Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China
Abstract
:1. Introduction
2. Materials and Methods
2.1. Particle Samples
2.2. Analysis of Collected Samples
3. Results and Discussion
3.1. Concentrations of Carbonaceous and Ionic Species
3.2. Metallic Element Concentration Levels and Enrichment Factors (EFs)
3.3. Light Absorption by the Methanol Extracts
3.4. Analysis of Brown Carbon Chromophores
3.5. Absorption Contribution of Brown Carbon Chromophores
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Conflicts of Interest
References
- Bond, T.C. Spectral dependence of visible light absorption by carbonaceous particles emitted from coal combustion. Geophys. Res. Lett. 2001, 28, 4075–4078. [Google Scholar] [CrossRef] [Green Version]
- Castro, L.M.; Pio, C.A.; Harrison, R.M.; Smith, D.J.T. Carbonaceous aerosol in urban and rural European atmospheres: Estimation of secondary organic carbon concentrations. Atmos. Environ. 1999, 33, 2771–2781. [Google Scholar] [CrossRef]
- Bhat, M.A.; Romshoo, S.A.; Beig, G. Aerosol black carbon at an urban site-Srinagar, Northwestern Himalaya, India: Seasonality, sources, meteorology and radiative forcing. Atmos. Environ. 2017, 165, 336–348. [Google Scholar] [CrossRef]
- Lin, P.; Bluvshtein, N.; Rudich, Y.; Nizkorodov, S.A.; Laskin, J.; Laskin, A. Molecular Chemistry of Atmospheric Brown Carbon Inferred from a Nationwide Biomass Burning Event. Environ. Sci. Technol. 2017, 51, 11561–11570. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Hansen, J.; Sato, M.; Ruedy, R. Radiative forcing and climate response. J. Geophys. Res. 1997, 102, 6831–6864. [Google Scholar] [CrossRef]
- Jiang, X.; Wiedinmyer, C.; Carlton, A.M. Aerosols from Fires: An Examination of the Effects on Ozone Photochemistry in the Western United States. Environ. Sci. Technol. 2012, 46, 11878–11886. [Google Scholar] [CrossRef]
- Hecobian, A.; Zhang, X.; Zheng, M.; Edgerton, E.S.; Weber, R.J. Water-Soluble Organic Aerosol material and the light-absorption characteristics of aqueous extracts measured over the Southeastern United States. Atmos. Chem. Phys. 2010, 10, 5965. [Google Scholar] [CrossRef] [Green Version]
- Shapiro, E.L.; Szprengiel, J.; Sareen, N.; Jen, C.N.; Giordano, M.R.; McNeill, V.F. Light-absorbing secondary organic material formed by glyoxal in aqueous aerosol mimics. Atmos. Chem. Phys. 2009, 9, 2289–2300. [Google Scholar] [CrossRef] [Green Version]
- Nizkorodov, S.A.; Bones, D.L.; Henricksen, D.K.; Mang, S.A.; Bateman, A.P.; Pan, X.; Nguyen, T.B.; Gonsior, M.; Cooper, W.; Laskin, J.; et al. Effect of Slow Aging Reactions on Optical Properties of Secondary Organic Aerosol Prepared by Oxidation of Selected Monoterpenes. In AGU Spring Meeting Abstracts; American Geophysical Union: Washington, DC, USA, 2009; p. A23B-04. [Google Scholar]
- Gupta, P.; Harger, W.P.; Arey, J. The contribution of nitro- and methylnitro-naphthalenes to the vapor-phase mutagenicity of ambient air samples. Atmos. Environ. 1996, 30, 3157–3166. [Google Scholar] [CrossRef]
- Lin, P.; Liu, J.; Shilling, J.E.; Kathmann, S.M.; Laskin, J.; Laskin, A. Molecular characterization of brown carbon (BrC) chromophores in secondary organic aerosol generated from photo-oxidation of toluene. Phys. Chem. Chem. Phys. 2015, 17, 23312–23325. [Google Scholar] [CrossRef]
- Iinuma, Y.; Boege, O.; Graefe, R.; Herrmann, H. Methyl-Nitrocatechols: Atmospheric Tracer Compounds for Biomass Burning Secondary Organic Aerosols. Environ. Sci. Technol. 2010, 44, 8453–8459. [Google Scholar] [CrossRef] [PubMed]
- Liu, J.; Bergin, M.; Guo, H.; King, L.; Kotra, N.; Edgerton, E.; Weber, R.J. Size-resolved measurements of brown carbon in water and methanol extracts and estimates of their contribution to ambient fine-particle light absorption. Atmos. Chem. Phys. 2013, 13, 12389–12404. [Google Scholar] [CrossRef] [Green Version]
- Zhang, X.; Lin, Y.-H.; Surratt, J.D.; Weber, R.J. Sources, Composition and Absorption Angstrom Exponent of Light-absorbing Organic Components in Aerosol Extracts from the Los Angeles Basin. Environ. Sci. Technol. 2013, 47, 3685–3693. [Google Scholar] [CrossRef] [PubMed]
- Kirchstetter, T.W.; Novakov, T.; Hobbs, P.V. Evidence that the spectral dependence of light absorption by aerosols is affected by organic carbon. J. Geophys. Res.-Atmos. 2004, 109, D21208. [Google Scholar] [CrossRef] [Green Version]
- Bahadur, R.; Praveen, P.S.; Xu, Y.; Ramanathan, V. Solar absorption by elemental and brown carbon determined from spectral observations. Proc. Natl. Acad. Sci. 2012, 109, 17366–17371. [Google Scholar] [CrossRef] [Green Version]
- Chen, Y.; Bond, T.C. Light absorption by organic carbon from wood combustion. Atmos. Chem. Phys. 2010, 10, 1773–1787. [Google Scholar] [CrossRef] [Green Version]
- Cheng, Y.; He, K.-B.; Du, Z.-Y.; Engling, G.; Liu, J.-M.; Ma, Y.-L.; Zheng, M.; Weber, R.J. The characteristics of brown carbon aerosol during winter in Beijing. Atmos. Environ. 2016, 127, 355–364. [Google Scholar] [CrossRef]
- Martinsson, J.; Eriksson, A.C.; Nielsen, I.E.; Malmborg, V.B.; Ahlberg, E.; Andersen, C.; Lindgren, R.; Nystrom, R.; Nordin, E.Z.; Brune, W.H.; et al. Impacts of Combustion Conditions and Photochemical Processing on the Light Absorption of Biomass Combustion Aerosol. Environ. Sci. Technol. 2015, 49, 14663–14671. [Google Scholar] [CrossRef]
- Shen, Z.; Zhang, Q.; Cao, J.; Zhang, L.; Lei, Y.; Huang, Y.; Huang, R.J.; Gao, J.; Zhao, Z.; Zhu, C.; et al. Optical properties and possible sources of brown carbon in PM2.5 over Xi’an, China. Atmos. Environ. 2017, 150, 322–330. [Google Scholar] [CrossRef]
- Hoffer, A.; Gelencser, A.; Guyon, P.; Kiss, G.; Schmid, O.; Frank, G.P.; Artaxo, P.; Andreae, M.O. Optical properties of humic-like substances (HULIS) in biomass-burning aerosols. Atmos. Chem. Phys. 2006, 6, 3563–3570. [Google Scholar] [CrossRef] [Green Version]
- Park, S.S.; Yu, J. Chemical and light absorption properties of humic-like substances from biomass burning emissions under controlled combustion experiments. Atmos. Environ. 2016, 136, 114–122. [Google Scholar] [CrossRef]
- Du, Z.; He, K.; Cheng, Y.; Duan, F.; Ma, Y.; Liu, J.; Zhang, X.; Zheng, M.; Weber, R. A yearlong study of water-soluble organic carbon in Beijing II: Light absorption properties. Atmos. Environ. 2014, 89, 235–241. [Google Scholar] [CrossRef]
- Kirillova, E.N.; Andersson, A.; Han, J.; Lee, M.; Gustafsson, O. Sources and light absorption of water-soluble organic carbon aerosols in the outflow from northern China. Atmos. Chem. Phys. 2014, 14, 1413–1422. [Google Scholar] [CrossRef] [Green Version]
- Budisulistiorini, S.H.; Riva, M.; Williams, M.; Chen, J.; Itoh, M.; Surratt, J.D.; Kuwata, M. Light-Absorbing Brown Carbon Aerosol Constituents from Combustion of Indonesian Peat and Biomass. Environ. Sci. Technol. 2017, 51, 4415–4423. [Google Scholar] [CrossRef]
- Phillips, S.M.; Smith, G.D. Light Absorption by Charge Transfer Complexes in Brown Carbon Aerosols. Environ. Sci. Technol. Lett. 2014, 1, 382–386. [Google Scholar] [CrossRef] [Green Version]
- Phillips, S.M.; Smith, G.D. Further evidence for charge transfer complexes in brown carbon aerosols from excitation-emission matrix fluorescence spectroscopy. J. Phys. Chem. A 2015, 119, 4545–4551. [Google Scholar] [CrossRef] [PubMed]
- Jo, D.S.; Park, R.J.; Lee, S.; Kim, S.-W.; Zhang, X. A global simulation of brown carbon: Implications for photochemistry and direct radiative effect. Atmos. Chem. Phys. 2016, 16, 3413–3432. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Heald, C.L.; Ridley, D.A.; Schwarz, J.P.; Spackman, J.R.; Perring, A.E.; Coe, H.; Liu, D.; Clarke, A.D. Exploiting simultaneous observational constraints on mass and absorption to estimate the global direct radiative forcing of black carbon and brown carbon. Atmos. Chem. Phys. 2014, 14, 10989–11010. [Google Scholar] [CrossRef] [Green Version]
- Rajput, P.; Sarin, M.M.; Sharma, D.; Singh, D. Organic aerosols and inorganic species from post-harvest agricultural-waste burning emissions over northern India: Impact on mass absorption efficiency of elemental carbon. Environ. Sci. Processes Impacts 2014, 16, 2371–2379. [Google Scholar] [CrossRef]
- Keene, W.C.; Pszenny, A.A.P.; Galloway, J.N.; Hawley, M.E. Sea-salt corrections and interpretation of constituent ratios in marine precipitation. J. Geophys. Res. 1986, 91, 6647–6658. [Google Scholar] [CrossRef]
- Bond, T.C.; Bergstrom, R.W. Light Absorption by Carbonaceous Particles: An Investigative Review. Aerosol Sci. Technol. 2006, 40, 27–67. [Google Scholar] [CrossRef]
- Fan, X.; Song, J.; Peng, P.A. Temporal variations of the abundance and optical properties of water soluble Humic-Like Substances (HULIS) in PM2.5 at Guangzhou, China. Atmos. Res. 2016, 172, 8–15. [Google Scholar] [CrossRef]
- Huang, H.; Jiang, Y.; Xu, X.; Cao, X. In vitro bioaccessibility and health risk assessment of heavy metals in atmospheric particulate matters from three different functional areas of Shanghai, China. Sci. Environ. 2018, 610, 546–554. [Google Scholar] [CrossRef] [PubMed]
- Zihe, L.; Yunhua, C.; Mengying, B.; Yanlin, Z.; Fang, C.; Geng, C.; Shengcheng, S.; Meiyi, F.; Shoudong, L. Pollution Characteristics and Source Analysis of PM2. 5 Carbonaceous Components in Shanghai Heavy Duty Period. Sci. Technol. Eng. 2019, 19, 328–338. [Google Scholar]
- Schauer, J.J.; Kleeman, M.J.; Cass, G.R.; Simoneit, B.R.T. Measurement of emissions from air pollution sources. 2. C-1 through C-30 organic compounds from medium duty diesel trucks. Environ. Sci. Technol. 1999, 33, 1578–1587. [Google Scholar] [CrossRef]
- Yingjun, C.; Guoying, S.; Xinhui, B.; Yanli, F.; Bixian, M.; Jiamo, F. Emission factors for carbonaceous particles and polycyclic aromatic hydrocarbons from residential coal combustion in China. Environ. Sci. Technol. 2005, 39, 1861–1867. [Google Scholar]
- Zhang, Y.-X.; Shao, M.; Zhang, Y.-H.; Zeng, L.-M.; He, L.-Y.; Zhu, B.; Wei, Y.-J.; Zhu, X.-L. Source profiles of particulate organic matters emitted from cereal straw burnings. J. Environ. Sci. 2007, 19, 167–175. [Google Scholar] [CrossRef]
- Wei, X.-Y.; Liu, M.; Yang, J.; Du, W.-N.; Sun, X.; Huang, Y.-P.; Zhang, X.; Khalil, S.K.; Luo, D.-M.; Zhou, Y.-D. Characterization of PM2.5-bound PAHs and carbonaceous aerosols during three-month severe haze episode in Shanghai, China: Chemical composition, source apportionment and long-range transportation. Atmos. Environ. 2019, 203, 1–9. [Google Scholar] [CrossRef]
- Arimoto, R.; Duce, R.A.; Savoie, D.L.; Prospero, J.M.; Talbot, R.; Cullen, J.D.; Tomza, U.; Lewis, N.F.; Ray, B.J. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res. 1996, 101, 2011–2023. [Google Scholar] [CrossRef]
- Lin, P.; Engling, G.; Yu, J.Z. Humic-like substances in fresh emissions of rice straw burning and in ambient aerosols in the Pearl River Delta Region, China. Atmos. Chem. Phys. 2010, 10, 6487–6500. [Google Scholar] [CrossRef] [Green Version]
- Tao, L.; Fairley, D.; Kleeman, M.J.; Harley, R.A. Effects of switching to lower sulfur marine fuel oil on air quality in the San Francisco Bay area. Environ. Sci. Technol. 2013, 47, 10171. [Google Scholar] [CrossRef] [PubMed]
- Duan, J.; Tan, J. Atmospheric heavy metals and Arsenic in China: Situation, sources and control policies. Atmos. Environ. 2013, 74, 93–101. [Google Scholar] [CrossRef]
- Marcazzan, G.; Valli, G.; Vecchi, R. Factors influencing mass concentration and chemical composition of fine aerosols during a PM high pollution episode. Sci. Total Environ. 2002, 298, 65–79. [Google Scholar] [CrossRef]
- Jianmin, C.; Mingguang, T.; Yulan, L.; Jian, Z.; Yuanmao, Z.; Zuci, S.; Guilin, Z.; Yan, L. Characteristics of trace elements and lead isotope ratios in PM(2.5) from four sites in Shanghai. J. Hazard. Mater. 2008, 156, 36–43. [Google Scholar]
- Lei, Y.L.; Shen, Z.X.; Wang, Q.Y.; Zhang, T.; Cao, J.J.; Sun, J.; Zhang, Q.; Wang, L.Q.; Xu, H.M.; Tian, J.; et al. Optical characteristics and source apportionment of brown carbon in winter PM2.5 over Yulin in Northern China. Atmos. Res. 2018, 213, 27–33. [Google Scholar] [CrossRef]
- Yunzhu, S. The Characterization Methods and Pollution Characteristics of the Brown Carbon in Atmospheric Particulate Matter in Shanghai. Master’s Thesis, East China University of Science and Technology, Shanghai, China, 2018. [Google Scholar]
- Park, S.; Yu, G.-H.; Lee, S. Optical absorption characteristics of brown carbon aerosols during the KORUS-AQ campaign at an urban site. Atmos. Res. 2018, 203, 16–27. [Google Scholar] [CrossRef]
- Yan, C.; Zheng, M.; Sullivan, A.P.; Bosch, C.; Desyaterik, Y.; Andersson, A.; Li, X.; Guo, X.; Zhou, T.; Gustafsson, O. Chemical characteristics and light-absorbing property of water-soluble organic carbon in Beijing: Biomass burning contributions. Atmos. Environ. 2015, 121, 4–12. [Google Scholar] [CrossRef] [Green Version]
- Massabo, D.; Caponi, L.; Bove, M.C.; Prati, P. Brown carbon and thermal–optical analysis: A correction based on optical multi-wavelength apportionment of atmospheric aerosols. Atmos. Environ. 2016, 125, 119–125. [Google Scholar] [CrossRef]
- Li, X.H.; Chen, Y.J.; Bond, T.C. Light absorption of organic aerosol from pyrolysis of corn stalk. Atmos. Environ. 2016, 144, 249–256. [Google Scholar] [CrossRef] [Green Version]
- Shen, Z.; Lei, Y.; Zhang, L.; Zhang, Q.; Zeng, Y.; Tao, J.; Zhu, C.-S.; Cao, J.; Xu, H.; Liu, S. Methanol Extracted Brown Carbon in PM2.5 Over Xi’an, China: Seasonal Variation of Optical Properties and Sources Identification. Aerosol Sci. Eng. 2017, 1, 1–9. [Google Scholar] [CrossRef]
- Department of Health and Human Services, Public Health Service. Toxicological profile for Dinitrophenols; Agency for Toxic Substances and Disease Registry (ATSDR): Atlanta, GA, USA, 1995.
- Desyaterik, Y.; Sun, Y.; Shen, X.; Lee, T.; Wang, X.; Wang, T.; Collett, J.L., Jr. Speciation of “brown” carbon in cloud water impacted by agricultural biomass burning in eastern China. J. Geophys. Res. Atmos. 2013, 118, 7389–7399. [Google Scholar] [CrossRef]
- Xie, M.; Chen, X.; Hays, M.D.; Lewandowski, M.; Offenberg, J.; Kleindienst, T.E.; Holder, A.L. Light Absorption of Secondary Organic Aerosol: Composition and Contribution of Nitroaromatic Compounds. Environ. Sci. Technol. 2017, 51, 11607–11616. [Google Scholar] [CrossRef] [PubMed]
- Burgess, C. UV-VIS atlas: UV-VIS Atlas of Organic Compounds, by H.-H. Perkampus, VCH, Weinheim, 1992, DM 750.00 (Part 1: II+ 336; Part 2: II+ 1189 pages), ISBN: 1-56081-268-0. Adv. Mater. 1993, 10, 770. [Google Scholar]
- Peng, L.; Zhen, Y.J.; Guenter, E.; Markus, K. Organosulfates in humic-like substance fraction isolated from aerosols at seven locations in East Asia: A study by ultra-high-resolution mass spectrometry. Environ. Sci. Technol. 2012, 46, 13118–13127. [Google Scholar]
- Wang, Y.; Hu, M.; Wang, Y.; Zheng, J.; Shang, D.; Yang, Y.; Liu, Y.; Li, X.; Tang, R.; Zhu, W. The formation of nitro-aromatic compounds under high NOx and anthropogenic VOC conditions in urban Beijing, China. Atmos. Chem. Phys. 2019, 19, 7649–7665. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Shen, Z.; Zhang, L.; Zeng, Y.; Ning, Z.; Zhang, T.; Lei, Y.; Wang, Q.; Li, G.; Sun, J. Investigation of primary and secondary particulate brown carbon in two Chinese cities of Xi’an and Hong Kong in wintertime. Environ. Sci. Technol. 2020, 54, 3803–3813. [Google Scholar] [CrossRef]
- Blair, S.L.; MacMillan, A.C.; Drozd, G.T.; Goldstein, A.H.; Chu, R.K.; Paša-Tolić, L.; Shaw, J.B.; Tolić, N.; Lin, P.; Laskin, J.; et al. Molecular Characterization of Organosulfur Compounds in Biodiesel and Diesel Fuel Secondary Organic Aerosol. Environ. Sci. Technol. 2017, 51, 5683–5695. [Google Scholar] [CrossRef]
- Peng, L.; Fleming, L.T.; Nizkorodov, S.A.; Laskin, J.; Laskin, A. Comprehensive Molecular Characterization of Atmospheric Brown Carbon by High Resolution Mass Spectrometry with Electrospray and Atmospheric Pressure Photoionization. Anal. Chem. 2018, 90, 12493–12502. [Google Scholar]
- Lin, P.; Laskin, J.; Nizkodorov, S.A.; Laskin, A. Revealing Brown Carbon Chromophores Produced in Reactions of Methylglyoxal with Ammonium Sulfate. Environ. Sci. Technol. 2015, 49, 14257–14266. [Google Scholar] [CrossRef]
- Ming, H.; Yihua, Z.; Qianbiao, Z. Characteristics and sources of inorganic elements in PM2.5 during wintertime in Shanghai. Acta Sci. Circumstantiae 2015, 35, 1993–1999. [Google Scholar]
- Liu, P.; Lei, Y.; Ren, H.; Gao, J.; Xu, H.; Shen, Z.; Zhang, Q.; Zheng, C.; Liu, H.; Zhang, R. In Seasonal Variation and Health Risk Assessment of Heavy Metals in PM2.5 during Winter and Summer over Xi’an, China. Atmosphere 2017, 8, 91. [Google Scholar] [CrossRef] [Green Version]
- Xie, J.; Yuan, C.; Xie, J.; Shen, Y.; He, K.; Zhang, K. Speciation and bioaccessibility of heavy metals in PM2.5 in Baoding city, China. Environ. Pollut. 2019, 252, 336–343. [Google Scholar] [CrossRef] [PubMed]
Item | Unit | Concentration | |
---|---|---|---|
Mean ± SD | Range | ||
PM2.5 | μg/m3 | 50.07 ± 30.49 | 14.67–119.80 |
OC | μg/m3 | 4.90 ± 2.94 | 1.79–13.10 |
EC | μg/m3 | 1.86 ± 1.23 | 0.36–5.94 |
WSOC | μg/m3 | 3.87 ± 2.42 | 0.53–9.75 |
HULIS-C | μg/m3 | 2.06 ± 1.51 | 0.23–5.88 |
OC/EC | / | 2.86 ± 0.92 | 1.81–5.61 |
WSOC/OC | / | 0.76 ± 0.15 | 0.28–0.96 |
HULIS-C/WSOC | / | 0.49 ± 0.09 | 0.34–0.60 |
POC | μg/m3 | 3.37 ±2.23 | 0.65–10.75 |
SOC | μg/m3 | 1.53 ±1.23 | 3.8 × 10−7–4.68 |
SO42- | μg/m3 | 6.36 ± 3.94 | 1.67–16.98 |
NO3− | μg/m3 | 15.62 ± 13.24 | 1.55–49.19 |
Cl− | μg/m3 | 1.21 ± 0.59 | 0.38–2.08 |
NH4+ | μg/m3 | 7.09 ± 4.66 | 1.85–17.20 |
μg/m3 | 0.55 ± 0.31 | 0.20–1.44 | |
μg/m3 | 0.44 ± 0.32 | 0.07–1.35 | |
Mg2+ | μg/m3 | 0.61 ± 0.23 | 0.28–1.14 |
Ca2+ | μg/m3 | 0.20 ± 0.02 | 0.17–0.24 |
/OC | / | 0.11 ± 0.01 | 0.10–0.14 |
/EC | / | 0.32 ± 0.10 | 0.19–0.59 |
/OC | / | 0.09 ± 0.02 | 0.03–0.11 |
/EC | / | 0.24 ± 0.06 | 0.13–0.35 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Zhang, L.; Son, J.H.; Bai, Z.; Zhang, W.; Li, L.; Wang, L.; Chen, J. Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China. Atmosphere 2022, 13, 991. https://doi.org/10.3390/atmos13060991
Zhang L, Son JH, Bai Z, Zhang W, Li L, Wang L, Chen J. Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China. Atmosphere. 2022; 13(6):991. https://doi.org/10.3390/atmos13060991
Chicago/Turabian StyleZhang, Linyuan, Jung Hyun Son, Zhe Bai, Wei Zhang, Ling Li, Lina Wang, and Jianmin Chen. 2022. "Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China" Atmosphere 13, no. 6: 991. https://doi.org/10.3390/atmos13060991
APA StyleZhang, L., Son, J. H., Bai, Z., Zhang, W., Li, L., Wang, L., & Chen, J. (2022). Characterizing Atmospheric Brown Carbon and Its Emission Sources during Wintertime in Shanghai, China. Atmosphere, 13(6), 991. https://doi.org/10.3390/atmos13060991