Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling
2.2. Analysis Methods
2.3. Emission Amount Calculation
2.4. Environmental Impact Assessment
3. Results and Discussion
3.1. VOCs Emission Characteristics
3.2. Environmental Impact Assessment
3.3. Control Measures for VOCs
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Li, Q.; Su, G.; Li, C.; Liu, P.; Zhao, X.; Zhang, C.; Sun, X.; Mu, Y.; Wu, M.; Wang, Q.; et al. An investigation into the role of VOCs in SOA and ozone production in Beijing, China. Sci. Total Environ. 2020, 720, 137536. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Liao, H.; Shen, L.; Zhang, Q.; Bates, K.H. Anthropogenic drivers of 2013~2017 trends in summer surface ozone in China. Proc. Natl. Acad. Sci. USA 2019, 116, 422–427. [Google Scholar] [CrossRef] [Green Version]
- Yang, L.F.; Luo, H.H.; Yuan, Z.B.; Zheng, J.Y.; Huang, Z.J.; Li, C.; Lin, X.H.; Louie, P.K.K.; Chen, D.H.; Bian, Y.H. Quantitative impacts of meteorology and precursor emission changes on the long-term trend of ambient ozone over the Pearl River Delta, China, and implications for ozone control strategy. Atmos. Chem. Phys. 2019, 19, 12901–12916. [Google Scholar] [CrossRef] [Green Version]
- Liu, Y.H.; Wang, H.L.; Jing, S.G.; Peng, Y.R.; Gao, Y.Q.; Yan, R.S.; Wang, Q.; Lou, S.R.; Cheng, T.T.; Huang, C. Strong regional transport of volatile organic compounds (VOCs) during wintertime in Shanghai megacity of China. Atmos. Environ. 2021, 244, 117940. [Google Scholar] [CrossRef]
- Li, Y.D.; Yin, S.S.; Yu, S.J.; Yuan, M.H.; Dong, Z.; Zhang, D.; Yang, L.M.; Zhang, R.Q. Characteristics, source apportionment and health risks of ambient VOCs during high ozone period at an urban site in central plain, China. Chemosphere 2020, 250, 126283. [Google Scholar] [CrossRef]
- Swaen, G.M.H.; Scheffers, T.; Cock, J.D.; Slangen, J.; Drooge, H. Leukemia risk in caprolactam workers exposed to benzene. Ann. Epidemiol. 2005, 15, 21–28. [Google Scholar] [CrossRef] [PubMed]
- Sekizawa, J.; Ohtawa, H.; Yamamoto, H.; Okada, Y.; Nakano, T.; Hirai, H.; Yamamoto, S.; Yasuno, K. Evaluation of human health risks from exposures to four air pollutants in the indoor and the outdoor environments in tokushima, and communication of the outcomes to the local people. J. Risk Res. 2007, 10, 841–851. [Google Scholar] [CrossRef]
- State Council of the PRC. Three-Year Action Plan to Fight Air Pollution. 2018. Available online: http://www.gov.cn/zhengce/content/2018-07/03/content_5303158.htm (accessed on 14 November 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Comprehensive Treatment Plan of Volatile Organic Compounds in Key Industries. 2018. Available online: http://www.mee.gov.cn/zhengce/zhengceku/2019-11/25/content_5455387.html (accessed on 14 November 2022).
- Ministry of Ecology and Environment of the People’s Republic of China. Governance Solution of Volatile Organic Compounds in 2020. 2020. Available online: http://www.mee.gov.cn/xxgk2018/xxgk/xxgk03/202006/t20200624_785827.html (accessed on 14 November 2022).
- Simayi, M.; Hao, Y.F.; Li, J.; Wu, R.G.; Shi, Y.Q.; Xi, Z.Y.; Zhou, Y.; Xie, S.D. Establishment of county-level emission inventory for industrial NMVOCs in China and spatialtemporalcharacteristics for 2010–2016. Atmos. Environ. 2019, 211, 194–203. [Google Scholar] [CrossRef]
- Han, D.M.; Gao, S.; Fu, Q.Y.; Cheng, J.P.; Chen, X.J.; Xu, H.; Liang, S.; Zhou, Y.; Ma, Y.N. Do volatile organic compounds (VOCs) emitted from petrochemical industries affect regional PM2.5. Atmos. Res. 2018, 209, 123–130. [Google Scholar] [CrossRef]
- Lyu, X.P.; Chen, N.; Guo, H.; Zhang, W.H.; Wang, N.; Wang, Y.; Liu, M. Ambient volatile organic compounds and their effect on ozone production in Wuhan, central China. Sci. Total Environ. 2016, 54, 200–209. [Google Scholar] [CrossRef] [PubMed]
- Wu, R.R.; Xie, S.D. Spatial distribution of ozone formation in Chinaderived from emissions of speciated volatile organic compounds. Environ. Sci. Technol. 2017, 51, 2574–2583. [Google Scholar] [CrossRef]
- Cheng, S.Y.; Li, W.Z.; Wei, W.; Li, G.H.; Wang, H.Y.; Jiang, C.Z.; Zhou, Y. Refinery VOCs Seasonal Composition and Analysis of Ozone Formation Potential. J. Beijing Univ. Technol. 2013, 39, 438–444, 465. [Google Scholar]
- Hu, T.P.; Li, G.; Mao, Y.; Zheng, H.; Qin, S.B.; Min, Y.; Zhang, J.Q.; Xing, X.L.; Qi, S.H. Characteristics and Source Apportionment of VOCs of a Petrochemical Industrial Park During Autumn in China. Environ. Sci. 2018, 39, 517–524. [Google Scholar]
- Mao, Y.; Li, G.; Hu, T.P.; Zheng, H.; An, Y.W.; Min, Y.; Xing, X.L.; Qi, S.H. Characteristics of VOCs Pollution in the Winter Atmosphere of a Typical Petrochemical Industry Park. Environ. Sci. 2018, 39, 525–532. [Google Scholar]
- Feng, Y.X.; Jia, R.Z.; Xiao, A.S.; Tian, S.B.; Shi, N.; Zhu, L. Source profiles and tracing of volatile organic compounds in refineries. China Pet. Process. Pe. 2020, 51, 92–96. [Google Scholar]
- Hou, X.H.; Luan, J.Y.; Zhang, J.H.; Xu, S.H.; Sun, J. Composition spectrum of VOCs in circulating water from petrochemical enterprises. Environ. Protec. Chem. Ind. 2019, 39, 349–353. [Google Scholar]
- Han, X.; Ma, S.T.; Wan, W.; Song, C.X.; Liu, Y.R. Progress in the study of volatile organic compound composition of petrochemical industry in China. China Pet. Process. Pe. 2022, 4, 9–16. [Google Scholar]
- Wei, W.; Wang, S.X.; Chatani, S.; Klimont, Z.; Cofala, J.; Hao, J.M. Emission and speciation of non-methane volatile organic compounds from anthropogenic sources in China. Atmos. Environ. 2008, 42, 4976–4988. [Google Scholar] [CrossRef]
- Liu, Y.; Shao, M.; Fu, L.L.; Lu, S.H.; Zeng, L.M.; Tang, D.G. Source profiles of volatile organic compounds (VOCs) measured in China: Part I. Atmos. Environ. 2008, 42, 6247–6260. [Google Scholar] [CrossRef]
- Zheng, J.; Shao, M.; Che, W.W.; Zhang, L.J.; Zhong, L.J.; Zhang, Y.H.; Streets, D. Speciated VOC emission inventory and spatial patterns of ozone formation potential in the Pearl River Delta, China. Envirom. Sci. Technol. 2009, 43, 8580–8586. [Google Scholar] [CrossRef] [PubMed]
- Wang, H.L.; Hao, R.; Fang, L.; Nie, L.; Zhang, Z.S.; Hao, Z.P. Study on emissions of volatile organic compounds from a typical coking plant in China. Sci. Total Environ. 2021, 752, 141927. [Google Scholar] [CrossRef] [PubMed]
- Carter, W.P.L. Development of ozone reactivity scales for volatileorganic compounds. J. Air Waste Manag. 1994, 44, 881–889. [Google Scholar] [CrossRef] [Green Version]
- Carter, W.P.L. Developmentof the SAPRC-07 chemical mechanism. Atmos. Environ. 2010, 44, 5324–5335. [Google Scholar] [CrossRef]
- Venecek, M.A.; Carter, W.P.L.; Kleeman, M.J. Updating the SAPRC maximum incremental reactivity (MIR) scale for the united states from 1988 to 2010. J. Air Waste Manag. 2018, 68, 1301–1316. [Google Scholar] [CrossRef] [Green Version]
- Grosjean, D. In situ organic aerosol formation during a smog episode estimated production and chemical functionality. Atmos. Environ. 1992, 26, 953–963. [Google Scholar] [CrossRef]
- Grosjean, D.; Seinfeld, J.H. Parameterization of the formation potential of secondary organic aerosols. Atmos. Environ. 1989, 23, 1733–1747. [Google Scholar] [CrossRef]
- Wang, H.L.; Nie, L.; Li, J.; Wang, Y.F.; Wang, G.; Wang, J.H.; Hao, Z.P. Characterization and assessment of volatile organic compounds emissions from typical industries. Chin. Sci. Bull. 2013, 58, 724–730. [Google Scholar] [CrossRef] [Green Version]
- Wang, H.L.; Xue, S.; Hao, R.; Fang, L.; Nie, L. Emission characteristics and ozone formation potential analysis of VOCs from typical metal packaging plant. Atmosphere 2022, 13, 57. [Google Scholar] [CrossRef]
- Fang, L.; Liu, J.Y.; Nie, L.; He, L.J.; Wang, H.L. VOCs emission characteristics and ozone impact analysis of typical automobile repair enterpirses in beijign. Environ. Eng. 2020, 38, 146–155. [Google Scholar]
- Hao, R.; Xue, S.; Sun, H.; Yang, T.; Wang, H.L. Emission characteristics and environment impact of VOCs from typical FRP manufacture industry. Atmosphere 2022, 13, 1274. [Google Scholar] [CrossRef]
- Liu, T. Research on VOCs Accounting and Traceability of Circulating Water System in Petrochemical Enterprises. Master’s Thesis, China University of Petroleum (East China), Qingdao, China, 2017. [Google Scholar]
Sampling Location | Outlet (mg·L−1) | Inlet (mg·L−1) | Relative Difference (%) |
---|---|---|---|
HG2X | 1.1 | 1.6 | 31.3 |
HGLY | 8.1 | 8.8 | 7.95 |
XJ | 1.5 | 1.6 | 6.25 |
YJ | 0.1 | 1.8 | 94.4 |
LC4X | 2.1 | 2.2 | 4.55 |
LC5X | 3.0 | 5.5 | 45.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2022 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Fang, L.; Hao, R.; Xie, X.; Li, G.; Wang, H. Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings. Atmosphere 2022, 13, 1985. https://doi.org/10.3390/atmos13121985
Fang L, Hao R, Xie X, Li G, Wang H. Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings. Atmosphere. 2022; 13(12):1985. https://doi.org/10.3390/atmos13121985
Chicago/Turabian StyleFang, Li, Run Hao, Xiaoqi Xie, Guoao Li, and Hailin Wang. 2022. "Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings" Atmosphere 13, no. 12: 1985. https://doi.org/10.3390/atmos13121985
APA StyleFang, L., Hao, R., Xie, X., Li, G., & Wang, H. (2022). Characteristics of VOCs Emissions from Circulating Water of Typical Petrochemical Enterprises and Their Impact on Surroundings. Atmosphere, 13(12), 1985. https://doi.org/10.3390/atmos13121985