Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Sites and Sample Collection
2.2. Analysis Methods
2.3. Data Analysis
3. Results and Discussion
3.1. Seasonal Variation of PM1 Mass Concentrations
3.2. Morphology Properties
3.3. Characteristics of PTEs
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, X.P.; Cheng, X.M. Energy consumption, carbon emissions, and economic growth in China. Ecol. Econ. 2009, 68, 2706–2712. [Google Scholar] [CrossRef]
- Zhang, J.F.; Mauzerall, D.L.; Zhu, T.; Liang, S.; Ezzati, M.; Remais, J.V. Environmental health in China: Progress towards clean air and safe water. Lancet 2010, 375, 1110–1119. [Google Scholar] [CrossRef]
- Guo, Y.M.; Li, S.S.; Tian, Z.X.; Pan, X.C.; Zhang, J.L.; Williams, G. The burden of air pollution on years of life lost in Beijing, China, 2004–2008: Retrospective regression analysis of daily deaths. BMJ Br. Med. J. 2013, 347, f7139. [Google Scholar] [CrossRef] [PubMed]
- Wang, S.J.; Fang, C.L.; Guan, X.L.; Pang, B.; Ma, H.T. Urbanisation, energy consumption, and carbon dioxide emissions in China: A panel data analysis of China’s provinces. Appl. Energy 2014, 136, 738–749. [Google Scholar] [CrossRef]
- Chen, G.B.; Knibbs, L.D.; Zhang, W.Y.; Li, S.S.; Cao, W.; Guo, J.P.; Ren, H.Y.; Wang, B.G.; Wang, H.; Williams, G.; et al. Estimating spatiotemporal distribution of PM1 concentrations in China with satellite remote sensing, meteorology, and land use information. Environ. Pollut. 2018, 233, 1086–1094. [Google Scholar] [CrossRef]
- Singh, A.; Dey, S. Influence of aerosol composition on visibility in megacity Delhi. Atmos. Environ. 2012, 62, 367–373. [Google Scholar] [CrossRef]
- Han, X.; Zhang, M.G.; Tao, J.H.; Wang, L.L.; Gao, J.; Wang, S.L.; Chai, F.H. Modeling aerosol impacts on atmospheric visibility in Beijing with RAMS-CMAQ. Atmos. Environ. 2013, 72, 177–191. [Google Scholar] [CrossRef]
- Lee, K.H.; Wong, M.S.; Kim, K.; Park, S.S. Analytical approach to estimating aerosol extinction and visibility from satellite observations. Atmos. Environ. 2014, 91, 127–136. [Google Scholar] [CrossRef]
- Chen, Z.; Wang, J.N.; Ma, G.X.; Zhang, Y.S. China tackles the health effects of air pollution. Lancet 2013, 382, 1959–1960. [Google Scholar] [CrossRef]
- Hu, Y.J. Environmental Behavior and Human Inhalation Exposure of Particles and Typical Organic Contaminants in Indoor and Outdoor Air. Ph.D. Thesis, University of Chinese Academy of Sciences, Beijing, China, 2018. (In Chinese). [Google Scholar]
- Qiao, T.; Zhao, M.F.; Xiu, G.L.; Yu, J.Z. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Sci. Total Environ. 2016, 557, 386–394. [Google Scholar] [CrossRef]
- Tan, J.H.; Duan, J.C.; Zhen, N.J.; He, K.B.; Hao, J.M. Chemical characteristics and source of size-fractionated atmospheric particle in haze episode in Beijing. Atmos. Res. 2016, 167, 24–33. [Google Scholar] [CrossRef]
- Zhang, Y.Y.; Lang, J.L.; Cheng, S.Y.; Li, S.Y.; Zhou, Y.; Chen, D.S.; Zhang, H.Y.; Wang, H.Y. Chemical composition and sources of PM1 and PM2.5 in Beijing in autumn. Sci. Total Environ. 2018, 630, 72–82. [Google Scholar] [CrossRef] [PubMed]
- Zhang, Q.; Jimenez, J.L.; Canagaratna, M.R.; Allan, J.D.; Coe, H.; Ulbrich, I.; Alfarra, M.R.; Takami, A.; Middlebrook, A.M.; Sun, Y.L.; et al. Ubiquity and dominance of oxygenated species in organic aerosols in anthropogenically-influenced Northern Hemisphere midlatitudes. Geophys. Res. Lett. 2007, 34, L13801. [Google Scholar] [CrossRef]
- Krumal, K.; Mikuska, P.; Vecera, Z. Polycyclic aromatic hydrocarbons and hopanes in PM1 aerosols in urban areas. Atmos. Environ. 2013, 67, 27–37. [Google Scholar] [CrossRef]
- Chen, G.B.; Morawska, L.; Zhang, W.Y.; Li, S.S.; Cao, W.; Ren, H.Y.; Wang, B.G.; Wang, H.; Knibbs, L.D.; Williams, G.; et al. Spatiotemporal variation of PM1 pollution in China. Atmos. Environ. 2018, 178, 198–205. [Google Scholar] [CrossRef]
- Niu, H.Y.; Hu, W.; Zhang, D.Z.; Wu, Z.J.; Guo, S.; Pian, W.; Cheng, W.J.; Hu, M. Variations of fine particle physiochemical properties during a heavy haze episode in the winter of Beijing. Sci. Total Environ. 2016, 571, 103–109. [Google Scholar] [CrossRef]
- Chen, Y.; Cao, J.J.; Huang, R.J.; Yang, F.M.; Wang, Q.Y.; Wang, Y.C. Characterization, mixing state, and evolution of urban single particles in Xi’an (China) during wintertime haze days. Sci. Total Environ. 2016, 573, 937–945. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Liu, C.; Ni, S.J.; Wang, R.; Long, Z.J. Assessment of Air Pollution around the Panzhihua V-Ti Magnetite Mine Region, Southwest China. Aerosol Air Qual. Res. 2017, 17, 1204–1213. [Google Scholar] [CrossRef]
- Lopez-Reyes, A.; Orozco-Rivera, G.; Acuna-Askar, K.; Villarreal-Chiu, J.F.; Alfaro-Barbosa, J.M. Characterization of atmospheric black carbon in particulate matter over the Monterrey metropolitan area, Mexico, using scanning electron microscopy. Air Qual. Atmos. Health 2016, 9, 223–229. [Google Scholar] [CrossRef]
- Gonzalez, L.T.; Rodriguez, F.E.L.; Sanchez-Dominguez, M.; Leyva-Porras, C.; Silva-Vidaurri, L.G.; Acuna-Askar, K.; Kharisov, B.I.; Chiu, J.F.V.; Barbosa, J.M.A. Chemical and morphological characterization of TSP and PM2.5 by SEM-EDS, XPS and XRD collected in the metropolitan area of Monterrey, Mexico. Atmos. Environ. 2016, 143, 249–260. [Google Scholar] [CrossRef]
- Gonzalez, L.T.; Rodriguez, F.E.L.; Sanchez-Dominguez, M.; Cavazos, A.; Leyva-Porras, C.; Silva-Vidaurri, L.G.; Askar, K.A.; Kharissov, B.I.; Chiu, J.F.V.; Barbosa, J.M.A. Determination of trace metals in TSP and PM2.5 materials collected in the Metropolitan Area of Monterrey, Mexico: A characterization study by XPS, ICP-AES and SEM-EDS. Atmos. Res. 2017, 196, 8–22. [Google Scholar] [CrossRef]
- Alastuey, A.; Querol, X.; Castillo, S.; Escudero, M.; Avila, A.; Cuevas, E.; Torres, C.; Romero, P.M.; Exposito, F.; Garcia, O.; et al. Characterisation of TSP and PM2.5 at Izana and Sta. Cruz de Tenerife (Canary Islands, Spain) during a Saharan Dust Episode (July 2002). Atmos. Environ. 2005, 39, 4715–4728. [Google Scholar] [CrossRef]
- Tolis, E.I.; Gkanas, E.I.; Pavlidou, E.; Skemperi, A.; Pey, J.; Perez, N.; Bartzis, J.G. Microstuctural analysis and determination of PM10 emission sources in an industrial Mediterranean city. Cent. Eur. J. Chem. 2014, 12, 1081–1090. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y. Observation of nitrate coatings on atmospheric mineral dust particles. Atmos. Chem. Phys. 2009, 9, 1863–1871. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y. Chemical Modification of Dust Particles during Different Dust Storm Episodes. Aerosol Air Qual. Res. 2012, 12, 1095–1104. [Google Scholar] [CrossRef]
- Li, W.J.; Shao, L.Y.; Shi, Z.B.; Chen, J.M.; Yang, L.X.; Yuan, Q.; Yan, C.; Zhang, X.Y.; Wang, Y.Q.; Sun, J.Y.; et al. Mixing state and hygroscopicity of dust and haze particles before leaving Asian continent. J. Geophys. Res. Atmos. 2014, 119, 1044–1059. [Google Scholar] [CrossRef]
- Cheng, X.; Huang, Y.; Long, Z.J.; Ni, S.J.; Shi, Z.M.; Zhang, C.J. Characteristics, Sources and Health Risk Assessment of Trace Metals in PM10 in Panzhihua, China. Bull. Environ. Contam. Toxicol. 2017, 98, 76–83. [Google Scholar] [CrossRef]
- Galindo, N.; Yubero, E.; Nicolas, J.F.; Varea, M.; Crespo, J. Characterization of metals in PM1 and PM10 and health risk evaluation at an urban site in the western Mediterranean. Chemosphere 2018, 201, 243–250. [Google Scholar] [CrossRef]
- Lyu, X.P.; Wang, Z.W.; Cheng, H.R.; Zhang, F.; Zhang, G.; Wang, X.M.; Ling, Z.H.; Wang, N. Chemical characteristics of submicron particulates (PM1.0) in Wuhan, Central China. Atmos. Res. 2015, 161, 169–178. [Google Scholar] [CrossRef]
- Sarti, E.; Pasti, L.; Rossi, M.; Ascanelli, M.; Pagnoni, A.; Trombini, M.; Remelli, M. The composition of PM1 and PM2.5 samples, metals and their water soluble fractions in the Bologna area (Italy). Atmos. Pollut. Res. 2015, 6, 708–718. [Google Scholar] [CrossRef]
- Zou, Y.J.; Wu, Y.Z.; Wang, Y.L.; Li, Y.S.; Jin, C.Y. Physicochemical properties, in vitro cytotoxic and genotoxic effects of PM1.0 and PM2.5 from Shanghai, China. Environ. Sci. Pollut. Res. 2017, 24, 19508–19516. [Google Scholar] [CrossRef] [PubMed]
- Cheng, X. Study on Geochemical Characteristics of Atmospheric Inhalable Particulate Matter in Panzhihua City. Ph.D. Thesis, Chengdu University of Technology, Chengdu, China, 2017. (In Chinese). [Google Scholar]
- Cheng, X.; Huang, Y.; Zhang, S.P.; Ni, S.J.; Long, Z.J. Characteristics, sources, and health risk assessment of trace elements in PM10 at an urban site in Chengdu, Southwest China. Aerosol Air Qual. Res. 2018, 18, 357–370. [Google Scholar] [CrossRef]
- Wang, J.J.; Huang, Y.; Li, T.; Shi, H.B.; He, M.; Cheng, X.; Ni, S.J.; Zhang, C.J. Annual Characteristics, Source Analysis of PM1-bound Potentially Harmful Elements in the Eastern District of Chengdu, China. Arch. Environ. Contam. Toxicol. 2020, 79, 177–183. [Google Scholar] [CrossRef] [PubMed]
- Huang, Y.; Wang, L.; Cheng, X.; Wang, J.J.; Li, T.; He, M.; Shi, H.B.; Zhang, M.; Hughes, S.S.; Ni, S.J. Characteristics of Particulate Matter at Different Pollution Levels in Chengdu, Southwest of China. Atmosphere 2021, 12, 990. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Radko, T.; Mainka, A. Fractionation of trace elements and human health risk of submicron particulate matter (PM1) collected in the surroundings of coking plants. Environ. Monit. Assess. 2017, 189, 389. [Google Scholar] [CrossRef]
- Rovelli, S.; Cattaneo, A.; Nischkauer, W.; Borghi, F.; Spinazze, A.; Keller, M.; Campagnolo, D.; Limbeck, A.; Cavallo, D.M. Toxic trace metals in size-segregated fine particulate matter: Mass concentration, respiratory deposition, and risk assessment. Environ. Pollut. 2020, 266, 115242. [Google Scholar] [CrossRef]
- Dongarra, G.; Manno, E.; Varrica, D.; Vultaggio, M. Mass levels, crustal component and trace elements in PM10 in Palermo, Italy. Atmos. Environ. 2007, 41, 7977–7986. [Google Scholar] [CrossRef]
- Fabretti, J.F.; Sauret, N.; Gal, J.F.; Maria, P.C.; Scharer, U. Elemental characterization and source identification of PM2.5 using Positive Matrix Factorization: The Malraux road tunnel, Nice, France. Atmos. Res. 2009, 94, 320–329. [Google Scholar] [CrossRef]
- Teixeira, E.C.; Meira, L.; de Santana, E.R.R.; Wiegand, F. Chemical Composition of PM10 and PM2.5 and Seasonal Variation in South Brazil. Water Air Soil Pollut. 2009, 199, 261–275. [Google Scholar] [CrossRef]
- Clements, N.; Eav, J.; Xie, M.J.; Hannigan, M.P.; Miller, S.L.; Navidi, W.; Peel, J.L.; Schauer, J.J.; Shafer, M.M.; Milford, J.B. Concentrations and source insights for trace elements in fine and coarse particulate matter. Atmos. Environ. 2014, 89, 373–381. [Google Scholar] [CrossRef]
- Enamorado-Baez, S.M.; Gomez-Guzman, J.M.; Chamizo, E.; Abril, J.M. Levels of 25 trace elements in high-volume air filter samples from Seville (2001-2002): Sources, enrichment factors and temporal variations. Atmos. Res. 2015, 155, 118–129. [Google Scholar] [CrossRef]
- Zajusz-Zubek, E.; Kaczmarek, K.; Mainka, A. Trace Elements Speciation of Submicron Particulate Matter (PM1) Collected in the Surroundings of Power Plants. Int. J. Environ. Res. Public Health 2015, 12, 13085–13103. [Google Scholar] [CrossRef] [PubMed]
- Yue, J.J.; Palmiero, R.; Han, Y.Y.; Wang, Y.; Li, Q.Q.; Zhang, T.Y.; Sun, M.Q.; Wang, H.; Yu, G.P.; Yi, X.L.; et al. Characterization of PM1-Bound Metallic Elements in the Ambient Air at a High Mountain Site in Northern China. Aerosol Air Qual. Res. 2018, 18, 2967–2981. [Google Scholar] [CrossRef]
- Wang, K.; Wang, W.Y.; Li, L.L.; Li, J.J.; Wei, L.L.; Chi, W.Q.; Hong, L.J.; Zhao, Q.L.; Jiang, J.Q. Seasonal concentration distribution of PM1.0 and PM2.5 and a risk assessment of bound trace metals in Harbin, China: Effect of the species distribution of heavy metals and heat supply. Sci Rep. 2020, 10, 8160. [Google Scholar] [CrossRef]
- Zhao, P.D.; Lu, G.F.; Liu, Q.H. The natural background values of some elements in the soil of the city of Du Kou. J. Nanjing Univ. Nat. Sci. 1985, 21, 166–176. (In Chinese) [Google Scholar]
- Hu, X.; Ding, Z.H.; Zhang, Y.; Sun, Y.Y.; Wu, J.C.; Chen, Y.J.; Lian, H.Z. Size Distribution and Source Apportionment of Airborne Metallic Elements in Nanjing, China. Aerosol Air Qual. Res. 2013, 13, 1796–1806. [Google Scholar] [CrossRef]
- Li, Y.P.; Zhang, Z.S.; Liu, H.F.; Zhou, H.; Fan, Z.Y.; Lin, M.; Wu, D.L.; Xia, B.C. Characteristics, sources and health risk assessment of toxic heavy metals in PM2.5 at a megacity of southwest China. Environ. Geochem. Health 2016, 38, 353–362. [Google Scholar] [CrossRef]
- Wang, F.; Zhou, Y.Y.; Meng, D.; Han, M.M.; Jia, C.Q. Heavy metal characteristics and health risk assessment of PM2.5 in three residential homes during winter in Nanjing, China. Build. Environ. 2018, 143, 339–348. [Google Scholar] [CrossRef]
- Wang, F.; Wang, J.; Han, M.M.; Jia, C.Q.; Zhou, Y.Y. Heavy metal characteristics and health risk assessment of PM2.5 in students’ dormitories in a university in Nanjing, China. Build. Environ. 2019, 160, 106206. [Google Scholar] [CrossRef]
- Li, P.H.; Yu, J.; Bi, C.L.; Yue, J.J.; Li, Q.Q.; Wang, L.; Liu, J.P.; Xiao, Z.M.; Guo, L.Q.; Huang, B.J. Health risk assessment for highway toll station workers exposed to PM2.5-bound heavy metals. Atmos. Pollut. Res. 2019, 10, 1024–1030. [Google Scholar] [CrossRef]
- Wu, L.C.; Luo, X.S.; Li, H.B.; Cang, L.; Yang, J.; Yang, J.L.; Zhao, Z.; Tang, M.W. Seasonal Levels, Sources, and Health Risks of Heavy Metals in Atmospheric PM2.5 from Four Functional Areas of Nanjing City, Eastern China. Atmosphere 2019, 10, 419. [Google Scholar] [CrossRef]
- Yang, H.J.; Yang, D.R.; Ye, Z.X.; Zhang, H.D.; Ma, X.K.; Tang, Z.Y.; Mao, D.Y. Characteristics of elements and potential ecological risk assessment of heavy metals in PM2.5 at the southwest suburb of Chengdu in spring. Environ. Sci. 2016, 37, 4490–4503. (In Chinese) [Google Scholar]
- Huang, Y.; Wang, L.; Zhang, S.P.; Zhang, M.; Wang, J.J.; Cheng, X.; Li, T.; He, M.; Ni, S.J. Source apportionment and health risk assessment of air pollution particles in eastern district of Chengdu. Environ. Geochem. Health 2020, 42, 2251–2263. [Google Scholar] [CrossRef] [PubMed]
- Yin, J.X.; Harrison, R.M. Pragmatic mass closure study for PM1.0, PM2.5 and PM10 at roadside, urban background and rural sites. Atmos. Environ. 2008, 42, 980–988. [Google Scholar] [CrossRef]
- Gomiscek, B.; Hauck, H.; Stopper, S.; Preining, O. Spatial and temporal variations of PM1, PM2.5, PM10 and particle number concentration during the AUPHEP-project. Atmos. Environ. 2004, 38, 3917–3934. [Google Scholar] [CrossRef]
- Samek, L.; Furman, L.; Mikrut, M.; Regiel-Futyra, A.; Macyk, W.; Stochel, G.; van Eldik, R. Chemical composition of submicron and fine particulate matter collected in Krakow, Poland. Consequences for the APARIC project. Chemosphere 2017, 187, 430–439. [Google Scholar] [CrossRef] [PubMed]
- Liu, L. Physicochemical Properties and Source Apportionment of Urban Ambient Particulate Matter in Dongguan and Wuhan. Ph.D. Thesis, Huazhong University of Science and Technology, Wuhan, China, 2016. (In Chinese). [Google Scholar]
- Tao, J.; Shen, Z.X.; Zhu, C.S.; Yue, J.H.; Cao, J.J.; Liu, S.X.; Zhu, L.H.; Zhang, R.J. Seasonal variations and chemical characteristics of sub-micrometer particles (PM1) in Guangzhou, China. Atmos. Res. 2012, 118, 222–231. [Google Scholar] [CrossRef]
- Fan, X.C.; Lang, J.L.; Cheng, S.Y.; Wang, X.Q.; Lu, Z. Seasonal variation and source analysis for PM2. 5, PM1 and their carbonaceous components in Beijing. Environ. Sci. 2018, 39, 4430–4438. (In Chinese) [Google Scholar]
- Jiang, W.J. Characteristics of Carbonaceous Components and Stable Isotope Tracing in PM1.1 and Biomass in Nanjing. Master’s Thesis, Nanjing University of Information Science and Technology, Nanjing, China, 2016. (In Chinese). [Google Scholar]
- Shen, Z.X.; Arimoto, R.; Cao, J.J.; Zhang, R.J.; Li, X.X.; Du, N.; Okuda, T.; Nakao, S.; Tanaka, S. Seasonal Variations and Evidence for the Effectiveness of Pollution Controls on Water-Soluble Inorganic Species in Total Suspended Particulates and Fine Particulate Matter from Xi’an, China. J. Air Waste Manage. Assoc. 2008, 58, 1560–1570. [Google Scholar] [CrossRef]
- Du, W. Chemical Characterization of Submicron Aerosols and Particle Growth Events at a National Background Site (3295 m a.s.l.) in the Tibetan Plateau. Master’s Thesis, Chengdu University of Information Technology, Chengdu, China, 2015. (In Chinese). [Google Scholar]
- Shi, Z.B.; Shao, L.Y.; Jones, T.P.; Whittaker, A.G.; Lu, S.L.; Berube, K.A.; He, T.; Richards, R.J. Characterization of airborne individual particles collected in an urban area, a satellite city and a clean air area in Beijing, 2001. Atmos. Environ. 2003, 37, 4097–4108. [Google Scholar] [CrossRef]
- Posfai, M.; Gelencser, A.; Simonics, R.; Arato, K.; Li, J.; Hobbs, P.V.; Buseck, P.R. Atmospheric tar balls: Particles from biomass and biofuel burning. J. Geophys. Res. Atmos. 2004, 109, D06213. [Google Scholar] [CrossRef]
- Brown, P.; Jones, T.; BeruBe, K. The internal microstructure and fibrous mineralogy of fly ash from coal-burning power stations. Environ. Pollut. 2011, 159, 3324–3333. [Google Scholar] [CrossRef] [PubMed]
- Zyrkowski, M.; Neto, R.C.; Santos, L.F.; Witkowski, K. Characterization of fly-ash cenospheres from coal-fired power plant unit. Fuel 2016, 174, 49–53. [Google Scholar] [CrossRef]
- Ebert, L.B.; Scanlon, J.C.; Clausen, C.A. Combustion tube soot from a diesel fuel/air mixture: Issues in structure and reactivity. Energy Fuels 1988, 2, 438–445. [Google Scholar] [CrossRef]
- Apicella, B.; Pre, P.; Alfe, M.; Ciajolo, A.; Gargiulo, V.; Russo, C.; Tregrossi, A.; Deldique, D.; Rouzaud, J.N. Soot nanostructure evolution in premixed flames by High Resolution Electron Transmission Microscopy (HRTEM). Proc. Combust. Inst. 2015, 35, 1895–1902. [Google Scholar] [CrossRef]
- Feng, X.D.; Ming, C.B.; Liu, H.; Zhang, Y.H.; Zheng, M. Microscopic morphology and size distribution of PM2.5 in Guangzhou urban area in fall 2011. China Environ. Sci. 2015, 35, 1013–1018. (In Chinese) [Google Scholar]
- Yue, W.S.; Lia, X.L.; Liu, J.F.; Li, Y.; Yu, X.H.; Deng, B.; Wan, T.M.; Zhang, G.L.; Huang, Y.Y.; He, W.; et al. Characterization of PM2.5 in the ambient air of Shanghai city by analyzing individual particles. Sci. Total Environ. 2006, 368, 916–925. [Google Scholar] [CrossRef]
- Fan, J.S. Physicochemical Characteristics of Indoor PM10 and PM2.5 in Xuanwei Lung Cancer Area. Ph.D. Thesis, China University of Mining and Technology-Beijing, Beijing, China, 2013. (In Chinese). [Google Scholar]
- Hu, Y. Domestic Coal Combustion Emissions and the Lung Cancer Epidemic in Xuanwei, China. Ph.D. Thesis, China University of Mining and Technology-Beijing, Beijing, China, 2016. (In Chinese). [Google Scholar]
- Hou, C. Characteristics and Aging Process pf Individual Particles in the Traffic-Derived PM2.5 in Highway Tunnels and Urban Roads. Ph.D. Thesis, China University of Mining and Technology-Beijing, Beijing, China, 2017. (In Chinese). [Google Scholar]
- Li, W.J.; Shao, L.Y. Transmission electron microscopy study of aerosol particles from the brown hazes in northern China. J. Geophys. Res. Atmos. 2009, 114, D09302. [Google Scholar] [CrossRef]
- Satsangi, P.G.; Yadav, S. Characterization of PM2.5 by X-ray diffraction and scanning electron microscopy–energy dispersive spectrometer: Its relation with different pollution sources. Int. J. Environ. Sci. Technol. 2014, 11, 217–232. [Google Scholar] [CrossRef]
- Rodriguez, I.; Gali, S.; Marcos, C. Atmospheric inorganic aerosol of a non-industrial city in the centre of an industrial region of the North of Spain, and its possible influence on the climate on a regional scale. Environ. Geol. 2009, 56, 1551–1561. [Google Scholar] [CrossRef]
- Liu, J.; Wang, J.; Chen, Y.H.; Xie, X.F.; Qi, J.Y.; Lippold, H.; Luo, D.G.; Wang, C.L.; Su, L.X.; He, L.C.; et al. Thallium transformation and partitioning during Pb-Zn smelting and environmental implications. Environ. Pollut. 2016, 212, 77–89. [Google Scholar] [CrossRef] [PubMed]
- Cui, L.L.; Liang, J.H.; Fu, H.B.; Zhang, L.W. The contributions of socioeconomic and natural factors to the acid deposition over China. Chemosphere 2020, 253, 126491. [Google Scholar] [CrossRef] [PubMed]
- Xie, R.K.; Seip, H.M.; Leinum, J.R.; Winje, T.; Xiao, J.S. Chemical characterization of individual particles (PM10) from ambient air in Guiyang City, China. Sci. Total Environ. 2005, 343, 261–272. [Google Scholar] [CrossRef] [PubMed]
- Pipal, A.S.; Kulshrestha, A.; Taneja, A. Characterization and morphological analysis of airborne PM2.5 and PM10 in Agra located in north central India. Atmos. Environ. 2011, 45, 3621–3630. [Google Scholar] [CrossRef]
- Lu, S.L.; Zhang, R.; Yao, Z.K.; Yi, F.; Ren, J.J.; Wu, M.H.; Feng, M.; Wang, Q.Y. Size distribution of chemical elements and their source apportionment in ambient coarse, fine, and ultrafine particles in Shanghai urban summer atmosphere. J. Environ. Sci. 2012, 24, 882–890. [Google Scholar] [CrossRef]
- Gao, Y.; Ji, H.B. Microscopic morphology and seasonal variation of health effect arising from heavy metals in PM2.5 and PM10: One-year measurement in a densely populated area of urban Beijing. Atmos. Res. 2018, 212, 213–226. [Google Scholar] [CrossRef]
- Mamyrbaev, A.A.; Dzharkenov, T.A.; Imangazina, Z.A.; Satybaldieva, U.A. Mutagenic and carcinogenic actions of chromium and its compounds. Environ. Health Prev. 2015, 20, 159–167. [Google Scholar] [CrossRef]
- Wang, Y.F.; Su, H.; Gu, Y.L.; Song, X.; Zhao, J.S. Carcinogenicity of chromium and chemoprevention: A brief update. Onco Targets Ther. 2017, 10, 4065–4079. [Google Scholar] [CrossRef]
- Sodhi, K.K.; Kumar, M.; Agrawal, P.K.; Singh, D.K. Perspectives on arsenic toxicity, carcinogenicity and its systemic remediation strategies. Environ. Technol. Innov. 2019, 16, 100462. [Google Scholar] [CrossRef]
- Bahrami, A.; Sathyapalan, T.; Moallem, S.A.; Sahebkar, A. Counteracting arsenic toxicity: Curcumin to the rescue? J. Hazard. Mater. 2020, 400, 123160. [Google Scholar] [CrossRef]
- Chaabane, M.; Bejaoui, S.; Trabelsi, W.; Telahigue, K.; Chetoui, I.; Chalghaf, M.; Zeghal, N.; El Cafsi, M.; Soudani, N. The potential toxic effects of hexavalent chromium on oxidative stress biomarkers and fatty acids profile in soft tissues of Venus verrucose. Ecotoxicol. Environ. Saf. 2020, 196, 110562. [Google Scholar] [CrossRef] [PubMed]
- Signes-Pastor, A.J.; Gutierrez-Gonzalez, E.; Garcia-Villarino, M.; Rodriiguez-Cabrera, F.D.; Lopez-Moreno, J.J.; Varea-Jimenez, E.; Pastor-Barriuso, R.; Pollan, M.; Navas-Acien, A.; Perez-Gomez, B.; et al. Toenails as a biomarker of exposure to arsenic: A review. Environ. Res. 2020, 195, 110286. [Google Scholar] [CrossRef] [PubMed]
- Brown, R.J.C.; van Aswegen, S.; Webb, W.R.; Goddard, S.L. UK concentrations of chromium and chromium (VI), measured as water soluble chromium, in PM10. Atmos. Environ. 2014, 99, 385–391. [Google Scholar] [CrossRef]
- Liu, Y.Y.; Shen, Y.X.; Liu, C.; Liu, H.F. Enrichment and assessment of the health risks posed by heavy metals in PM1 in Changji, Xinjiang, China. J. Environ. Sci. Health Part A Toxic/Hazard. Subst. Environ. Eng. 2017, 52, 413–419. [Google Scholar] [CrossRef] [PubMed]
- Yan, L.N.; Zuo, H.; Zhang, J.Q.; Li, Z.N.; Li, S.R. Comparative study on the distribution characteristics and sources of heavy metal elements in PM1, PM2.5, and PM10 in Shijiazhuang City. Earth Sci. Front. 2019, 26, 263–270. (In Chinese) [Google Scholar]
- Talbi, A.; Kerchich, Y.; Kerbachi, R.; Boughedaoui, M. Assessment of annual air pollution levels with PM1, PM2.5, PM10 and associated heavy metals in Algiers, Algeria. Environ. Pollut. 2018, 232, 252–263. [Google Scholar] [CrossRef]
- Perez, N.; Pey, J.; Querol, X.; Alastuey, A.; Lopez, J.M.; Viana, M. Partitioning of major and trace components in PM10–PM2.5–PM1 at an urban site in Southern Europe. Atmos. Environ. 2008, 42, 1677–1691. [Google Scholar] [CrossRef]
- Onat, B.; Sahin, U.A.; Akyuz, T. Elemental characterization of PM2.5 and PM1 in dense traffic area in Istanbul, Turkey. Atmos. Pollut. Res. 2013, 4, 101–105. [Google Scholar] [CrossRef]
- Mohiuddin, K.; Strezov, V.; Nelson, P.F.; Stelcer, E. Characterisation of trace metals in atmospheric particles in the vicinity of iron and steelmaking industries in Australia. Atmos. Environ. 2014, 83, 72–79. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Shi, H.; Cheng, X.; Wang, J.; Li, Z.; Huang, Y. Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China. Atmosphere 2022, 13, 1304. https://doi.org/10.3390/atmos13081304
Shi H, Cheng X, Wang J, Li Z, Huang Y. Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China. Atmosphere. 2022; 13(8):1304. https://doi.org/10.3390/atmos13081304
Chicago/Turabian StyleShi, Huibin, Xin Cheng, Jinjin Wang, Zijing Li, and Yi Huang. 2022. "Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China" Atmosphere 13, no. 8: 1304. https://doi.org/10.3390/atmos13081304
APA StyleShi, H., Cheng, X., Wang, J., Li, Z., & Huang, Y. (2022). Characteristics and Source Analysis of PM1 in a Typical Steel-Industry City, Southwest China. Atmosphere, 13(8), 1304. https://doi.org/10.3390/atmos13081304