A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays
Abstract
:1. Introduction
Greenhouse Gases | Lifetime (Year) | GWP100 |
---|---|---|
CO2 | 50–200 | 1 |
CH4 | 12 | 27 |
CF4 | 50,000 | 7380 |
SF6 | 3200 | 24,300 |
C2F6 | 10,000 | 12,400 |
CHF3 | 222 | 14,600 |
C3F8 | 2600 | 9290 |
C4F8 | 3200 | 10,200 |
NF3 | 500 | 17,400 |
2. Materials and Methods
2.1. Composition of Plasma-Wet Scrubber
2.2. Experiment Setup and Methods
2.3. Calculation of PFCs
2.4. Mechanism of Reactions
3. Results
3.1. Decomposition of PFCs in Etch Type
3.2. Decomposition of PFCs in WF Type
3.3. DRE of Etch and WF Type
3.4. Rate of By-Product Gas Generation
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Abbreviations
PFCs | Perfluorinated compounds. |
GWP | Global warming potential. |
DRE | Destruction removal efficiency. |
FT-IR | Fourier transform infrared spectroscopy. |
WF | Water film. |
References
- Illuzzi, F.; Thewissen, H. Perfluorocompounds emission reduction by the semiconductor industry. J. Integr. Environ. Sci. 2010, 7, 201–210. [Google Scholar] [CrossRef]
- Chung, J.K.; Lee, K.Y.; Lee, S.G.; Lee, E.M.; Mo, S.H.; Lee, D.K.; Kim, S.G. The development of scrubber for F-gas reduction from electronic industry using pressure swing adsorption method and porous media combustion method. Clean Technol. 2017, 23, 181–187. [Google Scholar]
- Choi, S.-S.; Park, D.-W.; Watanabe, T. Thermal plasma decomposition of fluorinated greenhouse gases. Nucl. Eng. Technol. 2012, 44, 21–32. [Google Scholar] [CrossRef] [Green Version]
- Han, S.-H.; Park, H.-W.; Kim, T.-H.; Park, D.-W. Large scale treatment of perfluorocompounds using a thermal plasma scrubber. Clean Technol. 2011, 17, 250–258. [Google Scholar]
- Chang, M.B.; Chang, J.-S. Abatement of PFCs from semiconductor manufacturing processes by nonthermal plasma technologies: A critical review. Ind. Eng. Chem. Res. 2006, 45, 4101–4109. [Google Scholar] [CrossRef]
- Choi, S.; Hong, S.H.; Lee, H.S.; Watanabe, T. A comparative study of air and nitrogen thermal plasmas for PFCs decomposition. Chem. Eng. J. 2012, 185, 193–200. [Google Scholar] [CrossRef]
- Kuroki, T.; Tanaka, S.; Okubo, M.; Yamamoto, T. CF4 decomposition using low-pressure pulse-modulated radio frequency plasma. JSME Int. J. Ser. B Fluids Therm. Eng. 2005, 48, 440–447. [Google Scholar] [CrossRef]
- Chen, S.-H.; Živný, O.; Mašláni, A.; Chau, S.-W. Abatement of fluorinated compounds in thermal plasma flow. J. Fluor. Chem. 2019, 217, 41–49. [Google Scholar] [CrossRef]
- Hong, Y.C.; Kim, H.S.; Uhm, H.S. Reduction of perfluorocompound emissions by microwave plasma-torch. Thin Solid Films 2003, 435, 329–334. [Google Scholar] [CrossRef]
- Kiehlbauch, M.W.; Graves, D.B. Temperature resolved modeling of plasma abatement of perfluorinated compounds. J. Appl. Phys. 2001, 89, 2047–2057. [Google Scholar] [CrossRef]
- Li, Y.D.; Paganessi, J.E.; Rufin, D. Emission reduction of perfluorocompounds in semiconductor manufacturers via capture and recycle. Green Eng. 2000, 6, 62–75. [Google Scholar]
- Mangindaan, D.; Kuo, C.C.; Lin, S.Y.; Wang, M.J. The diffusion-reaction model on the wettability gradient created by SF6 plasma. Plasma Process. Polym. 2012, 9, 808–819. [Google Scholar] [CrossRef]
- Wang, C.; Lai, P.-C.; Syu, S.H.; Leu, J. Effects of CF4 plasma treatment on the moisture uptake, diffusion, and WVTR of poly (ethylene terephthalate) flexible films. Surf. Coat. Technol. 2011, 206, 318–324. [Google Scholar] [CrossRef]
- Park, H.-W.; Cha, W.B.; Uhm, S. Highly efficient thermal plasma scrubber technology for the treatment of perfluorocompounds (PFCs). Appl. Chem. Eng. 2018, 29, 10–17. [Google Scholar]
- Yoon, J.; Kim, Y.; Song, H. Effect of Inlet Shape on Thermal Flow Characteristics for Waste Gas in a Thermal Decomposition Reactor of Scrubber System. Appl. Chem. Eng. 2018, 29, 510–518. [Google Scholar]
- Park, H.-W.; Choi, S.; Park, D.-W. Effect of reaction gases on PFCs treatment using arc plasma process. Clean Technol. 2013, 19, 113–120. [Google Scholar] [CrossRef] [Green Version]
- Kim, T.-W.; Jo, G.-Y.; Lee, S.-M.; Lee, K.-H.; Jin, Y.-J.; Son, B.-K. A Study on Direct Current Arc Plasma Torch Design with Preserve Nozzle for Perfluorinated Compounds (PFCs) Decomposition in Cement Kiln. Appl. Sci. Converg. Technol. 2021, 30, 137–140. [Google Scholar] [CrossRef]
- Lim, M.S.; Kim, S.C.; Chun, Y.N. Decomposition of PFC gas using a water jet plasma. J. Mech. Sci. Technol. 2011, 25, 1845–1851. [Google Scholar] [CrossRef]
- EPA (2023). Inventory of U.S. Greenhouse Gas Emissions and Sinks: 1990-2021. U.S. Environmental Protection Agency, EPA 430-R-23-002. Available online: https://www.epa.gov/ghgemissions/inventory-us-greenhouse-gas-emissions-and-sinks-1990-2021 (accessed on 13 April 2023).
- Moon, G.-H.; Kim, J.-Y. Study on treatment characteristics of perfluorinated compounds using a high temperature plasma. Appl. Chem. Eng. 2019, 30, 108–113. [Google Scholar]
- Lee, J.-Y.; Lee, J.-B.; Moon, D.-M.; Souk, J.-H.; Lee, S.-Y.; Kim, J.-S. Evaluation method on destruction and removal efficiency of perfluorocompounds from semiconductor and display manufacturing. Bull. Korean Chem. Soc. 2007, 28, 1383–1388. [Google Scholar]
- Efremov, A.; Lee, J.; Kim, J. On the control of plasma parameters and active species kinetics in CF4 + O2 + Ar Gas Mixture by CF4/O2 and O2/Ar Mixing Ratio. Plasma Chem. Plasma Process. 2017, 37, 1445–1462. [Google Scholar] [CrossRef]
- Ho, P.; Johannes, J.E.; Buss, R.J.; Meeks, E. Modeling the plasma chemistry of C2F6 and CHF3 etching of silicon dioxide, with comparisons to etch rate and diagnostic data. J. Vac. Sci. Technol. A Vac. Surf. Film. 2001, 19, 2344–2367. [Google Scholar] [CrossRef]
- Chang, M.B.; Yu, S.J. An atmospheric-pressure plasma process for C2F6 removal. Environ. Sci. Technol. 2001, 35, 1587–1592. [Google Scholar] [CrossRef]
- Takaki, K.; Urashima, K.; Chang, J. Scale-up of ferro-electric packed bed reactor for C2F6 decomposition. Thin Solid Films 2006, 506, 414–417. [Google Scholar] [CrossRef]
- Tschuikow-Roux, E. Kinetics of the Thermal Decomposition of C2F6 in the Presence of H2 at 1300°—1600° K. J. Chem. Phys. 1965, 43, 2251–2256. [Google Scholar] [CrossRef]
- Su, T.; Kevan, L. Ion cyclotron resonance studies of ionic reactions in perfluorocarbons. Excited ions and their deexcitation. J. Phys. Chem. 1973, 77, 148–154. [Google Scholar] [CrossRef]
- Su, T.; Kevan, L.; Tiernan, T.O. Positive ion–molecule reactions in perfluoropropane. J. Chem. Phys. 1971, 54, 4871–4880. [Google Scholar] [CrossRef]
- Christophorou, L.G.; Olthoff, J.K. Electron interactions with C3F8. J. Phys. Chem. Ref. Data 1998, 27, 889–913. [Google Scholar] [CrossRef]
- Bose, D.; Rao, M.; Govindan, T.; Meyyappan, M. Uncertainty and sensitivity analysis of gas-phase chemistry in a CHF3 plasma. Plasma Sources Sci. Technol. 2003, 12, 225. [Google Scholar] [CrossRef]
- Ham, Y.-H.; Shutov, D.A.; Kwon, K.-H. Surface characteristics of etched parylene-C films for low-damaged patterning process using inductively-coupled O2/CHF3 gas plasma. Appl. Surf. Sci. 2013, 273, 287–292. [Google Scholar] [CrossRef]
- Kokkoris, G.; Goodyear, A.; Cooke, M.; Gogolides, E. A global model for C4F8 plasmas coupling gas phase and wall surface reaction kinetics. J. Phys. D Appl. Phys. 2008, 41, 195211. [Google Scholar] [CrossRef]
- Kokkoris, G.; Panagiotopoulos, A.; Goodyear, A.; Cooke, M.; Gogolides, E. A global model for SF6 plasmas coupling reaction kinetics in the gas phase and on the surface of the reactor walls. J. Phys. D Appl. Phys. 2009, 42, 055209. [Google Scholar] [CrossRef]
- Xiao, H.; Zhang, X.; Hu, X.; Zhu, Q. Experimental and simulation analysis on by-products of treatment of SF6 using dielectric barrier discharge. IEEE Trans. Dielectr. Electr. Insul. 2017, 24, 1617–1624. [Google Scholar] [CrossRef]
- Matsugi, A.; Shiina, H.; Takahashi, A.; Tsuchiya, K.; Miyoshi, A. Burning velocities and kinetics of H2/NF3/N2, CH4/NF3/N2, and C3H8/NF3/N2 flames. Combust. Flame 2014, 161, 1425–1431. [Google Scholar] [CrossRef]
- Choi, S. Microwave thermal decomposition of CF4 using SiC-Al2O3. J. Environ. Sci. Int. 2013, 22, 1097–1103. [Google Scholar] [CrossRef]
- Akhgarnusch, A.; Hockendorf, R.F.; Beyer, M.K. Thermochemistry of the reaction of SF6 with gas-phase hydrated electrons: A benchmark for nanocalorimetry. J. Phys. Chem. A 2015, 119, 9978–9985. [Google Scholar] [CrossRef]
- Liu, X.; Zhang, J.; Zhang, R.; Hou, H.; Chen, S.; Zhang, Y. Photoreduction of nitrogen trifluoride with controlled release of radicals. J. Chem. Technol. Biotechnol. 2014, 89, 436–447. [Google Scholar] [CrossRef]
Contents | Plasma-Wet Scrubber |
---|---|
Type of plasma | Arc |
Maximum plasma power | 15 kW |
Frequency of plasma | 60 Hz |
Voltage of plasma | 208 VAC |
Phase | 3 phase |
Dimension (W D H) | 800 800 1836 |
Operating Condition | Parameter |
---|---|
Input power (kW) | 6–11 |
Total gas flow rate (L/min) | 100, 300 |
N2 plasma gas flow rate (L/min) | 40~50 |
Reactive injection gas(air) flow rate(L/min) | 0.8~2 |
Concentration of PFCs (μmol/mol) | 4000–5000 |
Reaction | Number |
---|---|
Dissociation and Ionization | |
(6) | |
(7) | |
(8) | |
(9) | |
(10) | |
(11) | |
(12) | |
(13) | |
(14) | |
(15) | |
(16) | |
(17) | |
(18) | |
(19) | |
(20) | |
(21) | |
(22) | |
(23) | |
(24) | |
(25) | |
(26) | |
(27) | |
(28) | |
(29) | |
(30) | |
(31) | |
(32) | |
(33) | |
(34) | |
(35) | |
(36) | |
(37) | |
(38) | |
(39) | |
(40) | |
(41) | |
(42) | |
(43) | |
(44) | |
(45) | |
(46) | |
(47) | |
(48) | |
Recombination | |
(49) | |
(50) | |
(51) | |
(52) | |
(53) | |
(54) | |
(55) | |
(56) | |
(57) | |
(58) | |
(59) | |
(60) | |
OH and H radical reaction | |
(61) | |
(62) | |
(63) | |
(64) | |
(65) | |
(66) | |
(67) | |
(68) | |
(69) | |
(70) | |
(71) | |
(72) | |
(73) |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Lee, B.J.; Hwang, Y.; Jo, D.K.; Jeong, J. A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere 2023, 14, 1220. https://doi.org/10.3390/atmos14081220
Lee BJ, Hwang Y, Jo DK, Jeong J. A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere. 2023; 14(8):1220. https://doi.org/10.3390/atmos14081220
Chicago/Turabian StyleLee, Bong Jae, Yujin Hwang, Dong Ki Jo, and Jongmoon Jeong. 2023. "A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays" Atmosphere 14, no. 8: 1220. https://doi.org/10.3390/atmos14081220
APA StyleLee, B. J., Hwang, Y., Jo, D. K., & Jeong, J. (2023). A Study on Greenhouse Gas (PFCs) Reduction in Plasma Scrubbers to Realize Carbon Neutrality of Semiconductors and Displays. Atmosphere, 14(8), 1220. https://doi.org/10.3390/atmos14081220