Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment
Abstract
:1. Introduction
2. Materials and Methods
2.1. Study Area and Data
2.2. Evaluation of Drought
2.3. Recognition of Drought Events and Analysis of Drought Characteristics
2.4. Drought Propagation Time Based on Time-Lag Cross-Correlation Analysis
2.5. Mann–Kendall Test Method
3. Results
3.1. Simulation and Validation of Probability Distributions for the SRI and SWI
3.2. Analysis of Drought Indices and Drought Characteristics
3.3. Drought Propagation: Going from Meteorological to Hydrological Drought
3.4. Mann–Kendall Test for Drought Indices
4. Discussion
4.1. The Change Point of a Changing Environment
4.2. Drought Characteristics before and after a Changed Environment
4.3. Propagation of Meteorological to Hydrological Drought before and after a Changing Environment
4.4. Extension Opportunities
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Chen, H.; Sun, J. Changes in Drought Characteristics over China Using the Standardized Precipitation Evapotranspiration Index. J. Clim. 2015, 28, 5430–5447. [Google Scholar] [CrossRef]
- Wong, G.; van Lanen, H.A.J.; Torfs, P.J.J.F. Probabilistic Analysis of Hydrological Drought Characteristics Using Meteorological Drought. Hydrol. Sci. J. 2013, 58, 253–270. [Google Scholar] [CrossRef]
- Peng, J.; Dadson, S.; Hirpa, F.; Dyer, E.; Lees, T.; Miralles, D.G.; Vicente-Serrano, S.M.; Funk, C. A Pan-African High-Resolution Drought Index Dataset. Earth Syst. Sci. Data 2020, 12, 753–769. [Google Scholar] [CrossRef]
- Guo, Y.; Huang, S.; Huang, Q.; Wang, H.; Fang, W.; Yang, Y.; Wang, L. Assessing Socioeconomic Drought Based on an Improved Multivariate Standardized Reliability and Resilience Index. J. Hydrol. 2019, 568, 904–918. [Google Scholar] [CrossRef]
- Zhang, C.; Tang, Q.; Chen, D.; Li, L.; Liu, X.; Cui, H. Tracing Changes in Atmospheric Moisture Supply to the Drying Southwest China. Atmos. Chem. Phys. 2017, 17, 10383–10393. [Google Scholar] [CrossRef]
- Zeng, P.; Sun, F.Y.; Liu, Y.Y.; Wang, Y.; Li, G.; Che, Y. Mapping future droughts under global warming across China: A combined multi-timescale meteorological drought index and SOM-K means approach. Weather Clim. Extrem. 2021, 31, 100304. [Google Scholar] [CrossRef]
- Hao, C.; Zhang, J.; Yao, F. Combination of Multi-Sensor Remote Sensing Data for Drought Monitoring over Southwest China. Int. J. Appl. Earth Obs. Geoinf. 2015, 35, 270–283. [Google Scholar] [CrossRef]
- Mishra, A.K.; Singh, V.P. A Review of Drought Concepts. J. Hydrol. 2010, 391, 202–216. [Google Scholar] [CrossRef]
- Wilhite, D.A. (Ed.) Drought and Water Crises; CRC Press: Boca Raton, FL, USA, 2005; ISBN 978-1-4200-2838-6. [Google Scholar]
- Heim, R.R. A Review of Twentieth-Century Drought Indices Used in the United States. Bull. Am. Meteorol. Soc. 2002, 83, 1149–1166. [Google Scholar] [CrossRef]
- Wilhite, D.A.; Glantz, M.H. Understanding: The Drought Phenomenon: The Role of Definitions. Water Int. 1985, 10, 111–120. [Google Scholar] [CrossRef] [Green Version]
- Li, R.; Chen, N.; Zhang, X.; Zeng, L.; Wang, X.; Tang, S.; Li, D.; Niyogi, D. Quantitative Analysis of Agricultural Drought Propagation Process in the Yangtze River Basin by Using Cross Wavelet Analysis and Spatial Autocorrelation. Agric. For. Meteorol. 2020, 280, 107809. [Google Scholar] [CrossRef]
- Yuan, X.; Zhang, M.; Wang, L.; Zhou, T. Understanding and Seasonal Forecasting of Hydrological Drought in the Anthropocene. Hydrol. Earth Syst. Sci. 2017, 21, 5477–5492. [Google Scholar] [CrossRef]
- Hao, Z.; Singh, V.P.; Xia, Y. Seasonal Drought Prediction: Advances, Challenges, and Future Prospects. Rev. Geophys. 2018, 56, 108–141. [Google Scholar] [CrossRef]
- Li, J.; Zhou, S.; Hu, R. Hydrological Drought Class Transition Using SPI and SRI Time Series by Loglinear Regression. Water Resour. Manag. 2016, 30, 669–684. [Google Scholar] [CrossRef]
- Shukla, S.; Wood, A.W. Use of a Standardized Runoff Index for Characterizing Hydrologic Drought. Geophys. Res. Lett. 2008, 35, L02405. [Google Scholar] [CrossRef]
- McKee, T.B.; Doesken, N.J.; Kleist, J. The relationship of drought frequency and duration to time scale. Eighth Conf. Appl. Climatol. Anaheim Calif. 1993, 17, 179–184. [Google Scholar]
- Barker, L.J.; Hannaford, J.; Chiverton, A.; Svensson, C. From Meteorological to Hydrological Drought Using Standardised Indicators. Hydrol. Earth Syst. Sci. 2016, 20, 2483–2505. [Google Scholar] [CrossRef]
- Lorenzo-Lacruz, J.; Vicente-Serrano, S.; González-Hidalgo, J.; López-Moreno, J.; Cortesi, N. Hydrological Drought Response to Meteorological Drought in the Iberian Peninsula. Clim. Res. 2013, 58, 117–131. [Google Scholar] [CrossRef]
- Sun, P.; Zhang, Q.; Singh, V.P.; Xiao, M.; Zhang, X. Transitional Variations and Risk of Hydro-Meteorological Droughts in the Tarim River Basin, China. Stoch. Environ. Res. Risk Assess. 2017, 31, 1515–1526. [Google Scholar] [CrossRef]
- Huang, S.; Li, P.; Huang, Q.; Leng, G.; Hou, B.; Ma, L. The Propagation from Meteorological to Hydrological Drought and Its Potential Influence Factors. J. Hydrol. 2017, 547, 184–195. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, X.; Wang, X.; Hao, Z.; Singh, V.P.; Hao, F. Propagation from Meteorological Drought to Hydrological Drought under the Impact of Human Activities: A Case Study in Northern China. J. Hydrol. 2019, 579, 124147. [Google Scholar] [CrossRef]
- Zhang, X.; Hao, Z.; Singh, V.P.; Zhang, Y.; Feng, S.; Xu, Y.; Hao, F. Drought Propagation under Global Warming: Characteristics, Approaches, Processes, and Controlling Factors. Sci. Total Environ. 2022, 838, 156021. [Google Scholar] [CrossRef]
- Waylen, P.; Annear, C.; Bunting, E. Interannual Hydroclimatic Variability of the Lake Mweru Basin, Zambia. Water 2019, 11, 1801. [Google Scholar] [CrossRef]
- Beklioğlu, M.; Bucak, T.; Coppens, J.; Bezirci, G.; Tavşanoğlu, Ü.N.; Çakıroğlu, A.İ.; Levi, E.E.; Erdoğan, Ş.; Filiz, N.; Özkan, K.; et al. Restoration of Eutrophic Lakes with Fluctuating Water Levels: A 20-Year Monitoring Study of Two Inter-Connected Lakes. Water 2017, 9, 127. [Google Scholar] [CrossRef]
- Wantzen, K.M.; Rothhaupt, K.-O.; Mörtl, M.; Cantonati, M.; G.-Tóth, L.; Fischer, P. Ecological Effects of Water-Level Fluctuations in Lakes: An Urgent Issue. Hydrobiologia 2008, 613, 1–4. [Google Scholar] [CrossRef]
- Gubiani, É.A.; Thomaz, S.M.; Bini, L.M.; Piana, P.A. Metapopulation Models Predict the Temporal Response of Two Macrophytes to Drought in a Subtropical Water Reservoir. Ecol. Eng. 2017, 100, 1–7. [Google Scholar] [CrossRef]
- Bond, N.R.; Lake, P.S.; Arthington, A.H. The Impacts of Drought on Freshwater Ecosystems: An Australian Perspective. Hydrobiologia 2008, 600, 3–16. [Google Scholar] [CrossRef]
- Havens, K.E.; East, T.L.; Beaver, J.R. Zooplankton Response to Extreme Drought in a Large Subtropical Lake. Hydrobiologia 2007, 589, 187–198. [Google Scholar] [CrossRef]
- Sobhani, B.; Zengir, V.S.; Kianian, M.K. Drought Monitoring in the Lake Urmia Basin in Iran. Arab. J. Geosci. 2019, 12, 448. [Google Scholar] [CrossRef]
- Perales, K.M.; Hein, C.L.; Lottig, N.R.; Vander Zanden, M.J. Lake Water Level Response to Drought in a Lake-Rich Region Explained by Lake and Landscape Characteristics. Can. J. Fish. Aquat. Sci. 2020, 77, 1836–1845. [Google Scholar] [CrossRef]
- Erdem, F.; Atun, R.; Yigit Avdan, Z.; Atila, I.; Avdan, U. Drought Analysis of Van Lake Basin with Remote Sensing and GIS Technologies. Egypt. J. Remote Sens. Space Sci. 2021, 24, 1093–1102. [Google Scholar] [CrossRef]
- Jitariu, V.; Dorosencu, A.; Ichim, P.; Ion, C. Severe Drought Monitoring by Remote Sensing Methods and Its Impact on Wetlands Birds Assemblages in Nuntași and Tuzla Lakes (Danube Delta Biosphere Reserve). Land 2022, 11, 672. [Google Scholar] [CrossRef]
- Wang, F.; Wang, Z.; Yang, H.; Di, D.; Zhao, Y.; Liang, Q.; Hussain, Z. Comprehensive Evaluation of Hydrological Drought and Its Relationships with Meteorological Drought in the Yellow River Basin, China. J. Hydrol. 2020, 584, 124751. [Google Scholar] [CrossRef]
- Yevjevich, V. An Objective Approach to Definitions and Investigations of Continental Hydrologic Droughts. J. Hydrol. 1969, 7, 353. [Google Scholar] [CrossRef]
- Wu, J.; Yao, H.; Chen, X.; Wang, G.; Bai, X.; Zang, D. A framework for assessing compound drought events from a drought propagation perspective. J. Hydrol. 2022, 604, 127228. [Google Scholar] [CrossRef]
- Yang, F.; Duan, X.; Guo, Q.; Lu, S.; Hsu, K. The spatiotemporal variations and propagation of droughts in Plateau Mountains of China. Sci. Total Environ. 2022, 805, 150257. [Google Scholar] [CrossRef]
- Shadmani, M.; Marofi, S.; Roknian, M. Trend Analysis in Reference Evapotranspiration Using Mann-Kendall and Spearman’s Rho Tests in Arid Regions of Iran. Water Resour. Manag. 2012, 26, 211–224. [Google Scholar] [CrossRef]
- Kendall, M.G. Rank Correlation Methods; Griffin: Oxford, UK, 1948. [Google Scholar]
- Han, Q.; Zhou, L.; Sun, W.; Wang, G.; Shrestha, S.; Xue, B.; Li, Z. Assessing Alterations of Water Level Due to Environmental Water Allocation at Multiple Temporal Scales and Its Impact on Water Quality in Baiyangdian Lake, China. Environ. Res. 2022, 212, 113366. [Google Scholar] [CrossRef]
- López-Moreno, J.I.; Vicente-Serrano, S.M.; Beguería, S.; García-Ruiz, J.M.; Portela, M.M.; Almeida, A.B. Dam effects on droughts magnitude and duration in a transboundary basin: The Lower River Tagus, Spain and Portugal. Water Resour. Res. 2009, 45, W02405. [Google Scholar] [CrossRef]
- Wen, L.; Rogers, K.; Ling, J.; Saintilan, N. The impacts of river regulation and water diversion on the hydrological drought characteristics in the Lower Murrumbidgee River Australia. J. Hydrol. 2011, 405, 382–391. [Google Scholar] [CrossRef]
Grade | SPI/SRI/SWI | Drought Grade |
---|---|---|
1 | >−0.5 | Normal |
2 | −1.0~−0.5 | Slight |
3 | −1.5~−1.0 | Moderate |
4 | −2.0~–1.5 | Severe |
5 | <−2.0 | Extreme |
Distribution Pattern | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10 | 11 | 12 | |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|
Runoff: Xidayang Reservoir | Normal | − | − | − | − | − | − | − | − | − | − | − | − |
Log-normal | + | + | − | − | + | + | + | + | + | + | + | + | |
Exponential | − | − | − | − | − | − | − | − | − | − | − | − | |
Poisson | − | − | − | − | − | − | − | − | − | − | − | − | |
Gamma | + | + | − | − | + | + | + | + | + | + | + | + | |
Weibull | + | + | + | + | + | + | + | + | + | + | + | + | |
Runoff: Wangkuai Reservoir | Normal | − | − | − | − | − | − | − | − | − | − | − | − |
Log-normal | + | + | + | + | + | + | + | + | + | + | + | + | |
Exponential | − | − | − | − | − | + | + | + | + | − | − | − | |
Poisson | − | − | − | − | − | − | − | − | − | − | − | − | |
Gamma | + | + | + | + | + | + | + | + | + | + | + | + | |
Weibull | + | + | + | + | + | + | + | + | + | + | + | + | |
Water level | Normal | − | − | − | − | − | − | − | − | − | − | − | − |
Log-normal | + | + | + | + | + | + | + | + | + | + | + | + | |
Exponential | − | − | − | + | + | + | + | + | + | − | − | − | |
Poisson | − | − | − | − | − | − | − | − | − | − | − | − | |
Gamma | + | + | + | + | + | + | + | + | + | + | + | + | |
Weibull | + | + | + | + | + | + | + | + | + | + | + | + |
Month | Log-Normal Distribution | Gamma Distribution | Weibull Distribution | |||||||
---|---|---|---|---|---|---|---|---|---|---|
dn | Correlation Coefficient | Nash Coefficient | dn | Correlation Coefficient | Nash Coefficient | dn | Correlation Coefficient | Nash Coefficient | ||
Runoff: Xidayang Reservoir | 1 | 0.072 | 0.996 | 0.992 | 0.052 | 0.997 | 0.992 | 0.090 | 0.994 | 0.982 |
2 | 0.051 | 0.996 | 0.992 | 0.046 | 0.998 | 0.994 | 0.077 | 0.995 | 0.979 | |
3 | – | – | – | – | – | – | 0.101 | 0.994 | 0.984 | |
4 | – | – | – | – | – | – | 0.086 | 0.994 | 0.979 | |
5 | 0.061 | 0.994 | 0.989 | 0.065 | 0.995 | 0.990 | 0.086 | 0.993 | 0.983 | |
6 | 0.103 | 0.991 | 0.967 | 0.096 | 0.993 | 0.973 | 0.108 | 0.990 | 0.960 | |
7 | 0.065 | 0.997 | 0.991 | 0.088 | 0.992 | 0.978 | 0.104 | 0.989 | 0.971 | |
8 | 0.091 | 0.993 | 0.980 | 0.165 | 0.973 | 0.909 | 0.145 | 0.976 | 0.920 | |
9 | 0.112 | 0.995 | 0.985 | 0.163 | 0.984 | 0.949 | 0.167 | 0.979 | 0.930 | |
10 | 0.044 | 0.998 | 0.996 | 0.069 | 0.997 | 0.987 | 0.101 | 0.994 | 0.966 | |
11 | 0.065 | 0.994 | 0.987 | 0.065 | 0.996 | 0.989 | 0.088 | 0.996 | 0.975 | |
12 | 0.068 | 0.994 | 0.989 | 0.067 | 0.997 | 0.991 | 0.090 | 0.997 | 0.978 | |
Runoff: Wangkuai Reservoir | 1 | 0.087 | 0.994 | 0.985 | 0.061 | 0.997 | 0.992 | 0.084 | 0.994 | 0.981 |
2 | 0.096 | 0.990 | 0.975 | 0.080 | 0.995 | 0.988 | 0.098 | 0.994 | 0.979 | |
3 | 0.084 | 0.993 | 0.985 | 0.047 | 0.998 | 0.996 | 0.063 | 0.998 | 0.992 | |
4 | 0.095 | 0.987 | 0.957 | 0.047 | 0.998 | 0.996 | 0.042 | 0.999 | 0.997 | |
5 | 0.088 | 0.991 | 0.977 | 0.043 | 0.997 | 0.994 | 0.046 | 0.997 | 0.994 | |
6 | 0.115 | 0.989 | 0.978 | 0.068 | 0.996 | 0.987 | 0.066 | 0.996 | 0.989 | |
7 | 0.088 | 0.992 | 0.982 | 0.066 | 0.996 | 0.989 | 0.068 | 0.996 | 0.989 | |
8 | 0.063 | 0.995 | 0.989 | 0.087 | 0.995 | 0.982 | 0.079 | 0.996 | 0.988 | |
9 | 0.071 | 0.994 | 0.987 | 0.056 | 0.998 | 0.992 | 0.061 | 0.997 | 0.991 | |
10 | 0.126 | 0.985 | 0.964 | 0.080 | 0.996 | 0.991 | 0.058 | 0.997 | 0.994 | |
11 | 0.088 | 0.988 | 0.969 | 0.056 | 0.996 | 0.991 | 0.081 | 0.996 | 0.991 | |
12 | 0.109 | 0.984 | 0.953 | 0.066 | 0.994 | 0.985 | 0.056 | 0.998 | 0.994 | |
Water level | 1 | 0.115 | 0.969 | 0.933 | 0.115 | 0.973 | 0.941 | 0.095 | 0.987 | 0.968 |
2 | 0.114 | 0.970 | 0.931 | 0.114 | 0.973 | 0.941 | 0.104 | 0.985 | 0.966 | |
3 | 0.131 | 0.967 | 0.915 | 0.132 | 0.970 | 0.928 | 0.120 | 0.985 | 0.967 | |
4 | 0.122 | 0.966 | 0.897 | 0.121 | 0.971 | 0.916 | 0.114 | 0.991 | 0.980 | |
5 | 0.134 | 0.972 | 0.908 | 0.133 | 0.977 | 0.928 | 0.118 | 0.993 | 0.986 | |
6 | 0.111 | 0.984 | 0.962 | 0.109 | 0.987 | 0.971 | 0.082 | 0.995 | 0.988 | |
7 | 0.114 | 0.979 | 0.946 | 0.113 | 0.982 | 0.957 | 0.089 | 0.993 | 0.986 | |
8 | 0.071 | 0.995 | 0.990 | 0.067 | 0.996 | 0.992 | 0.105 | 0.994 | 0.983 | |
9 | 0.101 | 0.988 | 0.975 | 0.095 | 0.989 | 0.979 | 0.063 | 0.994 | 0.986 | |
10 | 0.106 | 0.985 | 0.968 | 0.101 | 0.987 | 0.972 | 0.095 | 0.993 | 0.982 | |
11 | 0.115 | 0.978 | 0.952 | 0.107 | 0.981 | 0.959 | 0.073 | 0.992 | 0.980 | |
12 | 0.114 | 0.973 | 0.942 | 0.108 | 0.977 | 0.950 | 0.086 | 0.990 | 0.974 |
Timescale (n) | SPI-n and SRI-1xi | SPI-n and SRI-1wang | SRI-nxi and SWI-1 | SRI-nwang and SWI-1 | SPI-n and SWI-1 |
---|---|---|---|---|---|
1 | 0.526 | 0.500 | 0.406 | 0.305 | 0.008 |
2 | 0.601 | 0.586 | 0.480 | 0.386 | 0.077 |
3 | 0.610 | 0.607 | 0.518 | 0.427 | 0.128 |
4 | 0.592 | 0.605 | 0.545 | 0.458 | 0.171 |
5 | 0.561 | 0.589 | 0.570 | 0.487 | 0.215 |
6 | 0.529 | 0.567 | 0.593 | 0.515 | 0.263 |
7 | 0.491 | 0.533 | 0.614 | 0.540 | 0.317 |
8 | 0.452 | 0.487 | 0.630 | 0.561 | 0.379 |
9 | 0.404 | 0.422 | 0.634 | 0.570 | 0.451 |
10 | 0.338 | 0.331 | 0.632 | 0.571 | 0.537 |
11 | 0.300 | 0.260 | 0.626 | 0.567 | 0.616 |
12 | 0.368 | 0.301 | 0.620 | 0.562 | 0.626 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
He, S.; Zhang, E.; Huo, J.; Yang, M. Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment. Atmosphere 2022, 13, 1531. https://doi.org/10.3390/atmos13091531
He S, Zhang E, Huo J, Yang M. Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment. Atmosphere. 2022; 13(9):1531. https://doi.org/10.3390/atmos13091531
Chicago/Turabian StyleHe, Shan, Enze Zhang, Junjun Huo, and Mingzhi Yang. 2022. "Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment" Atmosphere 13, no. 9: 1531. https://doi.org/10.3390/atmos13091531
APA StyleHe, S., Zhang, E., Huo, J., & Yang, M. (2022). Characteristics of Propagation of Meteorological to Hydrological Drought for Lake Baiyangdian in a Changing Environment. Atmosphere, 13(9), 1531. https://doi.org/10.3390/atmos13091531