Ross–Weddell Dipole Critical for Antarctic Sea Ice Predictability in MPI–ESM–HR
Abstract
:1. Introduction
2. Materials and Methods
2.1. Decadal Climate Prediction System
2.2. Data Preprocessing
2.3. Statistical Analyses
3. Results
3.1. Antarctic SeaIce Evolution and Predictability
3.2. Teleconnections and Sea Ice Predictability
3.3. Model Drift
3.4. ENSO as a Source of ADP Predictability
4. Discussion
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, J. Increasing Antarctic Sea Ice under Warming Atmospheric and Oceanic Conditions. J. Clim. 2007, 20, 2515–2529. [Google Scholar] [CrossRef]
- Zhang, J. Modeling the Impact of Wind Intensification on Antarctic Sea Ice Volume. J. Clim. 2014, 27, 202–214. [Google Scholar] [CrossRef]
- Zanchettin, D.; Bothe, O.; Timmreck, C.; Bader, J.; Beitsch, A.; Graf, H.-F.; Notz, D.; Jungclaus, J.H. Inter-hemispheric asymmetry in the sea-ice response to volcanic forcing simulated by MPI-ESM (COSMOS-Mill). Earth Syst. Dyn. 2014, 5, 223–242. [Google Scholar] [CrossRef]
- Hogg, A.M.; Blundell, J.R. Interdecadal variability of the Southern Ocean. J. Phys. Oceanogr. 2006, 36, 1626–1645. [Google Scholar] [CrossRef]
- Sérazin, G.; Penduff, T.; Grégorio, S.; Barnier, B.; Molines, J.-M.; Terray, L. Intrinsic Variability of Sea Level from Global Ocean Simulations: Spatiotemporal Scales. J. Clim. 2015, 28, 4279–4292. [Google Scholar] [CrossRef]
- Wilson, C.; Hughes, C.W.; Blundell, J.R. Forced and intrinsic variability in the response to increased wind stress of an idealized Southern Ocean. J. Geophys. Res. Oceans 2015, 120, 113–130. [Google Scholar] [CrossRef]
- Sgubin, G.; Pierini, S.; Dijkstra, H.A. Intrinsic variability of the Antarctic Circumpolar Current system: Low- and high-frequency fluctuations of the Argentine Basin flow. Ocean Sci. 2014, 9, 201–213. [Google Scholar] [CrossRef]
- O’Kane, T.J.; Matear, R.J.; Chamberlain, M.A.; Risbey, J.S.; Sloyan, B.M.; Horenko, I. Decadal variability in an OGCM Southern Ocean: Intrinsic modes, forced modes and metastable states. Ocean Model. 2013, 69, 1–21. [Google Scholar] [CrossRef]
- Stammerjohn, S.E.; Martinson, D.G.; Smith, R.C.; Yuan, X.; Rind, D. Trends in Antarctic annual Sea Ice retreat and advance and their relation to El Niño-Southern Oscillation and Southern Annular Mode variability. J. Geophys. Res. 2008, 113, C03S90. [Google Scholar] [CrossRef]
- Simpkins, G.R.; Ciasto, L.M.; Thompson, D.W.J.; England, M.H. Seasonal relationships between large-scale climate variability and Antarctic sea ice concentration. J. Clim. 2012, 25, 5451–5469. [Google Scholar] [CrossRef]
- Fan, T.; Deser, C.; Schneider, D.P. Recent Antarctic sea ice trends in the context of Southern Ocean surface climate variations since 1950. Geophys. Res. Lett. 2014, 41, 2419–2426. [Google Scholar] [CrossRef]
- Himmich, K.; Vancoppenolle, M.; Madec, G.; Sallée, J.-B.; Holland, P.R.; Lebrun, M. Drivers of Antarctic sea ice advance. Nat. Commun. 2023, 14, 6219. [Google Scholar] [CrossRef]
- Yuan, N.; Ding, M.; Ludescher, J.; Bunde, A. Increase of the Antarctic Sea Ice Extent is highly significant only in the Ross Sea. Sci. Rep. 2017, 7, 41096. [Google Scholar] [CrossRef]
- Parkinson, C.L. A 40-y record reveals gradual Antarctic sea ice increases followed by decreases at rates far exceeding the rates seen in the Arctic. Proc. Natl. Acad. Sci. USA 2019, 116, 14414–14423. [Google Scholar] [CrossRef]
- Morioka, Y.; Behera, S.K. Remote and local processes controlling decadal sea ice variability in the Weddell Sea. J. Geophys. Res.-Oceans 2021, 126, e2020JC017036. [Google Scholar] [CrossRef]
- Libera, S.; Hobbs, W.; Klocker, A.; Meyer, A.; Matear, R. Ocean-Sea Ice Processes and Their Role in Multi-Month Predictability of Antarctic Sea Ice. Geophys. Res. Lett. 2022, 49, e2021GL097047. [Google Scholar] [CrossRef]
- Eayrs, C.; Li, X.; Raphael, M.N.; Holland, D.M. Rapid decline in Antarctic sea ice in recent years hints at future change. Nat. Geosci. 2021, 14, 460–464. [Google Scholar] [CrossRef]
- Liu, Y.; Sun, C.; Li, J.; Kucharski, F.; Di Lorenzo, E.; Adnan Abid, M.; Li, X. Decadal oscillation provides skillful multiyear predictions of Antarctic sea ice. Nat. Commun. 2023, 14, 8286. [Google Scholar] [CrossRef]
- Zhang, L.; Delworth, T.L.; Yang, X.; Zeng, F.; Lu, F.; Morioka, Y.; Bushuk, M. The relative role of the subsurface Southern Ocean in driving negative Antarctic Sea ice extent anomalies in 2016–2021. Comm. Earth Environ. 2022, 3, 2662–4435. [Google Scholar] [CrossRef]
- Massonnet, F.; Barreira, S.; Barthé lemy, A.; Bilbao, R.; Blanchard-Wrigglesworth, E.; Blockley, E.; Bromwich, D.H.; Bushuk, M.; Dong, X.; Goessling, H.F.; et al. SIPN South: Six years of coordinated seasonal Antarctic sea ice predictions. Front. Mar. Sci. 2023, 10, 1148899. [Google Scholar] [CrossRef]
- Purich, A.; Doddridge, E.W. Record low Antarctic sea ice coverage indicates a new sea ice state. Commun. Earth Environ. 2023, 4, 314. [Google Scholar] [CrossRef]
- Yu, L.; Zhong, S.; Vihma, T.; Sui, C.; Sun, B. The Impact of the Indian Ocean Basin Mode on Antarctic Sea Ice Concentration in Interannual Time Scales. Geophys. Res. Lett. 2022, 49, e2022GL097745. [Google Scholar] [CrossRef]
- Li, X.; Holland, D.M.; Gerber, E.P.; Yoo, C. Impacts of the north and tropical Atlantic Ocean on the Antarctic Peninsula and sea ice. Nature 2014, 505, 538–542. [Google Scholar] [CrossRef]
- Morioka, Y.; Zhang, L.; Delworth, T.L.; Yang, X.; Zeng, F.; Nonaka, M.; Behera, S.K. Multidecadal variability and predictability of Antarctic sea ice in the GFDL SPEAR_LO model. Cryosphere 2023, 17, 5219–5240. [Google Scholar] [CrossRef]
- Yang, C.-Y.; Liu, J.; Hu, Y.; Horton, R.M.; Chen, L.; Cheng, X. Assessment of Arctic and Antarctic sea ice predictability in CMIP5 decadal hindcasts. Cryosphere 2016, 10, 2429–2452. [Google Scholar] [CrossRef]
- Morioka, Y.; Iovino, D.; Cipollone, A.; Masina, S.; Behera, S.K. Decadal Sea Ice Prediction in the West Antarctic Seas with Ocean and Sea Ice Initializations. Commun. Earth Environ. 2022, 3, 189. [Google Scholar] [CrossRef]
- Yuan, X.J.; Martinson, D.G. The Antarctic dipole and its predictability. Geophys. Res. Lett. 2001, 28, 3609–3612. [Google Scholar] [CrossRef]
- Hosking, J.S.; Orr, A.; Marshall, G.J.; Turner, J.; Phillips, T. The Influence of the Amundsen-Bellingshausen Seas Low on the Climate of West Antarctica and Its Representation in Coupled Climate Model Simulations. J. Clim. 2013, 26, 6633–6648. [Google Scholar] [CrossRef]
- Hobbs, W.R.; Massom, R.; Stammerjohn, S.; Reid, P.; Williams, G.; Meier, W. A review of recent changes in Southern Ocean sea ice, their drivers and forcings. Glob. Planet. Chang. 2014, 143, 228–250. [Google Scholar] [CrossRef]
- Haumann, F.A.; Notz, D.; Schmidt, H. Anthropogenic influence on recent circulation-driven Antarctic sea ice changes. Geophys. Res. Lett. 2014, 41, 8429–8437. [Google Scholar] [CrossRef]
- Purich, A.; Cai, W.; England, M.H.; Cowan, T. Evidence for link between modelled trends in Antarctic sea ice and underestimated westerly wind changes. Nat. Commun. 2016, 7, 10409. [Google Scholar] [CrossRef]
- Ferreira, D.; Marshall, J.; Bitz, C.M.; Solomon, S.; Plumb, A. Antarctic ocean and sea ice response to ozone depletion: A two-time-scale problem. J. Clim. 2015, 28, 1206–1226. [Google Scholar] [CrossRef]
- Liu, J.; Curry, J.A. Accelerated warming of the Southern Ocean and its impacts on the hydrological cycle and sea ice. Proc. Natl. Acad. Sci. USA 2010, 107, 14987–14992. [Google Scholar] [CrossRef]
- Lecomte, O.; Goosse, H.; Fichefet, T.; Lavergne, C.D.; Barthélemy, A.; Zunz, V. Vertical ocean heat redistribution sustaining sea-ice concentration trends in the Ross Sea. Nat. Commun. 2014, 8, 258. [Google Scholar] [CrossRef]
- Zhang, L.; Ren, X.; Wang, C.Y.; Gan, B.; Wu, L.; Cai, W. An observational study on the interactions between storm tracks and sea ice in the Southern Hemisphere. Clim. Dyn. 2024, 62, 17–36. [Google Scholar] [CrossRef]
- Yuan, X. ENSO-related impacts on Antarctic sea ice: A synthesis of phenomenon and mechanisms. Antarct. Sci. 2004, 16, 415–425. [Google Scholar] [CrossRef]
- Yuan, X.J.; Li, C.H. Climate modes in southern high latitudes and their impacts on Antarctic sea ice. J. Geophys. Res. 2008, 113, C06S91. [Google Scholar] [CrossRef]
- Zhang, C.; Li, T.; Li, S. Impacts of CP and EP El Niño Events on the Antarctic Sea Ice in Austral Spring. J. Clim. 2021, 34, 9327–9348. [Google Scholar] [CrossRef]
- Meehl, G.A.; Arblaster, J.M.; Bitz, C.M.; Chung, C.T.Y.; Teng, H. Antarctic sea-ice expansion between 2000 and 2014 driven by tropical Pacific decadal climate variability. Nat. Geosc. 2016, 9, 590–595. [Google Scholar] [CrossRef]
- Purich, A.; England, M.H.; Cai, W.; Chikamoto, Y. Tropical Pacific SST drivers of recent Antarctic sea ice trends. J. Clim. 2016, 29, 8931–8948. [Google Scholar] [CrossRef]
- Turner, J. The El Niño-Southern Oscillation and Antarctica. Int. J. Climatol. 2004, 24, 1–31. [Google Scholar] [CrossRef]
- Isaacs, F.E.; Renwick, J.A.; Mackintosh, A.N.; Dadic, R. ENSO Modulates Summer and Autumn Sea Ice Variability Around Dronning Maud Land, Antarctica. J. Geophys. Res. Atmos. 2021, 126, e2020JD033140. [Google Scholar] [CrossRef]
- Müller, W.A.; Jungclaus, J.H.; Mauritsen, T.; Baehr, J.; Bittner, M.; Budich, R.; Bunzel, F.; Esch, M.; Ghosh, R.; Haak, H.; et al. A Higher-resolution Version of the Max Planck Institute Earth System Model (MPI-ESM1.2-HR). J. Adv. Model. Earth Syst. 2018, 10, 1383–1413. [Google Scholar] [CrossRef]
- Jungclaus, J.H.; Fischer, N.; Haak, H.; Lohmann, K.; Marotzke, J.; Matei, D.; Mikolajewicz, U.; Notz, D.; von Storch, J.S. Characteristics of the ocean simulations in the Max Planck Institute Ocean Model (MPIOM) the ocean component of the MPI-Earth system model. J. Adv. Model. Earth Syst. 2013, 5, 422–446. [Google Scholar] [CrossRef]
- Moreno-Chamarro, E.; Zanchettin, D.; Lohman, K.; Jungclaus, J.H. An abrupt weakening of the subpolar gyre as trigger of Little Ice Age-type episodes. Clim. Dyn. 2017, 48, 727–744. [Google Scholar] [CrossRef]
- Gutjahr, O.; Putrasahan, D.; Lohmann, K.; Jungclaus, J.H.; von Storch, J.S.; Brüggemann, N.; Haak, H.; Stössel, A. Max Planck Institute Earth System Model (MPI-ESM1.2) for the High-Resolution Model Intercomparison Project (HighResMIP). Geosci. Model Dev. 2019, 12, 3241–3281. [Google Scholar] [CrossRef]
- Zanchettin, D.; Fang, S.-W.; Khodri, M.; Omrani, N.-E.; Rubinetti, S.; Rubino, A.; Timmreck, C.; Jungclaus, J.H. Thermohaline patterns of intrinsic Atlantic Multidecadal Variability in MPI-ESM-LR. Clim. Dyn. 2023, 61, 2371–2393. [Google Scholar] [CrossRef]
- Zanchettin, D.; Gaetan, C.; Arisido, M.W.; Modali, K.; Toniazzo, T.; Keenlyside, N.; Rubino, A. Structural decomposition of decadal climate prediction errors: A Bayesian approach. Sci. Rep. 2017, 7, 12862. [Google Scholar] [CrossRef]
- Schuster, M.; Grieger, J.; Richling, A.; Schartner, T.; Illing, S.; Kadow, C.; Müller, W.A.; Pohlmann, H.; Pfahl, S.; Ulbrich, U. Improvement in the decadal prediction skill of the North Atlantic extratropical winter circulation through increased model resolution. Earth Syst. Dyn. 2019, 10, 901–917. [Google Scholar] [CrossRef]
- Pohlmann, H.; Müller, W.A.; Bittner, M.; Hettrich, S.; Modali, K.; Pankatz, K.; Marotzke, J. Realistic Quasi-Biennial Oscillation Variability in Historical and Decadal Hindcast Simulations Using CMIP6 Forcing. Geophys. Res. Lett. 2019, 46, 14118–14125. [Google Scholar] [CrossRef]
- Borchert, L.F.; Menary, M.B.; Swingedouw, D.; Sgubin, G.; Hermanson, L.; Mignot, J. Improved Decadal Predictions of North Atlantic Subpolar Gyre SST in CMIP6. Geophys. Res. Lett. 2021, 48, e2020GL091307. [Google Scholar] [CrossRef]
- Balmaseda, M.A.; Mogensen, K.; Weaver, A.T. Evaluation of the ECMWF ocean reanalysis system ORAS4. Q. J. R. Meteorol. Soc. 2013, 139, 1132–1161. [Google Scholar] [CrossRef]
- Boer, G.J.; Smith, D.M.; Cassou, C.; Doblas-Reyes, F.; Danabasoglu, G.; Kirtman, B.; Kushnir, Y.; Kimoto, M.; Meehl, G.A.; Msadek, R.; et al. The Decadal Climate Prediction Project (DCPP) contribution to CMIP6. Geosci. Model Dev. 2016, 9, 3751–3777. [Google Scholar] [CrossRef]
- Marotzke, J.; Müller, W.A.; Vamborg, F.S.; Becker, P.; Cubasch, U.; Feldmann, H.; Kaspar, F.; Kottmeier, C.; Marini, C.; Polkova, I.; et al. MiKlip—A National Research Project on Decadal Climate Prediction. Bull. Am. Meteorol. Soc. 2016, 97, 2379–2394. [Google Scholar] [CrossRef]
- Meehl, G.A.; Goddard, L.; Boer, G.; Burgman, R.; Branstator, G.; Cassou, C.; Corti, S.; Danabasoglu, G.; Doblas-Reyes, F.; Hawkins, E.; et al. Decadal climate prediction: An update from the trenches. Bull. Am. Meteorol. Soc. 2014, 95, 243–267. [Google Scholar] [CrossRef]
- Hawkins, E.; Dong, B.; Robson, D.J.; Sutton, R.; Smith, D.M. The interpretation and use of biases in decadal climate predictions. J. Clim. 2014, 27, 2931. [Google Scholar] [CrossRef]
- Rubinetti, S.; Taricco, C.; Alessio, S.; Rubino, A.; Bizzarri, I.; Zanchettin, D. Robust Decadal Hydroclimate Predictions for Northern Italy based on a Twofold Statistical Approach. Atmosphere 2020, 11, 671. [Google Scholar] [CrossRef]
- Dawdy, D.R.; Matalas, N.C. Statistical and probability analysis of hydrologic data, part III: Analysis of variance, covariance and time series. In Handbook of Applied Hydrology, a Compendium of Water-Resources Technology; Ven Te, C., Ed.; McGraw-Hill Book Company: New York, NY, USA, 1964; pp. 8.68–8.90. [Google Scholar]
- Bushuk, M.; Winton, M.; Haumann, F.A.; Delworth, T.; Lu, F.; Zhang, Y.; Jia, L.; Zhang, L.; Cooke, W.; Harrison, M.; et al. Seasonal Prediction and Predictability of Regional Antarctic Sea Ice. J. Clim. 2021, 34, 6207–6233. [Google Scholar] [CrossRef]
- Morioka, Y.; Iovino, D.; Cipollone, A.; Masina, S.; Behera, S.K. Summertime sea-ice prediction in the Weddell Sea improved by sea-ice thickness initialization. Sci. Rep. 2021, 11, 11475. [Google Scholar] [CrossRef] [PubMed]
- Neelin, J.D.; Jin, F.-F.; Syu, H.-H. Variations in ENSO phase locking. J. Clim. 2000, 13, 2570–2590. [Google Scholar] [CrossRef]
- Doddridge, E.W.; Marshall, J. Modulation of the seasonal cycle of Antarctic sea ice extent related to the Southern Annular Mode. Geophys. Res. Lett. 2017, 44, 9761–9768. [Google Scholar] [CrossRef]
- Hall, A.; Visbeck, M. Synchronous variability in the Southern Hemisphere atmosphere, sea ice, and ocean resulting from the annular mode. J. Clim. 2002, 15, 3043–3057. [Google Scholar] [CrossRef]
- Wang, S.; Liu, J.; Cheng, X.; Kerzenmacher, T.; Hu, Y.; Hui, F.; Braesicke, P. How do weakening of the stratospheric polar vortex in the Southern Hemisphere affect regional Antarctic sea ice extent? Geophys. Res. Lett. 2021, 48, e2021GL092582. [Google Scholar] [CrossRef]
- Liu, Y.; Donat, M.G.; England, M.H.; Alexander, L.V.; Hirsch, A.L.; Delgado-Torres, C. Enhanced multi-year predictability after El Niño and La Niña events. Nat. Commun. 2023, 14, 6387. [Google Scholar] [CrossRef]
- Li, S.; Cai, W.; Wu, L. Weakened Antarctic Dipole Under Global Warming in CMIP6 Models. Geophys. Res. Lett. 2021, 48, e2021GL094863. [Google Scholar] [CrossRef]
- Nie, Y.; Lin, X.; Yang, Q.; Liu, J.; Chen, D.; Uotila, P. Differences Between the CMIP5 and CMIP6 Antarctic Sea Ice Concentration Budgets. Geophys. Res. Lett. 2023, 50, e2023GL105265. [Google Scholar] [CrossRef]
- Graf, H.F.; Zanchettin, D. Central Pacific El Niño, the ‘‘subtropical bridge’’ and Eurasian Climate. J. Geophys. Res. 2012, 117, D01102. [Google Scholar] [CrossRef]
- Pascolini-Campbell, M.; Zanchettin, D.; Bothe, O.; Timmreck, C.; Matei, D.; Jungclaus, J.H.; Graf, H.-F. Toward a record of Central Pacific El Niño events since 1880. Theor. Appl. Climatol. 2015, 119, 379–389. [Google Scholar] [CrossRef]
- Fogt, R.L.; Bromwich, D.H.; Hines, H.M. Understanding the SAM influence on the South Pacific ENSO teleconnection. Clim. Dyn. 2010, 36, 1555–1576. [Google Scholar] [CrossRef]
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2024 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zanchettin, D.; Modali, K.; Müller, W.A.; Rubino, A. Ross–Weddell Dipole Critical for Antarctic Sea Ice Predictability in MPI–ESM–HR. Atmosphere 2024, 15, 295. https://doi.org/10.3390/atmos15030295
Zanchettin D, Modali K, Müller WA, Rubino A. Ross–Weddell Dipole Critical for Antarctic Sea Ice Predictability in MPI–ESM–HR. Atmosphere. 2024; 15(3):295. https://doi.org/10.3390/atmos15030295
Chicago/Turabian StyleZanchettin, Davide, Kameswarrao Modali, Wolfgang A. Müller, and Angelo Rubino. 2024. "Ross–Weddell Dipole Critical for Antarctic Sea Ice Predictability in MPI–ESM–HR" Atmosphere 15, no. 3: 295. https://doi.org/10.3390/atmos15030295
APA StyleZanchettin, D., Modali, K., Müller, W. A., & Rubino, A. (2024). Ross–Weddell Dipole Critical for Antarctic Sea Ice Predictability in MPI–ESM–HR. Atmosphere, 15(3), 295. https://doi.org/10.3390/atmos15030295