Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss
Abstract
:1. Introduction
2. Model and Experiments
3. Results
3.1. SST Changes
3.2. Mechanisms for the Gulf Stream Response
3.3. SST Cooling Induced by the Gulf Stream Variations
3.4. Mechanisms for the Kuroshio Response
3.5. Impact of the WBC Variations on Atmosphere
4. Conclusions and Discussion
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Zhang, L.; Wu, L.; Zhang, J. Coupled Ocean–Atmosphere Responses to Recent Freshwater Flux Changes over the Kuroshio–Oyashio Extension Region. J. Clim. 2011, 24, 1507–1524. [Google Scholar] [CrossRef]
- Frankignoul, C.; Coëtlogon, G.D.; Joyce, T.M.; Dong, S. Gulf Stream Variability and Ocean–Atmosphere Interactions. J. Phys. Oceanogr. 2001, 31, 3516–3529. [Google Scholar] [CrossRef]
- Minobe, S.; Kuwano-Yoshida, A.; Komori, N.; Xie, S.-P.; Small, R.J. Influence of the Gulf Stream on the troposphere. Nature 2008, 452, 206–209. [Google Scholar] [CrossRef]
- Hu, D.; Wu, L.; Cai, W.; Gupta, A.S.; Ganachaud, A.; Qiu, B.; Gordon, A.L.; Lin, X.; Chen, Z.; Hu, S. Pacific western boundary currents and their roles in climate. Nature 2015, 522, 299–308. [Google Scholar] [CrossRef]
- Kwon, Y.-O.; Alexander, M.A.; Bond, N.A.; Frankignoul, C.; Nakamura, H.; Qiu, B.; Thompson, L.A. Role of the Gulf Stream and Kuroshio–Oyashio Systems in Large-Scale Atmosphere–Ocean Interaction: A Review. J. Clim. 2010, 23, 3249–3281. [Google Scholar] [CrossRef]
- Sugimoto, S.; Qiu, B.; Kojima, A. Marked coastal warming off Tokai attributable to Kuroshio large meander. J. Oceanogr. 2020, 76, 141–154. [Google Scholar] [CrossRef]
- Yang, H.; Lohmann, G.; Wei, W.; Dima, M.; Ionita, M.; Liu, J. Intensification and poleward shift of subtropical western boundary currents in a warming climate. J. Geophys. Res. Ocean. 2016, 121, 4928–4945. [Google Scholar] [CrossRef] [Green Version]
- Wu, L.; Cai, W.; Zhang, L.; Nakamura, H.; Timmermann, A.; Joyce, T.; McPhaden, M.J.; Alexander, M.; Qiu, B.; Visbeck, M. Enhanced warming over the global subtropical western boundary currents. Nat. Clim. Chang. 2012, 2, 161–166. [Google Scholar] [CrossRef]
- Dong, S.; Baringer, M.O.; Goni, G.J. Slow Down of the Gulf Stream during 1993–2016. Sci. Rep. 2019, 9, 6672. [Google Scholar] [CrossRef] [Green Version]
- De Coëtlogon, G.; Frankignoul, C.; Bentsen, M.; Delon, C.; Haak, H.; Masina, S.; Pardaens, A. Gulf Stream Variability in Five Oceanic General Circulation Models. J. Phys. Oceanogr. 2006, 36, 2119–2135. [Google Scholar] [CrossRef] [Green Version]
- Joyce, T.M.; Zhang, R. On the path of the Gulf Stream and the Atlantic meridional overturning circulation. J. Clim. 2010, 23, 3146–3154. [Google Scholar] [CrossRef]
- Chen, C.; Wang, G.; Xie, S.-P.; Liu, W. Why does global warming weaken the Gulf Stream but intensify the Kuroshio? J. Clim. 2019, 32, 7437–7451. [Google Scholar] [CrossRef]
- Zhang, W.-Z.; Chai, F.; Xue, H.; Oey, L.-Y. Remote sensing linear trends of the Gulf Stream from 1993 to 2016. Ocean Dyn. 2020, 70, 701–712. [Google Scholar] [CrossRef]
- Wang, Y.L.; Wu, C.R.; Chao, S.Y. Warming and weakening trends of the Kuroshio during 1993–2013. Geophys. Res. Lett. 2016, 43, 9200–9207. [Google Scholar] [CrossRef] [Green Version]
- Andres, M.; Park, J.H.; Wimbush, M.; Zhu, X.H.; Nakamura, H.; Kim, K.; Chang, K.I. Manifestation of the Pacific decadal oscillation in the Kuroshio. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Cheon, W.G.; Park, Y.G.; Yeh, S.W.; Kim, B.M. Atmospheric impact on the northwestern Pacific under a global warming scenario. Geophys. Res. Lett. 2012, 39. [Google Scholar] [CrossRef]
- Sakamoto, T.T.; Hasumi, H.; Ishii, M.; Emori, S.; Suzuki, T.; Nishimura, T.; Sumi, A. Responses of the Kuroshio and the Kuroshio Extension to global warming in a high-resolution climate model. Geophys. Res. Lett. 2005, 32. [Google Scholar] [CrossRef]
- Kwok, R.; Rothrock, D. Decline in Arctic sea ice thickness from submarine and ICESat records: 1958–2008. Geophys. Res. Lett. 2009, 36. [Google Scholar] [CrossRef] [Green Version]
- Zhou, Y.; Zhang, N.; Li, C.; Liu, Y.; Huang, P. Decreased takeoff performance of aircraft due to climate change. Clim. Change 2018, 151, 463–472. [Google Scholar] [CrossRef]
- Cvijanovic, I.; Caldeira, K. Atmospheric impacts of sea ice decline in CO2 induced global warming. Clim. Dyn. 2015, 44, 1173–1186. [Google Scholar] [CrossRef] [Green Version]
- Liu, J.; Curry, J.A.; Wang, H.; Song, M.; Horton, R.M. Impact of declining Arctic sea ice on winter snowfall. Proc. Natl. Acad. Sci. USA 2012, 109, 4074–4079. [Google Scholar] [CrossRef] [Green Version]
- Ding, Q.; Schweiger, A.; L’Heureux, M.; Battisti, D.S.; Po-Chedley, S.; Johnson, N.C.; Blanchard-Wrigglesworth, E.; Harnos, K.; Zhang, Q.; Eastman, R. Influence of high-latitude atmospheric circulation changes on summertime Arctic sea ice. Nat. Clim. Chang. 2017, 7, 289–295. [Google Scholar] [CrossRef]
- Chen, H.W.; Zhang, F.; Alley, R.B. The Robustness of Midlatitude Weather Pattern Changes due to Arctic Sea Ice Loss. J. Clim. 2016, 29, 7831–7849. [Google Scholar] [CrossRef]
- Liu, W.; Fedorov, A.; Sévellec, F. The Mechanisms of the Atlantic Meridional Overturning Circulation Slowdown Induced by Arctic Sea Ice Decline. J. Clim. 2019, 32, 977–996. [Google Scholar] [CrossRef]
- Sévellec, F.; Fedorov, A.V.; Liu, W. Arctic sea-ice decline weakens the Atlantic Meridional Overturning Circulation. Nat. Clim. Change 2017, 7, 604–610. [Google Scholar] [CrossRef]
- Wang, K.; Deser, C.; Sun, L.; Tomas, R.A. Fast response of the tropics to an abrupt loss of Arctic sea ice via ocean dynamics. Geophys. Res. Lett. 2018, 45, 4264–4272. [Google Scholar] [CrossRef]
- Screen, J.A.; Deser, C.; Simmonds, I.; Tomas, R. Atmospheric impacts of Arctic sea-ice loss, 1979–2009: Separating forced change from atmospheric internal variability. Clim. Dyn. 2014, 43, 333–344. [Google Scholar] [CrossRef] [Green Version]
- Seierstad, I.A.; Bader, J. Impact of a projected future Arctic Sea Ice reduction on extratropical storminess and the NAO. Clim. Dyn. 2008, 33, 937. [Google Scholar] [CrossRef]
- Peings, Y.; Magnusdottir, G. Response of the wintertime Northern Hemisphere atmospheric circulation to current and projected Arctic sea ice decline: A numerical study with CAM5. J. Clim. 2014, 27, 244–264. [Google Scholar] [CrossRef] [Green Version]
- Dai, H. Roles of surface albedo, surface temperature and carbon dioxide in the seasonal variation of Arctic amplification. Geophys. Res. Lett. 2021, 48, e2020GL090301. [Google Scholar] [CrossRef]
- Dai, H.; Zhao, J.; Yao, Q.; Zhang, X. The Seesaw of Seasonal Precipitation Variability Between North China and the Southwest United States: A Response to Arctic Amplification. J. Geophys. Res. Atmos. 2021, 126, e2020JD034039. [Google Scholar] [CrossRef]
- Screen, J.A. Arctic amplification decreases temperature variance in northern mid- to high-latitudes. Nat. Clim. Chang. 2014, 4, 577–582. [Google Scholar] [CrossRef] [Green Version]
- Overland, J.; Francis, J.A.; Hall, R.; Hanna, E.; Kim, S.-J.; Vihma, T. The Melting Arctic and Midlatitude Weather Patterns: Are They Connected? J. Clim. 2015, 28, 7917–7932. [Google Scholar] [CrossRef] [Green Version]
- Cohen, J.; Screen, J.A.; Furtado, J.C.; Barlow, M.; Whittleston, D.; Coumou, D.; Francis, J.; Dethloff, K.; Entekhabi, D.; Overland, J.; et al. Recent Arctic amplification and extreme mid-latitude weather. Nat. Geosci 2014, 7, 627–637. [Google Scholar] [CrossRef] [Green Version]
- Zhifang, F.; WALLACE, J.M. North-Pacific sea ice and Kuroshio SST variability and its relation to the winter monsoon. Polar Meteorol. Glaciol. 1998, 12, 58–67. [Google Scholar]
- Serreze, M.C.; Barrett, A.P.; Crawford, A.D.; Woodgate, R.A. Monthly variability in Bering Strait oceanic volume and heat transports, links to atmospheric circulation and ocean temperature, and implications for sea ice conditions. J. Geophys. Res. Ocean. 2019, 124, 9317–9337. [Google Scholar] [CrossRef]
- Sato, K.; Inoue, J.; Watanabe, M. Influence of the Gulf Stream on the Barents Sea ice retreat and Eurasian coldness during early winter. Environ. Res. Lett. 2014, 9, 084009. [Google Scholar] [CrossRef]
- O’Reilly, C.H.; Minobe, S.; Kuwano-Yoshida, A. The influence of the Gulf Stream on wintertime European blocking. Clim. Dyn. 2016, 47, 1545–1567. [Google Scholar] [CrossRef] [Green Version]
- Zhang, L.; Wu, L.; Zhang, J. Simulated Response to Recent Freshwater Flux Change over the Gulf Stream and Its Extension: Coupled Ocean–Atmosphere Adjustment and Atlantic–Pacific Teleconnection. J. Clim. 2011, 24, 3971–3988. [Google Scholar] [CrossRef]
- Blackport, R.; Kushner, P.J. The Transient and Equilibrium Climate Response to Rapid Summertime Sea Ice Loss in CCSM4. J. Clim. 2016, 29, 401–417. [Google Scholar] [CrossRef]
- Deser, C.; Tomas, R.A.; Sun, L. The Role of Ocean–Atmosphere Coupling in the Zonal-Mean Atmospheric Response to Arctic Sea Ice Loss. J. Clim. 2015, 28, 2168–2186. [Google Scholar] [CrossRef] [Green Version]
- Kang, D.; Curchitser, E.N. Gulf Stream eddy characteristics in a high-resolution ocean model. J. Geophys. Res. Ocean. 2013, 118, 4474–4487. [Google Scholar] [CrossRef]
- Chelton, D.B.; Schlax, M.G.; Freilich, M.H.; Milliff, R.F. Satellite Measurements Reveal Persistent Small-Scale Features in Ocean Winds. Science 2004, 303, 978–983. [Google Scholar] [CrossRef] [Green Version]
- Talley, L.D.; Pickard, G.L.; Emery, W.J.; Swift, J.H. Chapter 7—Dynamical Processes for Descriptive Ocean Circulation. In Descriptive Physical Oceanography, 6th ed.; Talley, L.D., Pickard, G.L., Emery, W.J., Swift, J.H., Eds.; Academic Press: Boston, MA, USA, 2011; pp. 187–221. [Google Scholar]
- Yang, H.; Li, Q.; Wang, K.; Sun, Y.; Sun, D. Decomposing the meridional heat transport in the climate system. Clim. Dyn. 2015, 44, 2751–2768. [Google Scholar] [CrossRef] [Green Version]
- Tomas, R.A.; Deser, C.; Sun, L. The Role of Ocean Heat Transport in the Global Climate Response to Projected Arctic Sea Ice Loss. J. Clim. 2016, 29, 6841–6859. [Google Scholar] [CrossRef]
- Drijfhout, S.; Van Oldenborgh, G.J.; Cimatoribus, A. Is a decline of AMOC causing the warming hole above the North Atlantic in observed and modeled warming patterns? J. Clim. 2012, 25, 8373–8379. [Google Scholar] [CrossRef]
- Woollings, T.; Gregory, J.M.; Pinto, J.G.; Reyers, M.; Brayshaw, D.J. Response of the North Atlantic storm track to climate change shaped by ocean–atmosphere coupling. Nat. Geosci. 2012, 5, 313–317. [Google Scholar] [CrossRef] [Green Version]
- Rahmstorf, S.; Box, J.E.; Feulner, G.; Mann, M.E.; Robinson, A.; Rutherford, S.; Schaffernicht, E.J. Exceptional twentieth-century slowdown in Atlantic Ocean overturning circulation. Nat. Clim. Chang. 2015, 5, 475–480. [Google Scholar] [CrossRef] [Green Version]
- Keil, P.; Mauritsen, T.; Jungclaus, J.; Hedemann, C.; Olonscheck, D.; Ghosh, R. Multiple drivers of the North Atlantic warming hole. Nat. Clim. Chang. 2020, 10, 667–671. [Google Scholar] [CrossRef]
Name | Radiative Forcing | Arctic Sea Ice State | Ocean Configurations | Ensemble |
---|---|---|---|---|
ICE_20_FOM | Year 2000 | 1989–1999 | Full ocean | 20 runs |
ICE_21_FOM | Year 2000 | 2080–2099 | Full ocean | 20 runs |
ICE_20_SOM | Year 2000 | 1980–1999 | Slab ocean | 10 runs |
ICE_21_SOM | Year 2000 | 2080–2099 | Slab ocean | 10 runs |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Wang, K.; Wu, L.; Liu, H.; Dan, B.; Dai, H.; Deser, C. Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss. Atmosphere 2022, 13, 514. https://doi.org/10.3390/atmos13040514
Wang K, Wu L, Liu H, Dan B, Dai H, Deser C. Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss. Atmosphere. 2022; 13(4):514. https://doi.org/10.3390/atmos13040514
Chicago/Turabian StyleWang, Kun, Linyue Wu, Haiwen Liu, Bo Dan, Haijin Dai, and Clara Deser. 2022. "Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss" Atmosphere 13, no. 4: 514. https://doi.org/10.3390/atmos13040514
APA StyleWang, K., Wu, L., Liu, H., Dan, B., Dai, H., & Deser, C. (2022). Contrary Responses of the Gulf Stream and the Kuroshio to Arctic Sea Ice Loss. Atmosphere, 13(4), 514. https://doi.org/10.3390/atmos13040514