; Brook, J.R.; Chang, H.H.; Crouse, D.L.; Fussell, J.C.; Hoek, G.; Hoffmann, B.; Kappeler, R.; et al. Forastiere Long-term exposure to traffic-related air pollution and selected health outcomes: A systematic review and meta-analysis. Environ. Int. 2022, 164, 107262. [Google Scholar] [CrossRef] [PubMed]
- Carosino, C.M.; Bein, K.J.; Plummer, L.E.; Castaneda, A.R.; Zhao, Y.; Wexler, A.S.; Pinkerton, K.E. Allergic airway inflammation is differentially exacerbated by daytime and nighttime ultrafine and submicron fine ambient particles: Heme oxygenase-1 as an indicator of PM-mediated allergic inflammation. J. Toxicol. Environ. Health Part A 2015, 78, 254–266. [Google Scholar] [CrossRef] [PubMed]
- Wiegman, C.H.; Li, F.; Clarke, C.J.; Jazrawi, E.; Kirkham, P.; Barnes, P.J.; Adcock, I.M.; Chung, K.F. A comprehensive analysis of oxidative stress in the ozone-induced lung inflammation mouse model. Clin. Sci. 2014, 126, 425–440. [Google Scholar] [CrossRef] [PubMed]
- Chen, T.; Jia, G.; Wei, Y.; Li, J. Beijing ambient particle exposure accelerates atherosclerosis in ApoE knockout mice. Toxicol. Lett. 2013, 223, 146–153. [Google Scholar] [CrossRef] [PubMed]
- Rice, M.B.; Ljungman, P.L.; Wilker, E.H.; Gold, D.R.; Schwartz, J.D.; Koutrakis, P.; Washko, G.R.; O’Connor, G.T.; Mittleman, M.A. Short-term exposure to air pollution and lung function in the Framingham Heart Study. Am. J. Respir. Crit. Care Med. 2013, 188, 1351–1357. [Google Scholar] [CrossRef] [PubMed]
- Adam, M.; Schikowski, T.; Carsin, A.E.; Cai, Y.; Jacquemin, B.; Sanchez, M.; Vierkötter, A.; Marcon, A.; Keidel, D.; Sugiri, D.; et al. Adult lung function and long-term air pollution exposure. ESCAPE: A multicentre cohort study and meta-analysis. Eur. Respir. J. 2015, 45, 38–50. [Google Scholar] [CrossRef] [PubMed]
- McConnell, R.; Berhane, K.; Gilliland, F.; London, S.J.; Islam, T.; Gauderman, W.J.; Avol, E.; Margolis, H.G.; Peters, J.M. Asthma in exercising children exposed to ozone: A cohort study. Lancet 2002, 359, 386–391. [Google Scholar] [CrossRef]
- Jacquemin, B.; Siroux, V.; Sanchez, M.; Carsin, A.E.; Schikowski, T.; Adam, M.; Bellisario, V.; Buschka, A.; Bono, R.; Brunekreef, B. Ambient air pollution and adult asthma incidence in six European cohorts (ESCAPE). Environ. Health Perspect. 2015, 123, 613–621. [Google Scholar] [CrossRef]
- Zemp, E.; Elsasser, S.; Schindler, C.; Künzli, N.; Perruchoud, A.P.; Domenighetti, G.; Medici, T.; Ackermann-Liebrich, U.; Leuenberger, P.; Monn, C.; et al. Long-term ambient air pollution and respiratory symptoms in adults (SAPALDIA Study). Am. J. Resp. Crit. Care 1999, 159, 1257–1266. [Google Scholar] [CrossRef]
- Kurt, O.K.; Zhang, J.; Pinkerton, K.E. Pulmonary health effects of air pollution. Curr. Opin. Pulm. Med. 2016, 22, 138–143. [Google Scholar] [CrossRef] [PubMed]
- Turner, M.C.; Krewski, D.; Pope, C.A.; Chen, Y.; Gapstur, S.M.; Thun, M.J. Long-term ambient fine particulate matter air pollution and lung cancer in a large cohort of never-smokers. Am. J. Respir. Crit. Care Med. 2011, 184, 1374–1381. [Google Scholar] [CrossRef] [PubMed]
- Chen, G.; Wan, X.; Yang, G.; Zou, X. Traffic-related air pollution and lung cancer: A meta-analysis. Thorac. Cancer 2015, 6, 307–318. [Google Scholar] [CrossRef] [PubMed]
- Gharibvand, L.; Beeson, W.L.; Shavlik, D.; Knutsen, R.; Ghamsary, M.; Soret, S.; Knutsen, S.F. The association between ambient fine particulate matter and incident adenocarcinoma subtype of lung cancer. Environ. Health 2017, 16, 71. [Google Scholar] [CrossRef] [PubMed]
- Li, J.; An, Z.; Song, J.; Du, J.; Zhang, L.; Jiang, J.; Ma, Y.; Wang, C.; Zhang, J.; Wu, W. Fine particulate matter-induced lung inflammation is mediated by pyroptosis in mice. Ecotoxicol. Environ. Saf. 2021, 219, 112351. [Google Scholar] [CrossRef] [PubMed]
- Holme, S.A.N.; Sigsgaard, T.; Holme, J.A.; Holst, G.J. Effects of particulate matter on atherosclerosis: A link via high-density lipoprotein (HDL) functionality? Part. Fibre Toxicol. 2020, 17, 36. [Google Scholar] [CrossRef]
- Wang, G.; Jiang, R.; Zhao, Z.; Song, W. Effects of ozone and fine particulate matter (PM2.5) on rat system inflammation and cardiac function. Toxicol. Lett. 2013, 217, 23–33. [Google Scholar] [CrossRef]
- Adams, R.A.; Potter, S.; Berube, K.; Higgins, T.P.; Jones, T.P.; Evans, S.A. Prolonged systemic inflammation and damage to the vascular endothelium following intratracheal instillation of air pollution nanoparticles in rats. Clin. Hemorheol. Microcirc. 2019, 72, 1–10. [Google Scholar] [CrossRef]
- Kodavanti, U.P.; Thomas, R.; Ledbetter, A.D.; Schladweiler, M.C.; Shannahan, J.H.; Wallenborn, J.G.; Lund, A.K.; Campen, M.J.; Butler, E.O.; Gottipolu, R.R.; et al. Vascular and Cardiac Impairments in Rats Inhaling Ozone and Diesel Exhaust Particles. Environ. Health Perspect. 2011, 119, 312–318. [Google Scholar] [CrossRef]
- Rossi, S.; Buccarello, A.; Malvezzi, C.C.; Pinelli, S.; Alinovi, R.; Gerboles, G.A.; Rozzi, G.; Leonardi, F.; Bollati, V.; De Palma, G.; et al. Exposure to nanoparticles derived from diesel particulate filter equipped engine increases vulnerability to arrhythmia in rat hearts. Environ. Pollut. 2021, 284, 117163. [Google Scholar] [CrossRef]
- Kim, J.B.; Prunicki, M.; Haddad, F.; Dant, C.; Sampath, V.; Patel, R.; Smith, E.; Akdis, C.; Balmes, J.; Snyder, M.P.; et al. Cumulative lifetime burden of cardiovascular disease from early exposure to air pollution. J. Am. Heart Assoc. 2020, 9, e014944. [Google Scholar] [CrossRef]
- Brook, R.D.; Rajagopalan, S.; Pope, C.A.; Brook, J.R.; Bhatnagar, A.; Diez-Roux, A.V.; Holguin, F.; Hong, Y.; Luepker, R.V.; Mittleman, M.A.; et al. Particulate matter air pollution and cardiovascular disease. Circulation 2010, 121, 2331–2378. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Z.; Dong, B.; Li, S.; Chen, G.; Yang, Z.; Dong, Y.; Wang, Z.; Ma, J.; Guo, Y. Exposure to ambient particulate matter air pollution, blood pressure and hypertension in children and adolescents: A national cross-sectional study in China. Environ. Int. 2019, 128, 103–108. [Google Scholar] [CrossRef] [PubMed]
- Cai, J.; Yu, S.; Pei, Y.; Peng, C.; Liao, Y.; Liu, N.; Ji, J.; Cheng, J. Association between airborne fine particulate matter and residents’ cardiovascular diseases, ischemic heart disease and cerebral vascular disease mortality in areas with lighter air pollution in China. Int. J. Environ. Res. Public Health 2018, 15, 1918. [Google Scholar] [CrossRef] [PubMed]
- Kim, K.H.; Jahan, S.A.; Kabir, E.; Brown, R.J.C. A review of airborne polycyclic aromatic hydrocarbons (PAHs) and their human health effects. Environ. Int. 2013, 60, 71–80. [Google Scholar] [CrossRef] [PubMed]
- Liu, X.; Kong, D.; Liu, Y.; Fu, J.; Gao, P.; Chen, T.; Fang, Q.; Cheng, K.; Fan, Z. Effects of the short-term exposure to ambient air pollution on atrial fibrillation. Pacing Clin. Electrophysiol. 2018, 41, 1441–1446. [Google Scholar] [CrossRef] [PubMed]
- Folino, F.; Buja, G.; Zanotto, G.; Marras, E.; Allocca, G.; Vaccari, D.; Gasparini, G.; Bertaglia, E.; Zoppo, F.; Calzolari, V.; et al. Association between air pollution and ventricular arrhythmias in high-risk patients (ARIA study): A multicentre longitudinal study. Lancet Planet. Health 2017, 1, e58–e64. [Google Scholar] [CrossRef] [PubMed]
- Yang, S.; Lee, S.P.; Park, J.B.; Lee, H.; Kang, S.H.; Lee, S.E.; Kim, J.B.; Choi, S.Y.; Kim, Y.J.; Chang, H.J. PM2.5 concentration in the ambient air is a risk factor for the development of high-risk coronary plaques. Eur. Heart J. 2019, 20, 1355–1364. [Google Scholar] [CrossRef] [PubMed]
- Mustafic, H.; Jabre, P.; Caussin, C.; Murad, M.H.; Escolano, S.; Tafflet, M.; Périer, M.C.; Marijon, E.; Vernerey, D.; Empana, J.P.; et al. Main air pollutants and myocardial infarction: A systematic review and meta-analysis. JAMA 2012, 307, 713–721. [Google Scholar] [CrossRef]
- Dong, G.H.; Min, Q.Z.; Xaverius, P.K.; Trevathan, E.; Maalouf, S.; Parker, J.; Yang, L.; Liu, M.M.; Wang, D.; Ren, W.H. Association between long-term air pollution and increased blood pressure and hypertension in China. Hypertension 2013, 61, 578–584. [Google Scholar] [CrossRef]
- Cai, Y.; Zhang, B.; Ke, W.; Feng, B.; Lin, H.; Xiao, J.; Zeng, W.; Li, X.; Tao, J.; Yang, Z.; et al. Associations of short-term and longterm exposure to ambient air pollutants with hypertension: A systematic review and meta-analysis. Hypertension 2016, 68, 62–70. [Google Scholar] [CrossRef] [PubMed]
- Mobasher, Z.; Salam, M.T.; Goodwin, T.M.; Lurmann, F.; Ingles, S.A.; Wilson, M.L. Associations between ambient air pollution and hypertensive disorders of pregnancy. Environ. Res. 2013, 123, 9–16. [Google Scholar] [CrossRef] [PubMed]
- Pedersen, M.; Stayner, L.; Slama, R.; Sørensen, M.; Figueras, F.; Nieuwenhuijsen, M.J.; Raaschou-Nielsen, O.; Dadvand, P. Ambient air pollution and pregnancy-induced hypertensive disorders: A systematic review and meta-analysis. Hypertension 2014, 64, 494–500. [Google Scholar] [CrossRef] [PubMed]
- Pearson, J.; Bachireddy, C.; Shyamprasad, S.; Goldfine, A.B.; Brownstein, J.S. Association between fine particulate matter and diabetes prevalence in the US. Diabetes Care 2010, 33, 2196–2201. [Google Scholar] [CrossRef]
- Vimercati, L.; Gatti, M.F.; Baldassarre, A.; Nettis, E.; Favia, N.; Palma, M.; Martina, G.L.; Di Leo, E.; Musti, M. Occupational Exposure to Urban Air Pollution and Allergic Diseases. Int. J. Environ. Res. Public Health 2015, 12, 12977–12987. [Google Scholar] [CrossRef]
- Levesque, S.; Surace, M.J.; McDonald, J.; Block, M.L. Air pollution & the brain: Subchronic diesel exhaust exposure causes neuroinflammation and elevates early markers of neurodegenerative disease. J. Neuroinflammation 2011, 8, 105. [Google Scholar]
- Babadjouni, R.M.; Hodis, D.M.; Radwanski, R.; Durazo, R.; Patel, A.; Liu, Q.; Mack, W.J. Clinical effects of air pollution on the central nervous system; a review. J. Clin. Neurosci. 2017, 43, 16–24. [Google Scholar] [CrossRef]
- Flood-Garibay, J.A.; Angulo-Molina, A.; Méndez-Rojas, M.A. Particulate matter and ultrafine particles in urban air pollution and their effect on the nervous system. Environ. Sci. Process. Impacts 2023, 25, 704–726. [Google Scholar] [CrossRef]
- Jung, C.R.; Lin, Y.T.; Hwang, B.F. Ozone, particulate matter, and newly diagnosed Alzheimer’s disease: A population-based cohort study in Taiwan. J. Alzheimers Dis. 2015, 44, 573–584. [Google Scholar] [CrossRef]
- Zanobetti, A.; Dominici, F.; Wang, Y.; Schwartz, J.D. A national case crossover analysis of the short-term effect of PM2.5 on hospitalizations and mortality in subjects with diabetes and neurological disorders. Environ. Health 2014, 13, 38. [Google Scholar] [CrossRef]
- Ehsanifar, M.; Yavari, Z.; Rafati, R. Exposure to urban air pollution particulate matter: Neurobehavioral alteration and hippocampal inflammation. Environ. Sci. Pollut. Res. 2022, 29, 50856–50866. [Google Scholar] [CrossRef]
- Zang, S.T.; Luan, J.; Li, L.; Yu, H.X.; Wu, Q.J.; Chang, Q.; Zhao, Y.H. Ambient air pollution and COVID-19 risk: Evidence from 35 observational studies. Environ. Res. 2022, 204, 112065. [Google Scholar] [CrossRef]
- Travaglio, M.; Yu, Y.; Popovic, R.; Selley, L.; Leal, N.S.; Martins, L.M. Links between air pollution and COVID-19 in England. Environ. Pollut. 2021, 268, 115859. [Google Scholar] [CrossRef] [PubMed]
- Bozack, A.; Pierre, S.; DeFelice, N.; Colicino, E.; Jack, D.; Chillrud, S.N.; Rundle, A.; Astua, A.; Quinn, J.W.; McGuinn, L.; et al. Long-Term Air Pollution Exposure and COVID-19 Mortality: A Patient-Level Analysis from New York City. Am. J. Respir. Crit. Care Med. 2022, 205, 651–662. [Google Scholar] [CrossRef] [PubMed]
- Mousavi, S.E.; Delgado-Saborit, J.M.; Adivi, A.; Pauwels, S.; Godderis, L. Air pollution and endocrine disruptors induce human microbiome imbalances: A systematic review of recent evidence and possible biological mechanisms. Sci. Total Environ. 2022, 816, 151654. [Google Scholar] [CrossRef] [PubMed]
- Elvidge, T.; Matthews, I.P.; Gregory, C.; Hoogendoorn, B. Feasibility of using biomarkers in blood serum as markers of effect following exposure of the lungs to particulate matter air pollution. J. Environ. Sci. Health Part C Environ. Carcinog. Ecotoxicol. Rev. 2013, 31, 1–44. [Google Scholar] [CrossRef] [PubMed]
- Kelly, F.J.; Fussell, J.C. Role of oxidative stress in cardiovascular disease outcomes following exposure to ambient air pollution. Free Radic. Biol. Med. 2017, 110, 345–367. [Google Scholar] [CrossRef] [PubMed]
- Arias-Pérez, R.D.; Taborda, N.A.; Gómez, D.A.; Narvaez, J.F.; Porras, J.; Hernandez, J.C. Inflammatory effects of particulate matter air pollution. Environ. Sci. Pollut. Res. 2020, 27, 42390–42404. [Google Scholar] [CrossRef]
- Chen, H.; Oliver, B.G.; Pant, A.; Olivera, A.; Poronnik, P.; Pollock, C.A.; Saad, S. Effects of air pollution on human health—Mechanistic evidence suggested by in vitro and in vivo modelling. Environ. Res. 2022, 212, 113378. [Google Scholar] [CrossRef]
- Park, E.J.; Roh, J.; Kim, Y.; Park, K.; Kim, D.S.; Yu, S.D. PM2.5 collected in a residential area induced Th1-type inflammatory responses with oxidative stress in mice. Environ. Res. 2011, 111, 348–355. [Google Scholar] [CrossRef]
- Migliaccio, C.T.; Kobos, E.; King, Q.O.; Porter, V.; Jessop, F.; Ward, T. Adverse effects of wood smoke PM2.5 exposure on macrophage functions. Inhal. Toxicol. 2013, 25, 67–76. [Google Scholar] [CrossRef]
- Yang, B.; Chen, D.; Zhao, H.; Xiao, C. The effects for PM2.5 exposure on non-small-cell lung cancer induced motility and proliferation. SpringerPlus 2016, 5, 2059. [Google Scholar] [CrossRef]
- Wang, H.; Song, L.; Ju, W.; Wang, X.; Dong, L.; Zhang, Y.; Ya, P.; Yang, C.; Li, F. The acute airway inflammation induced by PM2.5 exposure and the treatment of essential oils in Balb/c mice. Sci. Rep. 2017, 7, 44256. [Google Scholar] [CrossRef]
- Øvrevik, J.; Låg, M.; Holme, J.A.; Schwarze, P.E.; Refsnes, M. Cytokine and chemokine expression patterns in lung epithelial cells exposed to components characteristic of particulate air pollution. Toxicology 2009, 259, 46–53. [Google Scholar] [CrossRef] [PubMed]
- Farina, F.; Sancini, G.; Battaglia, C.; Tinaglia, V.; Mantecca, P.; Camatini, M.; Palestini, P. Milano summer particulate matter (PM10) triggers lung inflammation and extra pulmonary adverse events in mice. PLoS ONE 2013, 8, e56636. [Google Scholar] [CrossRef] [PubMed]
- He, F.; Liao, B.; Pu, J.; Li, C.; Zheng, M.; Huang, L.; Zhou, Y.; Zhao, D.; Li, B.; Ran, P. Exposure to ambient particulate matter induced COPD in a rat model and a description of the underlying mechanism. Sci. Rep. 2017, 7, 45666. [Google Scholar] [CrossRef] [PubMed]
- Sayan, M.; Mossman, B.T. The NLRP3 inflammasome in pathogenic particle and fibre-associated lung inflammation and diseases. Part. Fibre Toxicol. 2015, 13, 51. [Google Scholar] [CrossRef] [PubMed]
- Pope, C.A., III; Bhatnagar, A.; McCracken, J.P.; Abplanalp, W.; Conklin, D.J.; O’Toole, T. Exposure to fine particulate air pollution is associated with endothelial injury and systemic inflammation. Circ. Res. 2016, 119, 1204–1214. [Google Scholar] [CrossRef] [PubMed]
- Suwa, T.; Hogg, J.C.; Quinlan, K.B.; Ohgami, A.; Vincent, R.; van Eeden, S.F. Particulate air pollution induces progression of atherosclerosis. J. Am. Coll. Cardiol. 2002, 39, 935–942. [Google Scholar] [CrossRef] [PubMed]
- Liang, S.; Zhao, T.; Hu, H.; Shi, Y.; Xu, Q.; Miller, M.R.; Duan, J.; Sun, Z. Repeat dose exposure of PM2.5 triggers the disseminated intravascular coagulation (DIC) in SD rats. Sci. Total Environ. 2019, 663, 245–253. [Google Scholar] [CrossRef]
- Hiraiwa, K.; van Eeden, S.F. Contribution of Lung Macrophages to the Inflammatory Responses Induced by Exposure to Air Pollutants. Mediat. Inflamm. 2013, 2013, 619523. [Google Scholar] [CrossRef]
- Kuldo, J.M.; Ogawara, K.I.; Werner, N.; Kok, R.J.; Oosterhuis, K.; Rots, M.G.; Schouten, J.P.; Limburg, P.C.; Molema, G. Differential effects of NF-κB and p38 MAPK inhibitors and combinations thereof on TNF-α and IL-1β-induced proinflammatory status of endothelial cells in vitro. Am. J. Physiol. Cell Physiol. 2005, 289, C1229–C1239. [Google Scholar] [CrossRef]
- Lwaleed, B.A.; Cooper, A.J.; Voegeli, D.; Getliffe, K. Tissue factor: A critical role in infammation and cancer. Biol. Res. Nurs. 2007, 9, 97–107. [Google Scholar] [CrossRef]
- Frampton, M.W.; Bausch, J.; Chalupa, D.; Hopke, P.K.; Little, E.L.; Oakes, D.; Stewart, J.C.; Utell, M.J. Effects of outdoor air pollutants on platelet activation in people with type 2 diabetes. Inhal. Toxicol. 2012, 24, 831–838. [Google Scholar] [CrossRef] [PubMed]
- Michel, N.A.; Zirlik, A.; Wolf, D. CD40L and its receptors in atherothrombosis—An update. Front. Cardiovasc. Med. 2017, 4, 40. [Google Scholar] [CrossRef]
- Vidale, S.; Campana, C. Ambient air pollution and cardiovascular diseases: From bench to bedside. Eur. J. Prev. Cardiol. 2018, 25, 818–825. [Google Scholar] [CrossRef]
- Mudway, I.S.; Kelly, F.J.; Holgate, S.T. Oxidative stress in air pollution research. Free Radic. Biol. Med. 2020, 151, 2–6. [Google Scholar] [CrossRef] [PubMed]
- Li, W.; Wilker, E.H.; Dorans, K.S.; Rice, M.B.; Schwartz, J.; Coull, B.A.; Koutrakis, P.; Gold, D.R.; Keaney, J.F., Jr.; Lin, H.; et al. Short-Term Exposure to Air Pollution and Biomarkers of Oxidative Stress: The Framingham Heart Study. J. Am. Heart Assoc. 2016, 5, e002742. [Google Scholar] [CrossRef] [PubMed]
- Rückerl, R.; Hampel, R.; Breitner, S.; Cyrys, J.; Kraus, U.; Carter, J.; Dailey, L.; Devlin, R.B.; Diaz-Sanchez, D.; Koenig, W.; et al. Associations between ambient air pollution and blood markers of inflammation and coagulation/fibrinolysis in susceptible populations. Environ. Int. 2014, 70, 32–49. [Google Scholar] [CrossRef]
- Dominguez-Rodriguez, A.; Rodríguez, S.; Abreu-Gonzalez, P.; Avanzas, P.; Juarez-Prera, R.A. Black carbon exposure, oxidative stress markers and major adverse cardiovascular events in patients with acute coronary syndromes. Int. J. Cardiol. 2015, 88, 47–49. [Google Scholar] [CrossRef]
- Bagryantseva, Y.; Novotna, B.; Rossner, P.; Chvatalova, I.; Milcova, A.; Svecova, V.; Lnenickova, Z.; Solansky, I.; Sram, R.J. Oxidative damage to biological macromolecules in Prague bus drivers and garagemen: Impact of air pollution and genetic polymorphisms. Toxicol. Lett. 2010, 199, 60–68. [Google Scholar] [CrossRef]
- Delfino, R.J.; Staimer, N.; Tjoa, T.; Gillen, D.L.; Polidori, A.; Arhami, M.; Kleinman, M.T.; Vaziri, N.D.; Longhurst, J.; Sioutas, C. Air pollution exposures and circulating biomarkers of effect in a susceptible population: Clues to potential causal component mixtures and mechanisms. Environ. Health Perspect. 2009, 117, 1232–1238. [Google Scholar] [CrossRef]
- Farhat, Z.; Browne, R.W.; Bonner, M.R.; Tian, L.; Deng, F.; Swanson, M.; Mu, L. How do glutathione antioxidant enzymes and total antioxidant status respond to air pollution exposure? Environ. Int. 2018, 112, 287–293. [Google Scholar] [CrossRef] [PubMed]
- Wu, S.; Wang, B.; Yang, D.; Wei, H.; Li, H.; Pan, L.; Huang, J.; Wang, X.; Qin, Y.; Zheng, C. Ambient particulate air pollution and circulating antioxidant enzymes: A repeated-measure study in healthy adults in Beijing, China. Environ. Pollut. 2016, 208, 16–24. [Google Scholar] [CrossRef] [PubMed]
- Bellavia, A.; Urch, B.; Speck, M.; Brook, R.D.; Scott, J.A.; Albetti, B.; Behbod, B.; North, M.; Valeri, L.; Bertazzi, P.A.; et al. DNA hypomethylation, ambient particulate matter, and increased blood pressure: Findings from controlled human exposure experiments. J. Am. Heart Assoc. 2013, 2, e000212. [Google Scholar] [CrossRef] [PubMed]
- Baccarelli, A.; Wright, R.O.; Bollati, V.; Tarantini, L.; Litonjua, A.A.; Suh, H.H.; Zanobetti, A.; Sparrow, D.; Vokonas, P.S.; Schwartz, J. Rapid DNA methylation changes after exposure to traffic particles. Am. J. Respir. Crit. Care Med. 2009, 179, 572–578. [Google Scholar] [CrossRef] [PubMed]
- Sun, B.; Shi, Y.; Yang, X.; Zhao, T.; Duan, J.; Sun, Z. DNA methylation: A critical epigenetic mechanism underlying the detrimental effects of airborne particulate matter. Ecotoxicol. Environ. Saf. 2018, 161, 173–183. [Google Scholar] [CrossRef] [PubMed]
- Violante, F.S.; Barbieri, A.; Curti, S.; Sanguinetti, G.; Sanguinetti, G.; Graziosi, F.; Mattioli, S. Urban atmospheric pollution: Personal exposure versus fixed monitoring station measurements. Chemosphere 2006, 64, 1722–1729. [Google Scholar] [CrossRef] [PubMed]
- ISO 7708:1995; Air Quality—Particle Size Fraction Definitions for Health-Related Sampling. ISO—International Organization for Standardization: Geneva, Switzerland, 1995.
- Vincent, J.H. Occupational and environmental aerosol exposure assessment: A scientific journey from the past, through the present and into the future. J. Environ. Monit. 2012, 14, 340–347. [Google Scholar] [CrossRef]
- European Standard EN 481:1993; Workplace Atmospheres—Size Fraction Definitions for Measurement of Airborne Particles. CEN—European Committee for Standardization: Brussels, Belgium, 1993.
- ICRP. Human respiratory tract model for radiological protection. In Annals of the International Commission on Radiological Protection (ICRP); Pergamon Press: Oxford, UK, 1994. [Google Scholar]
- Bartley, D.L.; Vincent, J.H. Sampling conventions for estimating ultrafine and fine aerosol particle deposition in the human respiratory tract. Ann. Occup. Hyg. 2011, 55, 696–709. [Google Scholar]
- Volkwein, J.C.; Maynard, A.D.; Harper, M. Workplace aerosol measurements. In Aerosol Measurement: Principles, Techniques, and Applications, 3rd ed.; Kulkarni, P.A., Baron, P.A., Willeke, K., Eds.; John Wiley: Chichester, UK, 2011; p. 572. [Google Scholar]
- Berlinger, B.; Benker, N.; Weinbruch, S.; L’Vov, B.; Ebert, M.; Koch, W.; Ellingsen, D.G.; Thomassen, Y. Physicochemical characterisation of different welding aerosols. Anal. Bioanal. Chem. 2011, 399, 1773–1780. [Google Scholar] [CrossRef] [PubMed]
- Berlinger, B.; Bugge, M.D.; Ulvestad, B.; Kjuus, H.; Kandler, K.; Ellingsen, D.G. Particle size distribution of workplace aerosols in manganese alloy smelters applying a personal sampling strategy. Environ. Sci. Process. Impacts 2015, 17, 2066–2073. [Google Scholar] [CrossRef] [PubMed]
- Berlinger, B.; Ervik, T.K.; Kandler, K.; Ulvestad, B.; Benker, N.; Ellingsen, D.G.; Bugge, M.D. Challenge with a personal cascade impactor sampler in a silicon metal smelter. Aerosol Air Qual. Res. 2021, 21, 200577. [Google Scholar] [CrossRef]
- Cena, L.G.; Keane, M.J.; Chisholm, W.P.; Stone, S.; Harper, M.; Chen, B.T. A novel method for assessing respiratory deposition of welding fume nanoparticles. J. Occup. Environ. Hyg. 2014, 11, 771–780. [Google Scholar] [CrossRef]
- Weinbruch, S.; Worringen, A.; Ebert, M.; Scheuvens, D.; Kandler, K.; Pfeffer, U.; Bruckmann, P. A quantitative estimation of the exhaust, abrasion and resuspension components of particulate traffic emissions using electron microscopy. Atmos. Environ. 2014, 99, 175–182. [Google Scholar] [CrossRef]
- Ellickson, K.M.; Meeker, R.J.; Gallo, M.A.; Buckley, B.T.; Lioy, P.J. Oral bioavailability of lead and arsenic from a NIST standard reference soil material. Arch. Environ. Contam. Toxicol. 2001, 40, 128–135. [Google Scholar]
- Schober, S.E.; Mirel, L.B.; Graubard, B.I.; Brody, D.J.; Flegal, K.M. Blood lead levels and death from all causes, cardiovascular disease, and cancer: Results from the NHANES III mortality study. Environ. Health Perspect. 2006, 114, 1538–1541. [Google Scholar] [CrossRef]
- Pope, C.A., III; Rodermund, D.L.; Gee, M.M. Mortality effects of a copper smelter strike and reduced ambient sulfate particulate matter air pollution. Environ. Health. Perspect. 2007, 115, 679–683. [Google Scholar] [CrossRef]
- Burnett, R.T.; Brook, J.; Dann, T.; Delocla, C.; Philips, O.; Cakmak, S.; Vincent, R.; Goldberg, M.S.; Krewski, D. Association between particulate-and gas-phase components of urban air pollution and daily mortality in eight Canadian cities. Inhal. Toxicol. 2000, 12, 15–39. [Google Scholar] [CrossRef]
- Ostro, B.; Feng, W.Y.; Broadwin, R.; Green, S.; Lipsett, M. The effects of components of fine particulate air pollution on mortality in California: Results from CALFINE. Environ. Health Perspect. 2007, 115, 13–19. [Google Scholar] [CrossRef]
- Hirshon, J.M.; Shardell, M.; Alles, S.; Powell, J.L.; Squibb, K.; Ondov, J.; Blaisdell, C.J. Elevated ambient air zinc increases pediatric asthma morbidity. Environ. Health Perspect. 2008, 116, 826–831. [Google Scholar] [CrossRef]
- Huang, Y.C.; Ghio, A.J.; Stonehuerner, J.; McGee, J.; Carter, J.D.; Grambow, S.C.; Devlin, R.B. The role of soluble components in ambient fine particles-induced changes in human lungs and blood. Inhal. Toxicol. 2003, 15, 327–342. [Google Scholar] [CrossRef]
- Ghio, A.J.; Churg, A.; Roggli, V.L. Ferruginous bodies: Implications in the mechanism of fiber and particle toxicity. Toxicol. Pathol. 2004, 32, 643–649. [Google Scholar] [CrossRef] [PubMed]
- Schaumann, F.; Borm, P.J.A.; Herbich, A.; Knoch, J.; Pitz, M.; Schins, R.P.; Luettig, B.; Hohlfeld, J.M.; Heinrich, J.; Krug, N. Metal-rich ambient particles (particulate matter2.5) cause airway inflammation in healthy subjects. Am. J. Respir. Crit. Care Med. 2004, 170, 898–903. [Google Scholar] [CrossRef]
- Kelly, F.J.; Fussell, J.C. Size, source and chemical composition as determinants of toxicity attributable to ambient particulate matter. Atmos. Environ. 2012, 60, 504–526. [Google Scholar] [CrossRef]
- Honda, A.; Tsuji, K.; Matsuda, Y.; Hayashi, T.; Fukushima, W.; Sawahara, T.; Kudo, H.; Murayama, R.; Takano, H. Effects of air pollution-related heavy metals on the viability and inflammatory responses of human airway epithelial cells. Int. J. Toxicol. 2015, 34, 195–203. [Google Scholar] [CrossRef] [PubMed]
- Antonini, J.M.; Lawryk, N.J.; Murthy, G.G.; Brain, J.D. Effect of welding fume solubility on lung macrophage viability and function in vitro. J. Toxicol. Environ. Health Part A 1999, 58, 343–363. [Google Scholar]
- Taylor, M.D.; Roberts, J.R.; Leonard, S.S.; Shi, X.; Antonini, J.M. Effects of Welding Fumes of Differing Composition and Solubility on Free Radical Production and Acute Lung Injury and Inflammation in Rats. Toxicol. Sci. 2003, 75, 181–191. [Google Scholar] [CrossRef] [PubMed]
- Erdely, A.; Antonini, J.M.; Young, S.H.; Kashon, M.L.; Gu, J.K.; Hulderman, T.; Salmen, R.; Meighan, T.; Roberts, J.R.; Zeidler-Erdely, P.C. Oxidative stress and reduced responsiveness of challenged circulating leukocytes following pulmonary instillation of metal-rich particulate matter in rats. Part. Fibre Toxicol. 2014, 11, 34. [Google Scholar] [CrossRef] [PubMed]
- Voutsa, D.; Samara, C. Labile and bioaccessible fractions of heavy metals in the airborne particulate matter from urban and industrial areas. Atmos. Environ. 2002, 36, 3583–3590. [Google Scholar] [CrossRef]
- Huang, X.; Cheng, J.; Bo, D.; Betha, R. Bioaccessibility of airborne particulate-bound trace elements in Shanghai and health risk assessment. Front. Environ. Sci. 2016, 4, 76. [Google Scholar] [CrossRef]
- Da Silva, L.I.D.; Yokoyama, L.; Maia, L.B.; Monteiro, M.I.C.; Pontes, F.V.M.; Carneiro, M.C.; Neto, A.A. Evaluation of bioaccessible heavy metal fractions in PM 10 from the metropolitan region of Rio de Janeiro city, Brazil, using a simulated lung fluid. Microchem. J. 2015, 118, 266–271. [Google Scholar] [CrossRef]
- Dos Santos, M.; Gomez, D.; Dawidowski, L.; Gautier, E.; Smichowski, P. Determination of water-soluble and insoluble compounds in size classified airborne particulate matter. Microchem. J. 2009, 91, 133–139. [Google Scholar] [CrossRef]
- Berlinger, B.; Ellingsen, D.G.; Romanova, N.; Friisk, G.; Daae, H.L.; Weinbruch, S.; Skaugset, N.P.; Thomassen, Y. Elemental carbon and nitrogen dioxide as markers of exposure to diesel exhaust in selected Norwegian industries. Ann. Work. Expo. Health 2019, 63, 349–358. [Google Scholar] [CrossRef] [PubMed]
- IARC—International Agency for Research on Cancer. Press Release #213, Diesel Engine Exhaust Carcinogenic; IARC—International Agency for Research on Cancer: Lyon, France, 2012. [Google Scholar]
- Birch, M.E.; Cary, R.A. Elemental carbon-based method for monitoring occupational exposures to particulate diesel exhaust. Aerosol Sci. Technol. 1996, 25, 221–241. [Google Scholar] [CrossRef]
- Jones, A.M.; Harrison, R.M. Interpretation of particulate elemental and organic carbon concentrations at rural, urban and kerbside sites. Atmos. Environ. 2005, 39, 7114–7126. [Google Scholar] [CrossRef]
- Agudelo-Castañeda, D.M.; Teixeira, E.C. Seasonal changes, identification and source apportionment of PAH in PM 1.0. Atmos. Environ. 2014, 96, 186–200. [Google Scholar] [CrossRef]
- Křůmal, K.; Mikuška, P.; Večeřa, Z. Characterization of organic compounds in winter PM1 aerosols in a small industrial town. Atmos. Pollut. Res. 2017, 8, 930–939. [Google Scholar] [CrossRef]
- Garcia, K.O.; Teixeira, E.C.; Agudelo-Castañeda, D.M.; Braga, M.; Alabarse, P.G.; Wiegand, F.; Kautzmann, R.M.; Silva, L.F. Assessment of nitro-polycyclic aromatic hydrocarbons in PM1 near an area of heavy-duty traffic. Sci. Total Environ. 2014, 479–480, 57–65. [Google Scholar] [CrossRef]
- Slezakova, K.; Pire, J.C.M.; Castro, D.; Alvim-Ferraz, M.C.; Delerue-Matos, C.; Morais, S.; Pereira, M.C. PAH air pollution at a Portuguese urban area: Carcinogenic risks and sources identification. Environ. Sci. Pollut. Res. 2013, 20, 3932–3945. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Xu, X.; Xu, C.; Hong, J. Air pollution from polycyclic aromatic hydrocarbons generated by human activities and their health effects in China. J. Clean. Prod. 2016, 112, 1360–1367. [Google Scholar] [CrossRef]
- Roslund, M.I.; Rantala, S.; Oikarinen, S.; Puhakka, R.; Hui, N.; Parajuli, A.; Laitinen, O.H.; Hyöty, H.; Rantalainen, A.L.; Sinkkonen, A.; et al. Endocrine disruption and commensal bacteria alteration associated with gaseous and soil PAH contamination among daycare children. Environ. Int. 2019, 130, 104894. [Google Scholar] [CrossRef] [PubMed]
- Buczynska, A.J.; Krata, A.; Stranger, M.; Godoi, A.F.L.; Kontozova-Deutsch, V.; Bencs, L.; Naveau, I.; Roekens, E.; Van Grieken, R. Atmospheric BTEX-concentrations in an area with intensive street traffic. Atmos. Environ. 2009, 43, 311–318. [Google Scholar] [CrossRef]
- Dehghani, M.; Fazlzadeh, M.; Sorooshian, A.; Tabatabaee, H.R.; Miri, M.; Baghani, A.N.; Delikhoon, M.; Mahvi, A.H.; Rashidi, M. Characteristics and health effects of BTEX in a hot spot for urban pollution. Ecotoxicol. Environ. Saf. 2018, 155, 133–143. [Google Scholar] [CrossRef] [PubMed]
- Liu, A.; Hong, N.; Zhu, P.; Guan, Y. Understanding benzene series (BTEX) pollutant load characteristics in the urban environment. Sci. Total Environ. 2018, 619–620, 938–945. [Google Scholar] [CrossRef] [PubMed]
- Miri, M.; Shendi, M.R.A.; Ghaffari, H.R.; Aval, H.E.; Ahmadi, E.; Taban, E.; Gholizadeh, A.; Aval, M.Y.; Mohammadi, A.; Azari, A. Investigation of outdoor BTEX: Concentration, variations, sources, spatial distribution, and risk assessment. Chemosphere 2016, 163, 601–609. [Google Scholar] [CrossRef] [PubMed]
- Moolla, R.; Curtis, C.J.; Knight, J. Assessment of occupational exposure to BTEX compounds at a bus diesel-refueling bay: A case study in Johannesburg, South Africa. Sci. Total Environ. 2015, 537, 51–57. [Google Scholar] [CrossRef]
- Crilley, L.R.; Bloss, W.J.; Yin, J.; Beddows, D.C.S.; Harrison, R.M.; Allan, J.D.; Young, D.E.; Flynn, M.; Williams, P.; Zotter, P. Sources and contributions of wood smoke during winter in London: Assessing local and regional influences. Atmos. Chem. Phys. 2015, 15, 3149–3171. [Google Scholar] [CrossRef]
- Wiedinmyer, C.; Yokelson, R.J.; Gullett, B.K. Global emissions of trace gases, particulate matter, and hazardous air pollutants from open burning of domestic waste. Environ. Sci. Technol. 2014, 48, 9523–9530. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Møller, P.; Barregard, L.; Dragsted, L.O.; Glasius, M.; Wåhlin, P.; Vinzents, P.; Raaschou-Nielsen, O.; Loft, S. Exposure to ambient concentrations of particulate air pollution does not influence vascular function or inflammatory pathways in young healthy individuals. Part. Fibre Toxicol. 2008, 5, 13. [Google Scholar] [CrossRef]
- Bräuner, E.V.; Forchhammer, L.; Møller, P.; Barregard, L.; Gunnarsenl, L.; Afshari, A.; Wahlin, P.; Glasius, M.; Dragsted, L.O.; Basu, S.; et al. Indoor particles affect vascular function in the aged an air filtration–based intervention study. Am. J. Respir. Crit. Care Med. 2008, 177, 419–425. [Google Scholar] [CrossRef] [PubMed]
- Hassanvand, M.S.; Naddafi, K.; Kashani, H.; Faridi, S.; Kunzli, N.; Nabizadeh, R.; Momeniha, F.; Gholampour, A.; Arhami, M.; Zare, A.; et al. Short-term effects of particle size fractions on circulating biomarkers of inflammation in a panel of elderly subjects and healthy young adults. Environ. Pollut. 2017, 223, 695–704. [Google Scholar] [CrossRef] [PubMed]
- Karottki, D.G.; Bekö, G.; Clausen, G.; Madsen, A.M.; Andersen, Z.J.; Massling, A.; Ketzel, M.; Ellermann, T.; Lund, R.; Sigsgaard, T.; et al. Cardiovascular and lung function in relation to outdoor and indoor exposure to fine and ultrafine particulate matter in middle-aged subjects. Environ. Int. 2014, 73, 372–381. [Google Scholar] [CrossRef] [PubMed]
- Hamburg, N.M.; Keyes, M.J.; Larson, M.G.; Vasan, R.S.; Schnabel, R.; Pryde, M.M.; Mitchell, G.F.; Sheffy, J.; Vita, J.A.; Benjamin, E.J. Cross-sectional relations of digital vascular function to cardiovascular risk factors in the Framingham Heart Study. Circulation 2008, 117, 2467–2474. [Google Scholar] [CrossRef] [PubMed]
- Schnabel, R.B.; Schulz, A.; Wild, P.S.; Sinning, C.R.; Wilde, S.; Eleftheriadis, M.; Herkenhoff, S.; Zeller, T.; Lubos, E.; Lackner, K.J.; et al. Noninvasive vascular function measurement in the community: Cross-sectional relations and comparison of methods. Circ. Cardiovasc. Imaging 2011, 4, 371–380. [Google Scholar] [CrossRef] [PubMed]
- Bugge, M.D.; Ulvestad, B.; Berlinger, B.; Stockfelt, L.; Olsen, R.; Ellingsen, D.G. Reactive hyperemia and baseline pulse amplitude among smelter workers exposed to fine and ultrafine particles. Int. Arch. Occup. Environ. Health 2020, 93, 399–407. [Google Scholar] [CrossRef] [PubMed]
- Clougherty, J.E. A growing role for gender analysis in air pollution epidemiology. Environ. Health Perspect. 2010, 118, 167–176. [Google Scholar] [CrossRef]
- Green, R.; Broadwin, R.; Malig, B.; Basu, R.; Gold, E.B.; Qi, L.; Sternfeld, B.; Bromberger, J.T.; Greendale, G.A.; Kravitz, H.M.; et al. Long- and Short-term Exposure to Air Pollution and Inflammatory/Hemostatic Markers in Midlife Women. Epidemiology 2016, 27, 211–220. [Google Scholar] [CrossRef]
- Schraufnagel, D.E.; Balmes, J.R.; Cowl, C.T.; De Matteis, S.; Jung, S.H.; Mortimer, K.; Perez-Padilla, R.; Rice, M.B.; Riojas-Rodriguez, H.; Sood, A.; et al. Air Pollution and Noncommunicable Diseases: A Review by the Forum of International Respiratory Societies’ Environmental Committee, Part 1: The Damaging Effects of Air Pollution. Chest 2019, 155, 409–416. [Google Scholar] [CrossRef]
- Pasqua, L.A.; Damasceno, M.V.; Cruz, R.; Matsuda, M.; Martins, M.A.G.; Marquezini, M.V.; Lima-Silva, A.E.; Saldiva, P.H.N.; Bertuzzi, R. Exercising in the urban center: Inflammatory and cardiovascular effects of prolonged exercise under air pollution. Chemosphere 2020, 254, 126817. [Google Scholar] [CrossRef]
- Chen, X.; Chen, W.; Wang, Y.; Han, Y.; Zhu, T. Responses of healthy young males to fine particle exposure are modified by exercise habits: A panel study. Environ. Health 2018, 17, 88. [Google Scholar] [CrossRef]
- Mozaffarian, D.; Wilson, P.W.F.; Kannel, W.B. Beyond Established and Novel Risk Factors Lifestyle Risk Factors for Cardiovascular Disease. Circulation 2008, 117, 3031–3038. [Google Scholar] [CrossRef] [PubMed]
- Dar, T.; Radfar, A.; Abohashem, S.; Pitman, R.K.; Tawakol, A.; Osborne, M.T. Psychosocial Stress and Cardiovascular Disease. Curr. Treat. Options Cardiovasc. Med. 2019, 21, 23. [Google Scholar] [CrossRef] [PubMed]
- Fuller, C.H.; Appleton, A.A.; Bulsara, P.J.; O’Neill, M.S.; Chang, H.H.; Sarnat, J.A.; Falcón, L.M.; Tucker, K.L.; Brugge, D. Sex differences in the interaction of short-term particulate matter exposure and psychosocial stressors on C-reactive protein in a Puerto Rican cohort. SSM Popul. Health 2019, 9, 100500. [Google Scholar] [CrossRef] [PubMed]
- Baranowska-Wójcik, E.; Szwajgier, D.; Oleszczuk, P.; Winiarska-Mieczan, A. Effects of titanium dioxide nanoparticles exposure on human health—A review. Biol. Trace Elem. Res. 2019, 193, 118–129. [Google Scholar] [CrossRef]
- Zuurbier, M.; Hoek, G.; Oldenwening, M.; Meliefste, K.; Krop, E.; van der Hazel, P.; Brunekreef, B. In-traffic air pollution exposure and cc16, blood coagulation, and inflammation markers in healthy adults. Environ. Health Perspect. 2011, 119, 1384–1389. [Google Scholar] [CrossRef]
- Bigazzi, A.Y.; Figliozzi, M.A. Review of urban bicyclists’ intake and uptake of traffic-related air pollution. Transp. Rev. 2014, 34, 221–245. [Google Scholar] [CrossRef]
- Hermans, C.; Knoops, B.; Wiedig, M.; Arsalane, K.; Toubeau, G.; Falmagne, P.; Bernard, A. Clara cell protein as a marker of Clara cell damage and bronchoalveolar blood barrier permeability. Eur. Respir. J. 1999, 13, 1014–1021. [Google Scholar] [CrossRef]
- Floros, J.; Phelps, D.S. Pulmonary Surfactant. In Anaesthesia: Biologic Foundations; Biebuyck, J., Lynch, C., Maze, M., Saidman, L.J., Yaksh, T.L., Zapol, W.M., Eds.; Lippincott-Raven: New York, NY, USA, 1997; pp. 1257–1279. [Google Scholar]
- Seko, A.; Ohkura, T.; Ideo, H.; Yamashita, K. Novel O-linked glycans containing 6’sulfo-Gal/GalNAc of MUC1 secreted from human breast cancer YMBS cells: Possible carbohydrate epitopes of KL-6(MUC1) monoclonal antibody. Glycobiology 2012, 22, 181–195. [Google Scholar] [CrossRef]
- Hermans, C.; Bernard, A. Lung epithelium-specific proteins: Characteristics and potential applications as markers. Am. J. Respir. Crit. Care Med. 1999, 159, 648–678. [Google Scholar] [CrossRef]
- Chait, A.; Han, C.Y.; Oram, J.F.; Heinecke, J.W. Lipo-protein associated inflammatory proteins: Markers or mediators of cardiovascular disease? J. Lip. Res. 2005, 46, 389–403. [Google Scholar] [CrossRef]
- Athyros, V.G.; Kakafika, A.I.; Karagiannis, A.; Mikhailidis, D.P. Do we need to consider inflammatory markers when we treat atherosclerotic disease? Atherosclerosis 2008, 200, 1–12. [Google Scholar] [CrossRef] [PubMed]
- Adam, S.S.; Key, N.S.; Greenberg, C.S. D-dimer antigen: Current concepts and future prospects. Blood 2009, 113, 2878–2887. [Google Scholar] [CrossRef] [PubMed]
- Ayres, J.; Borm, P.; Cassee, F.; Castranova, V.; Donaldson, K.; Ghio, A.; Harrison, R.M.; Hider, R.; Kelly, F.; Kooter, I.M.; et al. Evaluating the toxicity of airborne particulate matter and nanoparticles by measuring oxidative stress potential—A workshop report and consensus statement. Inhal. Toxicol. 2008, 20, 75–99. [Google Scholar] [CrossRef] [PubMed]
- Borm, P.; Kelly, F.; Künzli, N.; Schins, R.P.F.; Donaldson, K. Oxidant generation by particulate matter: From biologically effective dose to a promising, novel metric. Occup. Environ. Med. 2007, 64, 73–74. [Google Scholar] [CrossRef] [PubMed]
- Shukla, A.; Bunkar, N.; Kumar, R.; Bhargava, A.; Tiwari, R.; Chaudhury, K.; Goryacheva, I.Y.; Mishra, P.K. Air pollution associated epigenetic modifications: Transgenerational inheritance and underlying molecular mechanisms. Sci. Total Environ. 2019, 656, 760–777. [Google Scholar] [CrossRef] [PubMed]
- Calderón-Garciduenas, L.; Herrera-Soto, A.; Jury, N.; Maher, B.A.; González-Maciel, A.; Reynoso-Robles, R.; Ruiz-Rudolph, P.; van Zundert, B.; Varela-Nallar, L. Reduced repressive epigenetic marks, increased DNA damage and Alzheimer’s disease hallmarks in the brain of humans and mice exposed to particulate urban air pollution. Environ. Res. 2020, 183, 109226. [Google Scholar] [CrossRef] [PubMed]
- Method 5506; Polynuclear Aromatic Hydrocarbons by HPLC. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition. National Institute of Occupational Safety and Health: Cincinnati, OH, USA, 1998.
- Method 5040; Diesel Particulate Matter. NIOSH Manual of Analytical Methods (NMAM), Fourth Edition. National Institute of Occupational Safety and Health: Cincinnati, OH, USA, 2003.
- ISO 13395:1996; Water Quality—Determination of Nitrite Nitrogen and Nitrate Nitrogen and the Sum of Both by Flow Analysis (CFA and FIA) and Spectrometric Detection. ISO—International Organization for Standardization: Geneva, Switzerland, 1996.
- Berlinger, B.; Weinbruch, S.; Ellingsen, D.G.; Zibarev, E.; Chashchin, V.; Chashchin, M.; Thomassen, Y. On the bio-accessibility of 14 elements in welding fumes. Environ. Sci. Process. Impacts 2019, 21, 497–505. [Google Scholar] [CrossRef] [PubMed]
- Chang, Y.S.; Abimannan, S.; Chiao, H.T.; Lin, C.Y.; Huang, Y.P. An Ensemble Learning Based Hybrid Model and Framework for Air Pollution Forecasting. Environ. Sci. Pollut. Res. 2020, 27, 38155–38168. [Google Scholar] [CrossRef]
- Rybarczyk, Y.; Zalakeviciute, R. Machine Learning Approaches for Outdoor Air Quality Modelling: A Systematic Review. Appl. Sci. 2018, 8, 2570. [Google Scholar] [CrossRef]
- Ervik, T.K.; Benker, N.; Weinbruch, S.; Thomassen, Y.; Ellingsen, D.G.; Berlinger, B. Size distribution and single particle characterization of airborne particulate matter collected in a silicon carbide plant. Environ. Sci. Process. Impacts 2019, 21, 564–574. [Google Scholar] [CrossRef]
- Hammer, S.E.; Ervik, T.K.; Ellingsen, D.G.; Thomassen, Y.; Weinbruch, S.; Benker, N.; Berlinger, B. Particle characterisation and bioaccessibility of manganese in particulate matter in silico- and ferromanganese smelters. Environ. Sci. Process. Impacts 2021, 23, 1488–1499. [Google Scholar] [CrossRef] [PubMed]
- Dominici, F.; Sheppard, L. Health effects and air pollution: A statistical review. Int. Stat. Rev. 2003, 71, 243–276. [Google Scholar] [CrossRef]
- Röhrig, B.; du Prel, J.B.; Wachtlin, D.; Blettner, M. Types of study in medical research: Part 3 of a series on evaluation of scientific publications. Dtsch. Arztebl. Int. 2009, 106, 262–268. [Google Scholar] [PubMed]
- Szigeti, T.; Kertész, Z.; Dunster, C.; Kelly, F.J.; Záray, G.; Mihucz, V.G. Exposure to PM2.5 in modern office buildings through elemental characterization and oxidative potential. Atmos. Environ. 2014, 94, 44–52. [Google Scholar] [CrossRef]
- Cattaneo, A.; Campo, L.; Iodice, S.; Spinazzè, A.; Olgiati, L.; Borghi, F.; Polledri, E.; Angelici, L.; Cavallo, D.M.; Fustinoni, S.; et al. Environmental and biological monitoring of personal exposure to air pollutants of adult people living in a metropolitan area. Sci. Total Environ. 2021, 767, 144916. [Google Scholar] [CrossRef] [PubMed]
- Miller, A.; Frey, G.; King, G.; Sunderman, C.A. Handheld Electrostatic Precipitator for Sampling Airborne Particles and Nanoparticles. Aerosol Sci. Technol. 2010, 44, 417–427. [Google Scholar] [CrossRef]
- Weinbruch, S.; Benker, N.; Kandler, K.; Ebert, M.; Ellingsen, D.G.; Berlinger, B.; Thomassen, Y. Morphology, chemical composition and nanostructure of single carbon-rich particles studied by transmission electron microscopy: Source apportionment in workroom air of aluminium smelters. Anal. Bioanal. Chem. 2016, 408, 1151–1158. [Google Scholar] [CrossRef]
- Li, L.; Lurmann, F.; Habre, R.; Urman, R.; Rappaport, E.; Ritz, B.; Chen, J.C.; Gilliland, F.D.; Wu, J. Constrained Mixed-Effect Models with Ensemble Learning for Prediction of Nitrogen Oxides Concentrations at High Spatiotemporal Resolution. Environ. Sci. Technol. 2017, 51, 9920–9929. [Google Scholar] [CrossRef]
- Wu, M.Y.; Lo, W.C.; Chao, C.T.; Wu, M.S.; Chiang, C.K. Association between Air Pollutants and Development of Chronic Kidney Disease: A Systematic Review and Meta-Analysis. Sci. Total Environ. 2020, 706, 135522. [Google Scholar] [CrossRef]
PROJECT CORE ACTIVITIES |
---|
1. Selection of healthy volunteers based on medical examinations |
2. Air sampling: active (with sampling pump) personal sampling (also on the day off) |
2.1. PM fractions (+ inorganic substances): via respirable, PM2.5, personal impactor samplers [122,123] |
2.2. Markers of diesel exhaust exposure: 25 mm “total” cassettes equipped with quartz fiber filters and sodium iodine-impregnated filter pads [144] |
2.3. Organic substances: black 37 mm cassette filter holder 2 µm pore size, PTFE membrane filter connected to a custom-made sorbent tube with different adsorbents (e.g., XAD-2) [190] |
3. Blood sampling: from the cubital vein in vacutainer tubes and separated via centrifugation |
4. Analysis of the air samples |
4.1. PM fractions: gravimetric determination via a six-place microbalance |
4.2. Markers of diesel exhaust exposure: elemental carbon (EC) via OCEC Dual Optical Analyzer [191], NO2 as nitrite via spectrophotometry [192] |
4.3. Soluble/bio-accessible metal compounds: after leaching with a lung fluid simulant (e.g., Gamble’s solution) via inductively coupled plasma mass spectrometry (ICP-MS) [193] |
4.4. Insoluble metal compounds: after digestion with mineral acids via ICP-MS [193] |
4.5. Organic compounds (PAHs, nitro-PAHs, VOCs): via high-performance liquid chromatography (HPLC) coupled with fluorescence detection (FL-HPLC) and via gas chromatography–mass spectrometry (GC-MS) with electron ionization (EI) [149,151] |
5. Blood/serum/plasma analysis |
5.1. Inflammatory markers: e.g., sCD40L, EGF, eotaxin/CCL11, FGF-2, Flt-3 ligand, G-CSF, GM-CSF, GRO, IFN-α2, IFN-γ, IL-1α, IL-1β, IL-1ra, IL-2, IL-3, IL-4, IL-5, IL-6, IL-7, IL-8, IL-9, IL-10, IL-12 (p40), IL-12 (p70), IL-13, IL-15, IL-17A, IP-10, MCP-1, MCP-3, MDC (CCL22), MIP-1α, MIP-1β, TGF-α, TNF-α, TNF-β, VEGF, CRP via Luminex xMAP technology |
5.2. Coagulation and cell adhesion markers: e.g., fibrinogen, D-dimer, PAI-1, soluble CD40L, P-selectin, ICAM-1, VCAM-1 via Luminex xMAP technology |
5.3. Markers of oxidative stress: e.g., hydrogen peroxide, malondialdehyde, protein carbonyl, 8-hydroxy-deoxy-guanosine, glutathione (reduced and oxidized), glutathione peroxidase, catalase and superoxide dismutase via specific ELISA and colorimetric assays |
5.4. Gene expression rates: inflammatory cytokines and receptors, oxidative stress pathway via RT2 Profiler PCR Array Kits with a real-time PCR system |
6. Statistical analysis
|
6.1. Evaluation and discussion of the results |
6.2. Dissemination and communication of the results/findings |
ACTIVITIES IN CO-OPERATION WITH THE PROJECT |
7. Urban aerosol characterization: stationary/personal size-fractionated PM samples collected via cascade impactors, measurements with particle sizers and counters and via electron microscopic techniques [121,196,197] |
8. Metabolomic profiling of blood via LC-MS/MS system (agreement with the respective researchers) |
SYNERGIC ACTIVITIES WITH THE PROJECT (through openly sharing results and biological samples) |
9. Investigation of the role of mental health factors (e.g., anxiety and depressive symptoms) in the responses to environmental effects (urban air pollution) |
10. Epigenetic research |
11. Exploration of new effect biomarkers of exposure to urban air pollutants and developing new or more effective method for the determination of new or existing biomarkers. |
Activity | Year 1 | Year 2 | Year 3 | Year 4 | Year 5 | |||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | Q1 | Q2 | Q3 | Q4 | |
Management | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
Selection of study participants | X | X | X | X | X | X | ||||||||||||||
Field work, sample collection | X | X | X | X | X | X | ||||||||||||||
Analysis of the samples | X | X | X | X | X | X | X | X | X | X | X | X | X | |||||||
Data evaluation | X | X | X | X | X | X | X | X | X | X | X | X | X | X | ||||||
Dissemination, communication | X | X | X | X | X | X | X | X | X | X | X | X | X | X |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Berlinger, B.; Fehérvári, P.; Kővágó, C.; Lányi, K.; Mátis, G.; Mackei, M.; Könyves, L. There Is Still a Need for a Comprehensive Investigation of the Health Consequences of Exposure to Urban Air with Special Regard to Particulate Matter (PM) and Cardiovascular Effects. Atmosphere 2024, 15, 296. https://doi.org/10.3390/atmos15030296
Berlinger B, Fehérvári P, Kővágó C, Lányi K, Mátis G, Mackei M, Könyves L. There Is Still a Need for a Comprehensive Investigation of the Health Consequences of Exposure to Urban Air with Special Regard to Particulate Matter (PM) and Cardiovascular Effects. Atmosphere. 2024; 15(3):296. https://doi.org/10.3390/atmos15030296
Chicago/Turabian StyleBerlinger, Balázs, Péter Fehérvári, Csaba Kővágó, Katalin Lányi, Gábor Mátis, Máté Mackei, and László Könyves. 2024. "There Is Still a Need for a Comprehensive Investigation of the Health Consequences of Exposure to Urban Air with Special Regard to Particulate Matter (PM) and Cardiovascular Effects" Atmosphere 15, no. 3: 296. https://doi.org/10.3390/atmos15030296