Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area
2.2. Climate Data
Selection of Meteorological Stations (1979–2018)
- (1)
- The station is currently in operation.
- (2)
- Time series passed homogeneity and quality control tests.
- (3)
- Data were available from 1979 to 2018.
- (4)
- The station is located in a municipality where maize is produced.
2.3. Agricultural Yield Data for Maize
2.4. Calculation of Climate Indices
2.5. Selection of Climate Indices
2.6. Trend Analysis
2.7. Calculation of Climate Indices for the Spring-Summer Agricultural Cycle
2.8. Correlation and Regression Analysis
3. Results
3.1. Description of Annual Climate Indices Trends
3.1.1. Precipitation Indices
3.1.2. Temperature Indices
3.2. Relationship between Sectoral Climate Indices of the ET-SCI and Maize Yields
3.2.1. Precipitation Indices Versus Maize Yields
3.2.2. Temperature Indices Versus Maize Yields
3.3. Correlation Analysis in the Municipalities with Statistical Significance
4. Discussion
4.1. Climate Indices Trends
4.2. Correlations
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
Appendix A
# | Indices | ID | Station | Municipality | Longitude | Latitude | Altitude |
---|---|---|---|---|---|---|---|
1 | prcp-tmp | 30011 | Ángel R. Cabada | Ángel R. Cabada | −95.447222 | 18.597222 | 28 |
2 | prcp-tmp | 30012 | Atzalan | Atzalan | −97.245833 | 19.788889 | 1697 |
3 | prcp-tmp | 30025 | Ciudad Alemán | Cosamaloapan de Carpio ## | −96.094444 | 18.1875 | 35 |
4 | prcp-tmp | 30035 | Cuatotolapan | Hueyapan de Ocampo | −95.295833 | 18.144444 | 20 |
5 | prcp-tmp | 30056 | El Tejar | Medellín | −96.158333 | 19.067222 | 10 |
6 | Prcp | 30058 | Espinal (CFE) | Espinal | −97.418611 | 20.257778 | 62 |
7 | Prcp | 30068 | Los ídolos | Actopan ## | −96.516389 | 19.408333 | 100 |
8 | Prcp | 30081 | La Florencia | San Juan Evangelista | −95.180556 | 17.575 | 109 |
9 | Prcp | 30090 | Las Perlas | Jesús Carranza | −94.913889 | 17.416667 | 22 |
10 | prcp-tmp | 30093 | Loma Fina | Paso de Ovejas | −96.41 | 19.261389 | 41 |
11 | prcp-tmp | 30102 | Martínez De La Torre (DGE) | Martínez de la Torre | −97.063889 | 20.079167 | 89 |
12 | Prcp | 30114 | Naolinco De Victoria | Naolinco | −96.873056 | 19.651944 | 1542 |
13 | Prcp | 30117 | Paraíso Novillero | Cosamaloapan de Carpio ## | −95.941667 | 18.258333 | 8 |
14 | Prcp | 30152 | Garro | Isla | −95.556944 | 18.270556 | 20 |
15 | Prcp | 30158 | Santa Rosa | Actopan ## | −96.463889 | 19.465278 | 65 |
16 | Tmp | 30167 | Tancochapa | Las Choapas | −94.088889 | 17.873611 | 13 |
17 | Prcp | 30189 | Tres Zapotes | Santiago Tuxtla | −95.436111 | 18.466667 | 28 |
18 | prcp-tmp | 30193 | José Cardel | La Antigua | −96.374444 | 19.364722 | 28 |
References
- IPCC (Intergovernmental Panel on Climate Change) Climate Change 2022—Impacts, Adaptation and Vulnerability—Summary for Policymakers. In Climate Change 2022: Impacts, Adaptation, and Vulnerability; Pörtner, D.C.; Roberts, E.S.; Poloczanska, K.; Mintenbeck, M.; Tignor, A.; Alegría, M.; Craig, S.; Langsdorf, S.; Löschke, V.; Möller, A.O. (Eds.) Cambridge University Press: Cambridge, UK, 2022; p. 40. ISBN 9789291691593. [Google Scholar]
- INECC (Instituto Nacional de Ecología y Cambio Climático). Atlas Nacional de Vulnerabilidad Al Cambio Climático, 1st ed.; Libro electrónico: Ciudad de México, México, 2019. [Google Scholar]
- Tejeda Martínez, A.; Del Valle Cárdenas, B.; Welsh Rodríguez, C.M.; Ochoa Martínez, C.A.; Méndez Pérez, I.R. Veracruz, Una Década Ante El Cambio Climático; Primera, Ed.; Gobierno del Estado de Veracruz: Xalapa, Veracruz, 2020; ISBN 9786078489701. [Google Scholar]
- Bada-Carbajal, L.M.; Osorio-Antonia, J.; Ramírez-Hernández, Z. Evolución de La Producción Del Maíz En Veracruz, México. Investig. Adm. 2021, 50, 1–19. [Google Scholar] [CrossRef]
- Zhang, X.; Yang, F. RClimDex (1.0) User Manual. Available online: https://acmad.net/rcc/procedure/RClimDexUserManual.pdf (accessed on 9 May 2022).
- Vázquez Aguirre, J.L. Guía Para El Cálculo y Uso de Índices de Cambio Climático En México, 1st ed.; Instituto Nacional de Ecología: Ciudad de México, México, 2010. [Google Scholar]
- Alexander, L.V.; Herold, N. Climpact User Guide. Available online: https://github.com/ARCCSS-extremes/climpact/blob/master/www/user_guide/Climpact_user_guide.md (accessed on 8 May 2022).
- UNDP (United Nations Development Programme). Government of Sierra Leone National Adaptation Plan 2021. 2022. Available online: https://www.undp.org/sierra-leone/publications/national-adaptation-plan-2021 (accessed on 8 May 2022).
- Junk, J.; Goergen, K.; Krein, A. Future Heat Waves in Different European Capitals Based on Climate Change Indicators. Int. J. Environ. Res. Public Health 2019, 16, 3959. [Google Scholar] [CrossRef]
- Ajjur, S.B.; Riffi, M.I. Analysis of the Observed Trends in Daily Extreme Precipitation Indices in Gaza Strip during 1974–2016. Int. J. Climatol. 2020, 40, 6189–6200. [Google Scholar] [CrossRef]
- Dunn, R.J.H.; Alexander, L.V.; Donat, M.G.; Zhang, X.; Bador, M.; Herold, N.; Lippmann, T.; Allan, R.; Aguilar, E.; Barry, A.A.; et al. Development of an Updated Global Land In Situ-Based Data Set of Temperature and Precipitation Extremes: HadEX3. J. Geophys. Res. Atmos. 2020, 125, 1–28. [Google Scholar] [CrossRef]
- Felix, M.L.; Kim, Y.K.; Choi, M.; Kim, J.C.; Do, X.K.; Nguyen, T.H.; Jung, K. Detailed Trend Analysis of Extreme Climate Indices in the Upper Geum River Basin. Water 2021, 13, 3171. [Google Scholar] [CrossRef]
- Sun, Q.; Zhang, X.; Zwiers, F.; Westra, S.; Alexander, L.V. A Global, Continental, and Regional Analysis of Changes in Extreme Precipitation. J. Clim. 2021, 34, 243–258. [Google Scholar] [CrossRef]
- Herold, N.; Ekström, M.; Kala, J.; Goldie, J.; Evans, J.P. Australian Climate Extremes in the 21st century According to a Regional Climate Model Ensemble: Implications for Health and Agriculture. Weather Clim. Extrem. 2018, 20, 54–68. [Google Scholar] [CrossRef]
- Croitoru, A.E.; Man, T.C.; Vâtca, S.D.; Kobulniczky, B.; Stoian, V. Refining the Spatial Scale for Maize Crop Agro-Climatological Suitability Conditions in a Region with Complex Topography towards a Smart and Sustainable Agriculture. Case Study: Central Romania (Cluj County). Sustainability 2020, 12, 2783. [Google Scholar] [CrossRef]
- McGree, S.; Schreider, S.; Kuleshov, Y.; Prakash, B. On the Use of Mean and Extreme Climate Indices to Predict Sugar Yield in Western Fiji. Weather Clim. Extrem. 2020, 29, 100271. [Google Scholar] [CrossRef]
- Ruiz-Alvarez, O.; Singh, V.P.; Enciso-Medina, J.; Ontiveros-Capurata, R.E.; dos Santos, C.A.C. Observed Trends in Daily Extreme Precipitation Indices in Aguascalientes, Mexico. Meteorol. Appl. 2019, 27, 1–20. [Google Scholar] [CrossRef]
- Pineda-Martínez, L.F.; León-Cruz, J.F.; Carbajal, N. Analysis of Severe Storms and Tornado Formation in the Northern Region of Mexico. Rev. Bio Ciencias 2020, 7, 15. [Google Scholar] [CrossRef]
- Colorado-Ruiz, G.; Cavazos, T. Trends of Daily Extreme and Non-Extreme Rainfall Indices and Intercomparison with Different Gridded Data Sets over Mexico and the Southern United States. Int. J. Climatol. 2021, 41, 5406–5430. [Google Scholar] [CrossRef]
- Mendoza-Uribe, I. Identification of Changes in the Rainfall Regime in Chihuahua’s State (México). Cuad. Investig. Geográfica 2022, 1–22. [Google Scholar] [CrossRef]
- Montero-Martínez, M.J.; Pita-Díaz, O.; Andrade-Velázquez, M. Potential Influence of the Atlantic Multidecadal Oscillation in the Recent Climate of a Small Basin in Central Mexico. Atmosphere 2022, 13, 339. [Google Scholar] [CrossRef]
- SIAP (Servicios de Información Agroalimentaria y Pesquera). Panorama Agroalimentario 2021; Servicio de Información Agroalimentaria y Pesquera: México City, México, 2021; ISBN 9788490225370. [Google Scholar]
- Díaz-Chuquizuta, P.; Hidalgo-Melendez, E.; Cabrejo-Sánchez, C.; Valdés-Rodríguez, O.A. Respuesta Del Maíz (Zea mays, L.) a La Aplicación Foliar de Abonos Orgánicos Líquidos. Chil. J. Agric. Anim. Sci. 2022, 38, 144–153. [Google Scholar] [CrossRef]
- SAGARPA. Maíz Grano Blanco y Amarillo Mexicano; SAGARPA (Secretary of Agriculture, Ranching, Rural Development, Fisheries, and Food supply): México City, México, 2017; Volume I, ISBN 1870-1760. [Google Scholar]
- SIAP (Servicios de Información Agroalimentaria y Pesquera). Producción Agrícola. Available online: https://www.gob.mx/siap/acciones-y-programas/produccion-agricola-33119 (accessed on 12 January 2022).
- SIAP-SADER (Servicio de Información Agroalimentaria y Pesquera-Secretaría de agricultura y Desarrollo Rural). Aptitud Agroclimática Del Maíz En México. Available online: https://www.gob.mx/cms/uploads/attachment/file/422297/12_Aptitud_agroclim_tica_de_M_xico_de_diciembre__2018.pdf (accessed on 9 May 2022).
- INEGI (Instituto Nacional de Estadística y Geografía). Anuario Estadístico y Geográfico de Veracruz de Ignacio de La Llave 2017; Instituto Nacional de Estadística y Geografía: Veracruz, México, 2017. [Google Scholar]
- Ruíz Barradas, A.; Tejeda Martínez, A.; Miranda Alonso, S.; Flores Zamudio, R.H. Climatología. In Atlas del Patrimonio Natural, Histórico y Cultural de Veracruz: Patrimonio Natural; Gobierno del Estado de Veracruz: Xalapa, Veracruz, 2010; Volume 1, pp. 65–84. [Google Scholar]
- SMN (Servicio Meteorológico Nacional). Servicio Meteorológico Nacional. Available online: https://smn.conagua.gob.mx/es/ (accessed on 28 March 2023).
- Vázquez Aguirre, J.L.; Cervantes Pérez, J.; Villa Falfán, C.; Quiroz Aparicio, C.; de Guillén Cadena, M.J.; Sánchez Martínez, Ó.; Arellano Palacios, J.; Ybañez Hernández, S.S.; García Rosas, R.; López Badillo, C. Diagnóstico de Vulnerabilidad Presente y Futura a Los Impactos de Cambio Climático de Los Tres Subsectores de Producción Agroalimentaria En Dos Regiones de La República Mexicana Informe Final; Deutsche Gesellschaft für Internationale Zusammenarbeit (GIZ) GmbH: México city, México, 2019. [Google Scholar]
- Vázquez Aguirre, J.L.; Brunet, M.; Jones, D.P. Cambios Observados En Los Extremos Climáticos de Temperatura y Precipitación En El Estado de Veracruz, México a Partir de Datos Diarios. Asoc. Española Climatol. 2008, A6, 447–456. [Google Scholar]
- Deras Flores, H. Guía Técnica. El Cultivo Del Maíz. Available online: http://repiica.iica.int/docs/b3469e/b3469e.pdf (accessed on 16 May 2022).
- Alexander, L.; Herold, N.; Goldie, J.; Bador, M. Climpact (Version 3.1.3). Available online: https://ccrc-extremes.shinyapps.io/climpact/ (accessed on 22 March 2023).
- Vázquez-Aguirre, J.L.; Universidad Veracruzana, Xalapa, México. Personal Comunication, 2022.
- Chattopadhyay, S.; Edwards, D. Long-Term Trend Analysis of Precipitation and Air Temperature for Kentucky, United States. Climate 2016, 4, 10. [Google Scholar] [CrossRef]
- Subba, S.; Ma, Y.; Ma, W. Spatial and Temporal Analysis of Precipitation Extremities of Eastern Nepal in the Last Two Decades (1997–2016). J. Geophys. Res. Atmos. 2019, 124, 7523–7539. [Google Scholar] [CrossRef]
- WMO. El Estado Del Clima En América Latina y El Caribe 2020; WMO: Genève, Suiza, 2020; ISBN 9789263312723. [Google Scholar]
- Eyhérabide, G.H. Bases Para El Manejo Del Cultivo de Maíz; INTA: Buenos Aires, Argentina, 2015; ISBN 978-987-679-141-0. [Google Scholar]
- Hong, Y.; Ying, S. Characteristics of Extreme Temperature and Precipitation in China in 2017 Based on ETCCDI Indices. Adv. Clim. Chang. Res. 2018, 9, 218–226. [Google Scholar] [CrossRef]
- Shepherd, T.G. Bringing Physical Reasoning into Statistical Practice in Climate-Change Science. Clim. Chang. 2021, 169, 1–19. [Google Scholar] [CrossRef]
- Ahumada Cervantes, R.; Velázquez Angulo, G.; Flores Tavizón, E.; Romero González, J. Impactos Potenciales Del Cambio Climático En La Producción de Maíz. Investig. Cienc. 2014, 22, 48–53. [Google Scholar]
- Valdés-Rodríguez, O.A.; Salas-Martínez, F.; Palacios-Wassenaar, O.M. Hydrometeorological Hazards on Crop Production in the State of Veracruz, Mexico. Atmosphere 2023, 14, 287. [Google Scholar] [CrossRef]
- CENAPRED, (Centro Nacional de Prevención de Desastres). Sistema de Consulta DeDeclaratoria. Available online: http://www.atlasnacionalderiesgos.gob.mx/apps/Declaratorias/ (accessed on 4 April 2023).
- Rincón-Tuexi, J.A.; Castro-Nava, S.; López-Santillán, J.A.; Huerta, A.J.; Trejo-López, C.; Briones-Encinia, F. Temperatura Alta y Estrés Hídrico Durante La Floración En Poblaciones de Maíz Tropical. Phyton Int. J. Exp. Bot. 2006, 75, 31–40. [Google Scholar]
Index | Long Name | Definition | Unit | Justification |
---|---|---|---|---|
Rx5day | Maximum 5-day precipitation total. | Maximum amount of rain that falls in five consecutive days. | mm | Maize is susceptible to drought, causing loss of young plants, stagnant growth, or affecting yield, depending on the stage of the drought event. Likewise, saturated and oversaturated soils can damage crops, especially at high temperatures. |
PRCPTOT | Annual total wet-day precipitation. | Sum of daily PR is greater than or equal to 1.0 mm. | mm | |
SPI6 | Standardized Precipitation Index on a six-month time scale. | A drought measure specified as a precipitation deficit | unitless | |
R20mm | Number of very heavy rain days. | Number of days when PR is greater than or equal to 20 mm. | days | |
TXx | Extreme maximum temperature. | Warmest Daily TX/Hottest Day | °C | High temperatures are a condition that favors insect-pests expansion. In addition, it is a factor causing the losses of stored grains. Temperatures below 14 °C and above 26 °C are unsuitable for maize. |
TNn | Extreme minimum temperature. | Coldest daily TN/Coldest night | °C | |
TXgt50p | Percentage of days with temperature above the median. | Percentage of days where TX is greater than the 50th percentile | % | |
TXge35 | Maximum temperature of at least 35 °C. | Number of days when TX is greater than or equal to 35 °C | days |
Station ID | Municipality | Maximum 5-Day Precipitation Total (mm) (Rx5day) mm/Decade | Annual Total Wet-Day Precipitation (PRCPTOT) mm/Decade | Number of Days When Precipitation is Greater than or Equal to 20 mm (R20mm) Day/Decade |
---|---|---|---|---|
30011 | Ángel R. Cabada | 19.9 | −0.4 | −0.9 |
30012 | Atzalan | −0.1 | 81.0 | 0 |
30025 | Cosamaloapan de Carpio | 13.6 | −32.82 | 0 |
30035 | Hueyapan de Ocampo | 1.6 | −12.9 | 0 |
30056 | Medellín | −14.3 | −40.7 | −1.1 |
30058 | Espinal | 5.9 | −26.8 | −0.5 |
30068 | Actopan | −9 | −10.4 | −0.8 |
30081 | San Juan Evangelista | −11.3 | −92.7 | 0 |
30090 | Jesús Carranza | −14.7 | −162.9 * | −2.2 |
30093 | Paso de Ovejas | 0.7 | 6.7 | 0.4 |
30102 | Martínez de la Torre | 6.8 | 21.1 | 0.8 |
30114 | Naolinco | 20.5 | 50.5 | 0.3 |
30117 | Cosamaloapan de Carpio | 1.7 | 48.3 | 0.6 |
30152 | Isla | 13.6 | 40.0 | 0 |
30158 | Actopan | 3.4 | −11.2 | −0.9 |
30189 | Santiago Tuxtla | 19.5 | 4.3 | −0.3 |
30193 | La Antigua | −5.2 | −38.8 | −0.7 |
Station ID | Municipality | Extreme Maximum Temperature (TXx) °C/Decade | Extreme Minimum Temperature (TNn) °C/Decade | Percentage of Days with Temperature above the Median (TXgt50p) %/Decade | Maximum Temperature of at Least 35 °C (TXge35) Day/Decade |
---|---|---|---|---|---|
30011 | Ángel R. Cabada | 0 | 0 | 1.3 | −0.4 |
30012 | Atzalan | −1.1 * | −0.9 | −0.4 | 0 |
30025 | Cosamaloapan de Carpio | 0 | 0 | 5.3 * | 13.3 |
30035 | Hueyapan de Ocampo | 0 | −0.7 * | 3.7 * | 2.5 |
30056 | Medellín | 0 | 0 | 2.0 | −1.1 |
30093 | Paso de Ovejas | 0.4 | 0.3 | 7.2 * | 18.2 |
30102 | Martínez de la Torre | 0.7 | 0 | 4.0 * | 17.1 |
30167 | Las Choapas | 1.1 | −0.3 | 8.6 * | 29.6 |
30193 | La Antigua | 0 | 0.3 | 2.7 | 3.8 |
Disclaimer/Publisher’s Note: The statements, opinions and data contained in all publications are solely those of the individual author(s) and contributor(s) and not of MDPI and/or the editor(s). MDPI and/or the editor(s) disclaim responsibility for any injury to people or property resulting from any ideas, methods, instructions or products referred to in the content. |
© 2023 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Villa-Falfán, C.; Valdés-Rodríguez, O.A.; Vázquez-Aguirre, J.L.; Salas-Martínez, F. Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico. Atmosphere 2023, 14, 778. https://doi.org/10.3390/atmos14050778
Villa-Falfán C, Valdés-Rodríguez OA, Vázquez-Aguirre JL, Salas-Martínez F. Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico. Atmosphere. 2023; 14(5):778. https://doi.org/10.3390/atmos14050778
Chicago/Turabian StyleVilla-Falfán, Citlali, Ofelia Andrea Valdés-Rodríguez, Jorge Luis Vázquez-Aguirre, and Fernando Salas-Martínez. 2023. "Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico" Atmosphere 14, no. 5: 778. https://doi.org/10.3390/atmos14050778
APA StyleVilla-Falfán, C., Valdés-Rodríguez, O. A., Vázquez-Aguirre, J. L., & Salas-Martínez, F. (2023). Climate Indices and Their Impact on Maize Yield in Veracruz, Mexico. Atmosphere, 14(5), 778. https://doi.org/10.3390/atmos14050778