Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles
Abstract
:1. Introduction
2. Materials and Methods
2.1. Materials
2.2. Specimen Preparation
2.3. Test Methods
3. Results
3.1. Results of Qualitative Analysis of the Microstructure
3.2. Stress-Strain Behavior
3.3. Shear Strength
3.4. Shear Strength Parameter
4. Discussions
4.1. Impact of the Number of FTC on Soil Microstructure
4.2. Impact of FTCs on Shear Strength Parameters of Saline Soils
4.3. Impact of Salt Content on Shear Strength Parameters of Saline Soils
5. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Jin, H.; Ma, Q. Impacts of Permafrost Degradation on Carbon Stocks and Emissions under a Warming Climate: A Review. Atmosphere 2021, 12, 1425. [Google Scholar] [CrossRef]
- Revich, B.A.; Eliseev, D.O.; Shaposhnikov, D.A. Risks for Public Health and Social Infrastructure in Russian Arctic under Climate Change and Permafrost Degradation. Atmosphere 2022, 13, 532. [Google Scholar] [CrossRef]
- Chen, L.; Lai, Y.M.; Fortier, D.; Harris, S.A. Impacts of Snow Cover on the Pattern and Strength of Mobile Air Flow in Air Convection Embankment in Sub-Arctic Regions. Renew. Energy 2022, 199, 1033–1046. [Google Scholar] [CrossRef]
- Chen, L.; Voss, C.I.; Fortier, D.; McKenzie, J.M. Surface energy balance of sub-Arctic roads and highways in permafrost regions. Permafr. Periglac. Process. 2021, 32, 681–701. [Google Scholar] [CrossRef]
- Zhang, D.F.; Wang, S.J. Mechanism of freeze-thaw action in the process of soil salinization in northeast China. Environ. Geol. 2001, 41, 96–100. [Google Scholar] [CrossRef]
- Yu, T.W.; Wang, Q.; Zhang, X.D.; Zhou, X.; Wang, G.; Niu, C.C. Experimental study on grain size and soluble salt of saline soil in western Jilin Province, China. Sci. Cold Arid Reg. 2015, 7, 573–578. [Google Scholar]
- Fatani, M.N.; Khan, A.M. Foundations on Salt Bearing Soils of Jizan. In Proceedings of the 3rd Conference of the International Conference on Case Histories in Geotechnical Engineering, St. Louis, MI, USA, 1–4 June 1993; pp. 79–83. [Google Scholar]
- Qi, J.; Vermeer, P.A.; Cheng, G. A review of the influence of freeze-thaw cycles on soil geotechnical properties. Permafr. Periglac. Process. 2006, 17, 245–252. [Google Scholar] [CrossRef]
- Qi, J.; Ma, W.; Song, C. Influence of freeze–thaw on engineering properties of a silty soil. Cold Reg. Sci. Technol. 2008, 53, 397–404. [Google Scholar] [CrossRef]
- You, Z.; Lai, Y.; Zhang, M.; Liu, E. Quantitative analysis for the effect of microstructure on the mechanical strength of frozen silty clay with different contents of sodium sulfate. Environ. Earth Sci. 2017, 76, 11. [Google Scholar] [CrossRef]
- Zhou, Z.; Ma, W.; Zhang, S.; Mu, Y.; Li, G. Effect of freeze-thaw cycles in mechanical behaviors of frozen loess. Cold Reg. Sci. Technol. 2018, 146, 9–18. [Google Scholar] [CrossRef]
- Koniorczyk, M. Salt transport and crystallization in nonisothermal, partially saturated porous materials considering ions in-teraction model. Int. J. Heat Mass Transf. 2012, 55, 665–679. [Google Scholar] [CrossRef]
- Chen, W.T.; Wang, Y.; Wang, M.N.; Li, Z.; Wang, Y.S. Testing study on influence of freezing and thawing circulation on saline soil’s cohesion. Rock Soil Mech. 2007, 28, 2343–2347. (In Chinese) [Google Scholar]
- Sinitsyn, A.O.; Loset, S. Equivalent cohesion of frozen saline sandy loams at temperatures close to their freezing point. Soil Mech. Found. Eng. 2010, 47, 68–73. [Google Scholar] [CrossRef]
- Lai, Y.; Wu, D.; Zhang, M. Crystallization deformation of a saline soil during freezing and thawing processes. Appl. Therm. Eng. 2017, 120, 463–473. [Google Scholar] [CrossRef]
- Liu, J.; Chang, D.; Yu, Q. Influence of freeze-thaw cycles on mechanical properties of a silty sand. Eng. Geol. 2016, 210, 23–32. [Google Scholar] [CrossRef]
- de Carteret, R.; Buzzi, O.; Fityus, S.; Liu, X. Effect of Naturally Occurring Salts on Tensile and Shear Strength of Sealed Granular Road Pavements. J. Mater. Civ. Eng. 2014, 26, 04014010. [Google Scholar] [CrossRef]
- Li, M.; Chai, S.; Du, H.; Wang, C. Effect of chlorine salt on the physical and mechanical properties of inshore saline soil treated with lime. Soils Found. 2016, 56, 327–335. [Google Scholar] [CrossRef]
- Zhang, F.; Wang, G.; Kamai, T.; Chen, W.; Zhang, D.; Yang, J. Undrained shear behavior of loess saturated with different concentrations of sodium chloride solution. Eng. Geol. 2013, 155, 69–79. [Google Scholar] [CrossRef] [Green Version]
- Anatoli, B. Frozen saline soils of the Arctic coast: Their distribution and engineering properties. In Proceedings of the Eighth International Conference on Permafrost, Zurich, Switzerland, 21–25 July 2003; Phillips, S.M., Springman, Arenson, L.U., Eds.; pp. 95–100. [Google Scholar]
- Yang, C.S.; He, P.; Cheng, G.D.; Zhao, S.P.; Deng, Y.S. Study of stress strain relationships and strength characteristics of sat-urated saline frozen silty clay. Rock Soil Mech. 2008, 29, 3282–3286. (In Chinese) [Google Scholar]
- Liu, J.; Zhang, L. The Microstructure Characters of Saline Soil in Qarhan Salt Lake Area and Its Behaviors of Mechanics and Compressive Strength. Arab. J. Sci. Eng. 2014, 39, 8649–8658. [Google Scholar] [CrossRef]
- Pubudu, J.; Buddhima, I.; Ana, H. Influence of Salinity-Based Osmotic Suction on the Shear Strength of a Compacted Clay. Int. J. Geomech. 2021, 21, 04021041. [Google Scholar]
- Elkady, T.Y.; Al-Mahbashi, A.M. Effect of solute concentration on the volume change and shear strength of compacted natural expansive clay. Environ. Earth Sci. 2017, 76, 483. [Google Scholar] [CrossRef]
- Zhang, Y.; Yang, Z.; Liu, J.; Fang, J. Impact of cooling on shear strength of high salinity soils. Cold Reg. Sci. Technol. 2017, 141, 122–130. [Google Scholar] [CrossRef]
- Zhang, W.; Ma, J.; Tang, L. Experimental study on shear strength characteristics of sulfate saline soil in Ningxia region under long-term freeze-thaw cycles. Cold Reg. Sci. Technol. 2019, 160, 48–57. [Google Scholar] [CrossRef]
- Xu, X.; Wang, Y.; Bai, R.; Zhang, H.; Hu, K. Effects of sodium sulfate content on mechanical behavior of frozen silty sand considering concentration of saline solution. Results Phys. 2016, 6, 1000–1007. [Google Scholar] [CrossRef] [Green Version]
- Liao, M.; Lai, Y.; Wang, C. A strength criterion for frozen sodium sulfate saline soil. Can. Geotech. J. 2016, 53, 1176–1185. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Y.; Yang, Z.J.; Liu, J.; Fang, J. Freeze-Thaw Cycle Impact on Volumetric and Low-Temperature Shear Behavior of High-Salinity Soils. J. Cold Reg. Eng. 2019, 33, 06018002. [Google Scholar] [CrossRef]
- Han, Y.; Wang, Q.; Wang, N.; Wang, J.; Zhang, X.; Cheng, S.; Kong, Y. Effect of freeze-thaw cycles on shear strength of saline soil. Cold Reg. Sci. Technol. 2018, 154, 42–53. [Google Scholar] [CrossRef]
- Cheng, S.K.; Wang, Q.; Wang, N.; Wang, J.Q.; Han, Y. Study on Mechanical Properties of Saline Soil and Evaluation of In-fluencing Factors. J. Cold Reg. Eng. 2021, 35, 04021002. [Google Scholar] [CrossRef]
- Peng, W.; Wang, Q.; Liu, Y.F.; Sun, X.H.; Chen, Y.T.; Han, M.X. The Influence of Freeze-Thaw Cycles on the Mechanical Properties and Parameters of the Duncan-Chang Constitutive Model of Remolded Saline Soil in Nong’an County, Jilin Province, Northeastern China. Appl. Sci. 2019, 9, 4941. [Google Scholar] [CrossRef] [Green Version]
- Chen, K.; Huang, S.; Liu, Y.; Ding, L. Improving Carbonate Saline Soil in a Seasonally Frozen Region Using Lime and Fly Ash. Geofluids 2022, 2022, 7472284. [Google Scholar] [CrossRef]
- D2487-17e1; Standard Practice for Classification of Soils for Engineering Purposes. American Society for Testing and Materials ASTM: West Conshohocken, PA, USA, 2017.
- D698-12e2; Standard Test Methods for Laboratory Compaction Characteristics of Soil Using Standard Effort. American Society for Testing and Materials ASTM: West Conshohocken, PA, USA, 2012.
- D2850-15; Standard Test Method for Unconsolidated-Undrained Triaxial Compression Test on Cohesive Soils. American Society for Testing and Materials ASTM: West Conshohocken, PA, USA, 2015.
- D6528-17; Standard Test Method for Consolidated Undrained Direct Simple Shear Testing of Fine Grain Soils. American Society for Testing and Materials ASTM: West Conshohocken, PA, USA, 2017.
- Moore, R. The chemical and mineralogical controls upon the residual strength of pure and natural clays. Geotechnique 1991, 41, 35–47. [Google Scholar] [CrossRef]
- Wan, X.; Lai, Y.; Wang, C. Experimental Study on the Freezing Temperatures of Saline Silty Soils. Permafr. Periglac. Process. 2015, 26, 175–187. [Google Scholar] [CrossRef]
- Xiao, Z.; Lai, Y.; Zhang, M. Study on the freezing temperature of saline soil. Acta Geotech. 2017, 13, 195–205. [Google Scholar] [CrossRef]
- Pang, Q.L.; Xie, Z.Y.; Wang, S.X.; Mei, S.Y.; Li, Z.S. Study on crystallization thermodynamics of sodium bicarbonate. Soda Ind. 2018, 4, 4. (In Chinese) [Google Scholar]
Item | Quartz | Potash Feldspar | Albite | Hornblende | Calcite | Montmorillonite | Chlorite | Mica |
---|---|---|---|---|---|---|---|---|
Content (%) | 42 | 23 | 20 | 4 | 4 | 3 | 2 | 2 |
Item | Content | Method |
---|---|---|
Soil type | CL | |
Natural density (g/cm3) | 2.0 | Ring knife method |
Natural water content (%) | 19.4 | Oven drying method |
Specific gravity of solid particles | 2.69 | Pycnometer method |
Void ratio | 0.38 | |
Degree of saturation (%) | 86 | |
Liquid limit (%) | 28.1 | Combined determination method of liquid and plastic limit |
Plastic limit (%) | 16.7 | |
Optimum water content (%) | 18.0 | Compaction test |
Dry density (g/cm3) | 1.68 | |
Cohesion (kPa) | 43.5 | Direct shear test |
internal friction angle (°) | 27.9 |
Item | Content | Method |
---|---|---|
Soluble salt contents (%) | 2.07 | Water-bath evaporation |
Na+ (mmol/100 g) | 3.93 | Flame photometer |
K+ (mmol/100 g) | 0.32 | |
Ca2+ (mmol/100 g) | 0.36 | EDTA complexometry titration |
Mg2+ (mmol/100 g) | 0.19 | |
SO42− (mmol/100 g) | 0.73 | |
Cl− (mmol/100 g) | 0.76 | Silver nitrate titration |
CO32− (mmol/100 g) | 0.03 | Neutralization titration |
HCO32−(mmol/100 g) | 1.84 |
NaHCO3 Content (S) | Equation of Trendlines | R2 |
---|---|---|
S = 0 | 0.973 | |
S = 0.6% | 0.943 | |
S = 1.1% | 0.998 | |
S = 1.6% | 0.981 | |
S = 2.1% | 0.953 |
NaHCO3 Content (S) | Equation of Trendlines | R2 |
---|---|---|
S = 0 | 0.977 | |
S = 0.6% | 0.969 | |
S = 1.1% | 0.995 | |
S = 1.6% | 0.996 | |
S = 2.1% | 0.998 |
NaHCO3 Content (S) | Equation of Trendlines | R2 |
---|---|---|
S = 0 | 0.988 | |
S = 0.6% | 0.997 | |
S = 1.1% | 0.985 | |
S = 1.6% | 0.996 | |
S = 2.1% | 0.946 |
NaHCO3 Content (S) | Equation of Trendlines | R2 |
---|---|---|
S = 0 | 0.983 | |
S = 0.6% | 0.977 | |
S = 1.1% | 0.964 | |
S = 1.6% | 0.924 | |
S = 2.1% | 0.971 |
NaHCO3 Content (S) | Equation of Trendlines | R2 |
---|---|---|
S = 0 | 0.965 | |
S = 0.6% | 0.937 | |
S = 1.1% | 0.951 | |
S = 1.6% | 0.966 | |
S = 2.1% | 0.963 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Qiu, K.; Ding, L.; Yu, W.; Chen, K.; Huang, S.; Gao, K. Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles. Atmosphere 2022, 13, 2063. https://doi.org/10.3390/atmos13122063
Qiu K, Ding L, Yu W, Chen K, Huang S, Gao K. Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles. Atmosphere. 2022; 13(12):2063. https://doi.org/10.3390/atmos13122063
Chicago/Turabian StyleQiu, Kaichi, Lin Ding, Wenbing Yu, Kezheng Chen, Shuai Huang, and Kai Gao. 2022. "Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles" Atmosphere 13, no. 12: 2063. https://doi.org/10.3390/atmos13122063
APA StyleQiu, K., Ding, L., Yu, W., Chen, K., Huang, S., & Gao, K. (2022). Experimental Investigation of Shear Strength of Carbonate Saline Soil under Freeze-Thaw Cycles. Atmosphere, 13(12), 2063. https://doi.org/10.3390/atmos13122063