Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition
Abstract
:1. Introduction
2. Study Area and Observation Data
3. Materials and Methods
3.1. Multifractal Detrended Fluctuation Analysis (MFDFA)
3.2. Multifractal Cross-Correlation Analysis (MFCCA)
- Consider two time-series signals, xi and yi (i = 1,2,…,N), to find their profiles:
- Divide the series into Ns independent windows, both in progressive and retrograde orders (hence, 2Ns), to avoid any exclusion of data points at the head and tail ends.
- For each window, compute the local trends by fitting an m-order polynomial:
- Estimate the detrended covariance:FqXY(s) ~ sλ(q)
3.3. Multivariate Empirical Mode Decomposition (MEMD)
- Generating appropriate sets of DVs by sampling on a (n − 1) unit hypersphere;
- Computing the projections of V(t) along the DVs for all d;
- Finding the time instants of the maxima of projections for all d;
- Interpolating [] to get the surface for all d;
- Finding the mean of surfaces:
- Extracting R(t) = V(t) − S(t). If R(t) satisfies the termination criteria, repeat from (1) onward upon (V(t) − R(t)), otherwise repeat from (2) upon the reminder R(t).
3.4. MEMD-MFDFA Framework for Reconstruction
4. Results and Discussion
4.1. MFDFA of ETo and Meteorological Variables
4.2. Cause of Multifractality
4.3. MEMD-MFDFA Approach for Fractality Detection
4.4. MFCCA of Meteorological Variables with Reference Evapotranspiration
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
Appendix A
References
- Allen, R.G.; Pereira, L.S.; Raes, D.; Smith, M. Crop evapotranspiration-Guidelines for computing crop water requirements-FAO Irrigation and drainage paper 56. Fao Rome 1998, 300, D05109. [Google Scholar]
- Adarsh, S.; Nityanjaly, L.J.; Sarang, R.; Pham, Q.B.; Ali, M.; Nandhineekrishna, P. Multifractal Characterization and Cross correlations of Reference Evapotranspiration Time Series of India. Eur. Phys. J. Spec. Top. 2021, 230, 3845–3859. [Google Scholar] [CrossRef]
- Goyal, P.; Kumar, S.; Sharda, R. A review of the Artificial Intelligence (AI) based techniques for estimating reference evapotranspiration: Current trends and future perspectives. Comput. Electron. Agric. 2023, 209, 107836. [Google Scholar] [CrossRef]
- Hurst, H.E. Long-term storage capacity of reservoirs. Trans. Am. Soc. Civ. Eng. 1951, 116, 770–808. [Google Scholar] [CrossRef]
- Mandelbrot, B. The Fractal Geometry of Nature; WH Freeman Publishers: New York, NY, USA, 1982. [Google Scholar]
- Pandey, G.; Lovejoy, S.; Schertzer, D. Multifractal analysis of daily river flows including extremes for basins five to two million square kilometers, one day to 75 years. J. Hydrol. 1998, 208, 62–81. [Google Scholar] [CrossRef]
- Kantelhardt, J.W.; Rybski, D.; Zschiegner, S.A.; Braun, P.; Koscielny-Bunde, E.; Livina, V.; Havlin, S.; Bunde, A. Multifractality of river runoff and precipitation: Comparison of fluctuation analysis and wavelet methods. Phys. A Stat. Mech. Its Appl. 2003, 330, 240–245. [Google Scholar] [CrossRef] [Green Version]
- Huang, Y.; Schmitt, F.G.; Lu, Z.; Liu, Y. Analysis of daily river flow fluctuations using empirical mode decomposition and arbitrary order Hilbert spectral analysis. J. Hydrol. 2009, 373, 103–111. [Google Scholar] [CrossRef] [Green Version]
- Schmitt, F.; Schertzer, D.; Lovejoy, S. Multifractal analysis of foreign exchange data. Appl. Stoch. Models Data Anal. 1999, 15, 29–53. [Google Scholar] [CrossRef]
- Plocoste, T.; Calif, R.; Jacoby-Koaly, S. Temporal multiscaling characteristics of particulate matter PM10 and ground-level ozone O3 concentrations in Caribbean region. Atmos. Environ. 2017, 169, 22–35. [Google Scholar] [CrossRef]
- Carmona-Cabezas, R.; Ariza-Villaverde, A.B.; de Ravé, E.G.; Jiménez-Hornero, F.J. Visibility graphs of ground-level ozone time series: A multifractal analysis. Sci. Total Environ. 2021, 661, 138–147. [Google Scholar] [CrossRef]
- Plocoste, T.; Carmona-Cabezas, R.; Jiménez-Hornero, F.J.; de Ravé, E.G.; Calif, R. Multifractal characterisation of particulate matter (PM10) time series in the Caribbean basin using visibility graphs. Atmos. Pollut. Res. 2021, 12, 100–110. [Google Scholar] [CrossRef]
- Peng, C.K.; Buldyrev, S.V.; Havlin, S.; Simons, M.; Stanley, H.E.; Goldberger, A.L. Mosaic organization of DNA nucleotides. Phys. Rev. E 1994, 49, 1685. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Zschiegner, S.A.; Koscielny-Bunde, E.; Havlin, S.; Bunde, A.; Stanley, H.E. Multifractal detrended fluctuation analysis of non-stationary time series. Phys. A Stat. Mech. Its Appl. 2002, 316, 87–114. [Google Scholar] [CrossRef] [Green Version]
- Kantelhardt, J.W.; Koscielny-Bunde, E.; Rybski, D.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of precipitation and river runoff records. J. Geophys. Res. Atmos. 2006, 111. [Google Scholar] [CrossRef]
- Koscielny-Bunde, E.; Kantelhart, J.W.; Braun, P.; Bunde, A.; Havlin, S. Long-term persistence and multifractality of river runoff records: Detrended fluctuation studies. J. Hydrol. 2006, 322, 120–137. [Google Scholar] [CrossRef] [Green Version]
- Li, E.; Mu, X.; Zhao, G.; Gao, P. Multifractal detrended fluctuation analysis of streamflow in the Yellow River Basin, China. Water 2015, 7, 1670–1686. [Google Scholar] [CrossRef] [Green Version]
- Hou, W.; Feng, G.; Yan, P.; Li, S. Multifractal analysis of the drought area in seven large regions of China from 1961 to 2012. Meteorol. Atmos. Phys. 2018, 130, 459–471. [Google Scholar] [CrossRef] [Green Version]
- Adarsh, S.; Dharan, D.S.; Nandhu, A.R.; Anand Vishnu, B.; Mohan, V.K.; Watorek, M. Multifractal Description of Streamflow and Suspended Sediment Concentration Data from Indian River Basins. Acta Geophys. 2020, 68, 519–535. [Google Scholar] [CrossRef] [Green Version]
- Adarsh, S.; Krzyszczak, J.; Baranowski, P.; Archana, D.S.; Nandhinee krishna, P.; Nityanjaly, L.J.; Vandana, T.; Ali, M. Multifractal Cross Correlation Analysis of Agro-Meteorological Datasets (Including Reference Evapotranspiration) of California. Atmosphere 2020, 11, 1116. [Google Scholar] [CrossRef]
- Martínez, J.L.M.; Segovia-Domínguez, I.; Rodríguez, I.Q.; Horta-Rangel, F.A.; Sosa-Gómez, G. A modified Multifractal Detrended Fluctuation Analysis (MFDFA) approach for multifractal analysis of precipitation. Phys. A Stat. Mech. Its Appl. 2021, 565, 125611. [Google Scholar] [CrossRef]
- Zhan, C.; Liang, C.; Zhao, L.; Jiang, S.; Niu, K.; Zhang, Y. Multifractal characteristics of multiscale drought in the Yellow River Basin, China. Phys. A Stat. Mech. Its Appl. 2023, 609, 128305. [Google Scholar] [CrossRef]
- Lin, G.; Chen, X.; Fu, Z. Temporal–spatial diversities of long-range correlation for relative humidity over China. Phys. A Stat. Mech. Its Appl. 2007, 383, 585–594. [Google Scholar] [CrossRef]
- Yuan, N.; Fu, Z.; Mao, J. Different multi-fractal behaviors of diurnal temperature range over the north and the south of China. Theor. Appl. Climatol. 2013, 112, 673–682. [Google Scholar] [CrossRef]
- Burgueño, A.; Lana, X.; Serra, C.; Martínez, M.D. Daily extreme temperature multifractals in Catalonia (NESpain). Phys. Lett. A 2014, 378, 874–885. [Google Scholar] [CrossRef]
- Kalamaras, N.; Philippopoulos, K.; Deligiorgi, D.; Tzanis, C.G.; Karvounis, G. Multifractal scaling properties of daily air temperature time series. Chaos Solitons Fractals 2017, 98, 38–43. [Google Scholar] [CrossRef]
- Krzyszczak, J.; Baranowski, P.; Zubik, M.; Kazandjiev, V.; Georgieva, V.; Sławiński, C.; Siwek, K.; Kozyra, J.; Nieróbca, A. Multifractal characterization and comparison of meteorological time series from two climatic zones. Theor. Appl. Climatol. 2019, 137, 1811–1824. [Google Scholar] [CrossRef] [Green Version]
- Plocoste, T.; Pavón-Domínguez, P. Multifractal detrended cross-correlation analysis of wind speed and solar radiation. Chaos Interdiscip. J. Nonlinear Sci. 2020, 30, 113109. [Google Scholar] [CrossRef]
- Baranowski, P.; Krzyszczak, J.; Slawinski, C.; Hoffmann, H.; Kozyra, J.; Nieróbca, A.; Siwek, K.; Gluza, A. Multifractal analysis of meteorological time series to assess climate impacts. Clim. Res. 2015, 65, 39–52. [Google Scholar] [CrossRef] [Green Version]
- Nourani, V.; Elkiran, G.; Abdullah, J. Multi-station artificial intelligence-based ensemble modeling of reference evapotranspiration using pan evaporation measurements. J. Hydrol. 2019, 577, 123958. [Google Scholar] [CrossRef]
- Nourani, V.; Elkiran, G.; Abdullah, J. Multi-step ahead modeling of reference evapotranspiration using a multi-model approach. J. Hydrol. 2020, 581, 124434. [Google Scholar] [CrossRef]
- Sreedevi, V.; Adarsh, S.; Nourani, V. Multiscale coherence analysis of reference evapotranspiration of north-western Iran using wavelet transform. J. Water Clim. Chang. 2022, 13, 505–521. [Google Scholar] [CrossRef]
- Suman, A.; Archana, D.S.; Nayak, A.K.; Adarsh, S.; Biswal, B. Unveiling the Climatic origin of Streamflow persistence through Multifractal Analysis of Hydrometeorological datasets of India. Hydrol. Sci. J. 2023, 68, 290–306. [Google Scholar] [CrossRef]
- Ariza-Villaverde, A.B.; Pavón-Domínguez, P.; Carmona-Cabezas, R.; Gutierrez de Rave, E.; Jimenez-Honero, F.J. Joint multifractal analysis of air temperature, relative humidity and reference evapotranspiration in the middle zone of the Guadalquivir river valley. Agric. For. Meteorol. 2019, 278, 107657. [Google Scholar] [CrossRef]
- Cun, Z.; Liang, C.; Zhao, L.; Zhang, Y.; Cheng, L.; Jiang, S.; Xing, L. Multifractal characteristics analysis of daily reference evapotranspiration in different climate zones of China. Phys. A Stat. Mech. Its Appl. 2021, 583, 126273. [Google Scholar] [CrossRef]
- Gómez-Gómez, J.; Ariza-Villaverde, A.B.; Gutiérrez de Ravé, E.; Jiménez-Hornero, F.J. Relationships between Reference Evapotranspiration and Meteorological Variables in the Middle Zone of the Guadalquivir River Valley Explained by Multifractal Detrended Cross-Correlation Analysis. Fractal Fract. 2023, 7, 54. [Google Scholar] [CrossRef]
- Nourani, V.; Fard, M.S. Sensitivity analysis of the artificial neural network outputs in simulation of the evaporation process at different climatologic regimes. Adv. Eng. Softw. 2016, 47, 127–146. [Google Scholar] [CrossRef]
- Podobnik, B.; Stanley, H.E. Detrended cross-correlation analysis: A new method for analyzing two nonstationary time series. Phys. Rev. Lett. 2008, 100, 084102. [Google Scholar] [CrossRef] [Green Version]
- Zhou, W.-X. Multifractal detrended cross-correlation analysis for two non-stationary signals. Phys. Rev. E 2008, 77, 066211. [Google Scholar] [CrossRef] [Green Version]
- Jiang, Z.-Q.; Zhou, W.-X. Multifractal detrending moving-average cross-correlation analysis. Phys. Rev. E 2011, 84, 016106. [Google Scholar] [CrossRef] [Green Version]
- Oświȩcimka, P.; Drożdż, S.; Forczek, M.; Jadach, S.; Kwapień, J. Detrended cross-correlation analysis consistently extended to multifractality. Phys. Rev. E 2014, 89, 023305. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hajian, S.; Movahed, M.S. Multifractal detrended cross-correlation analysis of sunspot numbers and river flow fluctuations. Phys. A Stat. Mech. Its Appl. 2010, 389, 4942–4954. [Google Scholar] [CrossRef] [Green Version]
- Dey, P.; Mujumdar, P.P. Multiscale evolution of persistence of rainfall and streamflow. Adv. Water Resour. 2018, 121, 285–303. [Google Scholar] [CrossRef]
- Maghyereh, A.; Abdoh, H.; Wątorek, M. The impact of COVID-19 pandemic on the dynamic correlations between gold and U.S. equities: Evidence from multifractal cross-correlation analysis. Qual. Quant. 2023, 57, 1889–1903. [Google Scholar] [CrossRef]
- Kwapień, J.; Oświęcimka, P.; Drożdż, S. Detrended fluctuation analysis made flexible to detect range of cross-correlated fluctuations. Phys. Rev. E 2015, 92, 052815. [Google Scholar] [CrossRef] [Green Version]
- Brito, A.A.; Santos, F.R.; de Castro, A.P.N.; da Cunha Lima, A.T.; Zebende, G.F.; da Cunha Lima, I.C. Cross-correlation in a turbulent flow: Analysis of the velocity field using the σ DCCA coefficient. Eur. Lett. 2018, 123, 20011. [Google Scholar] [CrossRef]
- Wątorek, M.; Drożdż, S.; Kwapień, J.; Minati, L.; Oświȩcimka, P.; Stanuszek, M. Multiscale characteristics of the emerging global cryptocurrency market. Phys. Rep. 2021, 901, 1–82. [Google Scholar] [CrossRef]
- Wątorek, M.; Drożdż, S.; Oświęcimka, P.; Stanuszek, M. Multifractal cross-correlations between the world oil and other financial markets in 2012–2017. Energy Econ. 2019, 81, 874–885. [Google Scholar] [CrossRef] [Green Version]
- Rehman, N.; Mandic, D.P. Multivariate empirical mode decomposition. Proc. R. Soc. A 2011, 466, 1291–1302. [Google Scholar] [CrossRef]
- Hu, W.; Si, B.-C. Soil water prediction based on its scale-specific control using multivariate empirical mode decomposition. Geoderma 2013, 193–194, 180–188. [Google Scholar] [CrossRef]
- Huang, G.; Su, Y.; Kareem, A.; Liao, H. Time-frequency analysis of non-stationary process based on multivariate empirical mode decomposition. J. Eng. Mech. 2016, 142, 04015065. [Google Scholar] [CrossRef]
- Adarsh, S.; Sulaiman, S.; Murshida, K.K.; Nooramol, P. Scale-dependent prediction of reference evapotranspiration based on Multivariate Empirical Mode Decomposition. Ain Shams Eng. J. 2018, 9, 1839–1848. [Google Scholar] [CrossRef]
- Adarsh, S.; Janga Reddy, M. Multiscale characterization and prediction of reservoir inflows using MEMD-SLR Coupled Approach. J. Hydrol. Eng. 2019, 24, 04018059. [Google Scholar] [CrossRef]
- Ali, M.; Deo, R.C.; Maraseni, T.; Downs, N.J. Improving SPI-derived drought forecasts incorporating synoptic-scale climate indices in multi-phase multivariate empirical mode decomposition model hybridized with simulated annealing and kernel ridge regression algorithms. J. Hydrol. 2019, 576, 164–184. [Google Scholar] [CrossRef]
- Agana, N.A.; Homaifar, A. EMD-based predictive deep belief network for time series prediction: An application to drought forecasting. Hydrology 2018, 5, 18. [Google Scholar] [CrossRef] [Green Version]
- Cleveland, R.B.; Cleveland, W.S. STL: A Seasonal-Trend Decomposition Procedure Based on Loess. J. Off. Stat. 1990, 6, 3–33. [Google Scholar]
- Drożdż, S.; Minati, L.; Oświȩcimka, P.; Stanuszek, M.; Wątorek, M. Signatures of the Crypto-Currency Market Decoupling from the Forex. Future Internet 2019, 11, 154. [Google Scholar] [CrossRef] [Green Version]
- Chandrasekaran, C.; Poomalai, P.; Saminathan, B.; Suthanthiravel, S.; Sundaram, K.; Hakkim, F.F.A. An investigation on the relationship between the Hurst exponent and the predictability of a rainfall time series. Meteorol. Appl. 2019, 16, 511–519. [Google Scholar] [CrossRef] [Green Version]
- Orth, R.; Seneviratne, S.I. Predictability of soil moisture and streamflow on subseasonal timescales: A case study. J. Geophys. Res. Atmos. 2013, 118, 963–979. [Google Scholar] [CrossRef]
- Rangarajan, G.; Sant, D.A. A climate predictability index and its applications. Geophys. Res. Lett. 1997, 24, 1239–1242. [Google Scholar] [CrossRef]
- Peyghami, M.R.; Khanduzi, R. Predictability and forecasting automotive price based on a hybrid train algorithm of MLP neural network. Neural Comput. Appl. 2012, 21, 125–132. [Google Scholar] [CrossRef]
- Khalili, N.; Khodashenas, S.R.; Davary, K.; Baygi, M.M.; Karimaldini, F. Prediction of rainfall using artificial neural networks for synoptic station of Mashhad: A case study. Arab. J. Geosc. 2016, 9, 624. [Google Scholar] [CrossRef]
- Movahed, M.S.; Jafari, G.R.; Ghasemi, F.; Rahvar, S.; Tabar, M.R.R. Multifractal detrended fluctuation analysis of sunspot time series. J. Stat. Mech. Theory Exp. 2006, 2006, P02003. [Google Scholar] [CrossRef] [Green Version]
- Keylock, C.J. Hypothesis testing for nonlinear phenomena in the geosciences using synthetic, surrogate data. Earth Space Sci. 2019, 6, 41–58. [Google Scholar] [CrossRef]
- Rilling, G.; Flandrin, P.; Goncalves, P. On empirical mode decomposition and its algorithms. In Proceedings of the IEEE-EURASIP Workshop on Nonlinear Signal and Image Processing NSIP-03, Grado, Italy, 8–11 June 2003; Volume 3, pp. 1–5. [Google Scholar]
- Gerken, T.; Biermann, T.; Babel, W.; Herzog, M.; Ma, Y.; Foken, T.; Graf, H.F. A modelling investigation into lake-breeze development and convection triggering in the Nam Co Lake basin, Tibetan Plateau. Theor. Appl. Climatol. 2014, 117, 149–167. [Google Scholar] [CrossRef]
- Sun, X.; Xie, L.; Semazzi, F.H.; Liu, B. A numerical investigationof the precipitation over Lake Victoria basin using a coupledatmosphere-lake limited-area model. Adv. Meteorol. 2014, 2014, 960924. [Google Scholar] [CrossRef] [Green Version]
- Dehghanipour, A.H.; Moshir Panahi, D.; Mousavi, H.; Kalantari, Z.; Tajrishy, M. Effects of Water Level Decline in Lake Urmia, Iran, on Local Climate Conditions. Water 2020, 12, 2153. [Google Scholar] [CrossRef]
- Nourani, V.; Tootoonchi, R.; Andaryani, S. Investigation of climate, land cover and lake level pattern changes and interactions using remotely sensed data and wavelet analysis. Ecol. Inform. 2021, 64, 101330. [Google Scholar] [CrossRef]
- Nourani, V.; Sayyah-Fard, M.; Kantoush, S.A.; Bharambe, K.P.; Sumi, T.; Saber, M. Optimization-based prediction uncertainty qualification of climatic parameters. J. Hydrometeorol. 2023. [Google Scholar] [CrossRef]
- Plocoste, T.; Calif, R.; Euphrasie-Clotilde, L.; Brute, F.N. Investigation of local correlations between particulate matter (PM10) and air temperature in the Caribbean basin using Ensemble Empirical Mode Decomposition. Atmos. Pollut. Res. 2020, 11, 1692–1704. [Google Scholar] [CrossRef]
- Plocoste, T.; Calif, R. Is there a causal relationship between Particulate Matter (PM10) and air Temperature data? An analysis based on the Liang–Kleeman information transfer theory. Atmos. Pollut. Res. 2021, 12, 101177. [Google Scholar] [CrossRef]
Station | Variable | From | To | Statistical Property | ||||
---|---|---|---|---|---|---|---|---|
Maximum | Minimum | Mean | SD | CV (%) | ||||
Tabriz | Temperature (°C) | 1/6/1992 | 26/10/2018 | 33.20 | −15.000 | 13.34 | 10.38 | 77.81 |
Pressure (kPa) | 1/6/1992 | 26/10/2018 | 878.44 | 850.95 | 864.40 | 4.32 | 0.50 | |
Relative Humidity (%) | 1/6/1992 | 26/10/2018 | 95.875 | 10.5 | 50.57 | 17.683 | 34.96 | |
Wind Velocity (ms−1) | 1/6/1992 | 26/10/2018 | 9.500 | 0.00 | 3.384 | 1.60 | 47.28 | |
Solar Radiation (kJ m−2) | 1/6/1992 | 26/10/2018 | 3479 | 43.00 | 1698.0 | 792.22 | 46.65 | |
Evapotranspiration (mm) | 1/6/1992 | 26/10/2018 | 21.20 | −0.185 | 6.1598 | 4.88935 | 79.37 | |
Urmia | Temperature (°C) | 1/6/1992 | 10/11/2018 | 30.00 | −13.00 | 11.88 | 9.42 | 79.29 |
Pressure (kPa) | 1/6/1992 | 26/10/2018 | 882.00 | 853.24 | 867.19 | 4.47 | 0.515 | |
Relative Humidity (%) | 1/6/1992 | 26/10/2018 | 99.50 | 20.13 | 57.99 | 15.69 | 27.06 | |
Wind Velocity (ms−1) | 1/6/1992 | 26/10/2018 | 7.63 | 0.00 | 2.13 | 1.11 | 52.11 | |
Solar Radiation (kJ m−2) | 1/6/1992 | 26/10/2018 | 3540.00 | 16.00 | 1774.16 | 805.30 | 45.39 | |
Evapotranspiration (mm) | 1/6/1992 | 26/10/2018 | 13.80 | 0.00 | 4.13 | 3.39 | 82.08 |
Station | Variable | H | W | R | ∆f(α) | ∆h(q) | α0 |
---|---|---|---|---|---|---|---|
Tabriz | Temperature (T) | 0.818 | 0.298 | 0.296 | 0.192 | 0.149 | 0.845 |
Pressure (P) | 0.601 | 0.366 | 0.237 | 0.170 | 0.207 | 0.646 | |
Relative Humidity (RH) | 0.754 | 0.213 | 0.495 | 0.239 | 0.107 | 0.771 | |
Wind Velocity (WV) | 0.607 | 0.430 | 0.346 | 0.318 | 0.230 | 0.651 | |
Solar Radiation (SR) | 0.845 | 0.438 | 0.445 | 0.340 | 0.244 | 0.883 | |
Reference Evapotranspiration (ET0) | 0.746 | 0.735 | 0.487 | 0.600 | 0.430 | 0.810 | |
Urmia | Temperature (T) | 0.821 | 0.331 | 0.341 | 0.231 | 0.182 | 0.856 |
Pressure (P) | 0.619 | 0.374 | 0.157 | 0.097 | 0.213 | 0.666 | |
Relative Humidity (RH) | 0.785 | 0.276 | 0.247 | 0.137 | 0.146 | 0.814 | |
Wind Velocity (WV) | 0.659 | 0.274 | 0.146 | 0.075 | 0.166 | 0.700 | |
Solar Radiation (SR) | 0.960 | 0.451 | 0.073 | 0.030 | 0.240 | 0.991 | |
Reference Evapotranspiration (ET0) | 0.857 | 0.927 | 0.686 | 0.870 | 0.607 | 0.919 |
Station | Variable | D | PI |
---|---|---|---|
Tabriz | T | 1.182 | 0.636 |
P | 1.399 | 0.202 | |
RH | 1.246 | 0.508 | |
WV | 1.393 | 0.214 | |
SR | 1.155 | 0.690 | |
ET0 | 1.254 | 0.492 | |
Urmia | T | 1.179 | 0.642 |
P | 1.381 | 0.238 | |
RH | 1.215 | 0.570 | |
WV | 1.341 | 0.318 | |
SR | 1.040 | 0.920 | |
ET0 | 1.143 | 0.714 |
Station | Variable | CL | FH | SH | MH | FQ | SQ | TQ | FRQ | FTQ | LTQ |
---|---|---|---|---|---|---|---|---|---|---|---|
Tabriz | T | 0.818 | 0.800 | 0.867 | 0.828 | 0.856 | 0.782 | 0.904 | 0.876 | 0.813 | 0.829 |
P | 0.601 | 0.639 | 0.644 | 0.629 | 0.720 | 0.678 | 0.682 | 0.664 | 0.617 | 0.608 | |
RH | 0.754 | 0.717 | 0.815 | 0.785 | 0.740 | 0.736 | 0.871 | 0.815 | 0.758 | 0.779 | |
WV | 0.607 | 0.639 | 0.582 | 0.591 | 0.622 | 0.580 | 0.605 | 0.556 | 0.643 | 0.573 | |
SR | 0.845 | 0.908 | 0.815 | 0.908 | 0.888 | 0.878 | 0.893 | 0.690 | 0.895 | 0.848 | |
ET0 | 0.746 | 0.763 | 0.768 | 0.783 | 0.743 | 0.741 | 0.797 | 0.793 | 0.760 | 0.769 | |
Urmia | T | 0.821 | 0.804 | 0.883 | 0.844 | 0.874 | 0.798 | 0.910 | 0.889 | 0.822 | 0.837 |
P | 0.619 | 0.643 | 0.661 | 0.638 | 0.732 | 0.650 | 0.702 | 0.683 | 0.630 | 0.628 | |
RH | 0.785 | 0.786 | 0.826 | 0.802 | 0.797 | 0.759 | 0.843 | 0.837 | 0.797 | 0.808 | |
WV | 0.659 | 0.624 | 0.722 | 0.610 | 0.681 | 0.534 | 0.617 | 0.750 | 0.679 | 0.691 | |
SR | 0.960 | 0.994 | 0.967 | 0.991 | 0.922 | 0.999 | 0.990 | 0.877 | 0.996 | 0.977 | |
ET0 | 0.857 | 0.860 | 0.868 | 0.868 | 0.814 | 0.782 | 0.833 | 0.850 | 0.871 | 0.871 |
Variable | Property | Tabriz Station | Urmia Station | ||||
---|---|---|---|---|---|---|---|
Original Series | Shuffled Series | Surrogate Series | Original Series | Shuffled Series | Surrogate Series | ||
Temperature | Mean | 0.856 | 0.501 | 0.790 | 0.871 | 0.506 | 0.855 |
SD | 0.045 | 0.010 | 0.042 | 0.057 | 0.008 | 0.035 | |
∆h(q) | 0.149 | 0.033 | 0.140 | 0.182 | 0.027 | 0.121 | |
Pressure | Mean | 0.659 | 0.486 | 0.631 | 0.678 | 0.511 | 0.632 |
SD | 0.065 | 0.008 | 0.033 | 0.067 | 0.012 | 0.048 | |
∆h(q) | 0.207 | 0.028 | 0.105 | 0.213 | 0.042 | 0.157 | |
Relative Humidity | Mean | 0.782 | 0.515 | 0.753 | 0.823 | 0.507 | 0.786 |
SD | 0.033 | 0.008 | 0.031 | 0.045 | 0.003 | 0.016 | |
∆h(q) | 0.107 | 0.028 | 0.100 | 0.146 | 0.008 | 0.056 | |
Wind Velocity | Mean | 0.649 | 0.535 | 0.616 | 1.021 | 0.520 | 0.999 |
SD | 0.059 | 0.010 | 0.018 | 0.073 | 0.011 | 0.012 | |
∆h(q) | 0.184 | 0.033 | 0.058 | 0.240 | 0.037 | 0.041 | |
Solar Radiation | Mean | 0.912 | 0.506 | 0.856 | 1.033 | 0.507 | 0.907 |
SD | 0.078 | 0.016 | 0.003 | 0.210 | 0.013 | 0.003 | |
∆h(q) | 0.244 | 0.055 | 0.000 | 0.607 | 0.047 | 0.010 | |
Reference Evapotranspiration | Mean | 0.864 | 0.517 | 0.764 | 0.708 | 0.494 | 0.716 |
SD | 0.138 | 0.009 | 0.013 | 0.054 | 0.017 | 0.010 | |
∆h(q) | 0.430 | 0.033 | 0.047 | 0.166 | 0.057 | 0.034 |
Station | Variable | H | W | R | ∆f(α) | ∆h(q) | α0 |
---|---|---|---|---|---|---|---|
Tabriz | Temperature | 0.875 | 0.666 | 0.522 | 0.537 | 0.407 | 0.933 |
Pressure | 0.662 | 0.584 | 0.345 | 0.340 | 0.343 | 0.726 | |
Relative Humidity | 0.943 | 0.756 | 0.471 | 0.510 | 0.480 | 0.919 | |
Wind Velocity | 0.884 | 0.322 | 0.196 | 0.102 | 0.168 | 0.914 | |
Solar Radiation | 0.922 | 0.992 | 0.629 | 0.578 | 0.369 | 0.966 | |
Reference ET0 | 0.865 | 0.942 | 0.598 | 0.735 | 0.631 | 0.947 | |
Urmia | Temperature | 0.910 | 0.642 | 0.536 | 0.503 | 0.403 | 0.967 |
Pressure | 0.871 | 0.897 | 0.506 | 0.601 | 0.577 | 0.952 | |
Relative Humidity | 0.947 | 0.811 | 0.485 | 0.544 | 0.518 | 0.927 | |
Wind Velocity | 0.998 | 0.471 | 0.279 | 0.218 | 0.253 | 0.997 | |
Solar Radiation | 0.987 | 0.825 | 0.522 | 0.529 | 0.519 | 0.948 | |
Reference ET0 | 0.909 | 0.871 | 0.556 | 0.642 | 0.582 | 0.993 |
Station | Link | Scaling Exponent | Cross-Correlation Coefficient | Spectral Width | Asymmetry Index | ||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
λx | λy | λxy | ρs | ρa | ρo | Wx | Wy | Wxy | Rx | Ry | Rxy | ||
Tabriz | T-ETo | 0.990 | 0.959 | 0.975 | 0.655 | 0.973 | 0.908 | 0.304 | 0.809 | 0.502 | −0.014 | −0.584 | −0.483 |
P-ETo | 0.693 | 0.959 | 0.826 | −0.134 | −0.715 | −0.416 | 0.274 | 0.809 | 0.375 | −0.055 | −0.584 | −0.448 | |
RH-ETo | 0.838 | 0.959 | 0.899 | −0.476 | −0.935 | −0.748 | 0.240 | 0.809 | 0.477 | −0.055 | −0.584 | −0.402 | |
U-ETo | 0.771 | 0.959 | 0.865 | 0.271 | 0.856 | 0.474 | 0.190 | 0.809 | 0.432 | −0.273 | −0.584 | −0.505 | |
SR-ETo | 0.991 | 0.959 | 0.980 | 0.349 | 0.930 | 0.758 | 0.831 | 0.809 | 0.486 | −0.523 | −0.584 | −0.435 | |
Urmia | T-ETo | 0.905 | 0.980 | 0.943 | 0.431 | 0.947 | 0.848 | 0.380 | 0.942 | 0.452 | −0.039 | −0.651 | −0.476 |
P-ETo | 0.706 | 0.980 | 0.843 | −0.048 | −0.688 | −0.422 | 0.272 | 0.942 | 0.484 | −0.084 | −0.651 | −0.501 | |
RH-ETo | 0.858 | 0.980 | 0.919 | −0.338 | −0.889 | −0.636 | 0.229 | 0.942 | 0.554 | −0.112 | −0.651 | −0.470 | |
U-ETo | 0.922 | 0.980 | 0.951 | 0.077 | 0.473 | 0.155 | 0.252 | 0.942 | 0.458 | −0.052 | −0.651 | −0.574 | |
SR-ETo | 0.989 | 0.980 | 0.985 | 0.274 | 0.928 | 0.739 | 0.667 | 0.942 | 0.582 | −0.393 | −0.651 | −0.517 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Sankaran, A.; Plocoste, T.; Nourani, V.; Vahab, S.; Salim, A. Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition. Atmosphere 2023, 14, 1219. https://doi.org/10.3390/atmos14081219
Sankaran A, Plocoste T, Nourani V, Vahab S, Salim A. Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition. Atmosphere. 2023; 14(8):1219. https://doi.org/10.3390/atmos14081219
Chicago/Turabian StyleSankaran, Adarsh, Thomas Plocoste, Vahid Nourani, Shamseena Vahab, and Aayisha Salim. 2023. "Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition" Atmosphere 14, no. 8: 1219. https://doi.org/10.3390/atmos14081219
APA StyleSankaran, A., Plocoste, T., Nourani, V., Vahab, S., & Salim, A. (2023). Assessment of Multifractal Fingerprints of Reference Evapotranspiration Based on Multivariate Empirical Mode Decomposition. Atmosphere, 14(8), 1219. https://doi.org/10.3390/atmos14081219