A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014)
Abstract
:1. Introduction
2. Description of Cycled Hybrid Ensemble DA System
2.1. General Overview
- The relocated background for the control member is updated by the dual-resolution GSI augmented control vector (GSI-ACV) [21] using the BEC from the relocated ensemble.
- The relocated ensemble is updated using EnSRF.
- The ensemble is recentered such that the ensemble mean matches the control analysis.
- The outermost domain is replaced with the GFS Ensemble and control grids for all members.
2.2. GSI-ACV
2.3. EnKF
2.4. Vortex Relocation and Modification
3. Experiment Design
3.1. Hurricane Edouard and Observations Assimilated
3.2. HWRF Configuration
3.3. Experiments
3.3.1. 6H-3DEnVar
3.3.2. 6H-4DEnVar
3.3.3. 1H-3DEnVar
3.3.4. Experiments to Investigate Sensitivity to Relocated Storm Position
4. Results
4.1. Intensity Forecast
4.2. Three-Dimensional Structure Correlation
4.3. Simulated Reflectivity
4.4. Verification against Stepped Frequency Microwave Radiometer
5. Diagnosis of Spindown Issue in 1H-3DEnVar
5.1. Imbalance
5.2. Dry Air Intrusion
5.3. Underdispersive Ensemble of Storm Center Locations
6. Summary and Discussion
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Acknowledgments
Conflicts of Interest
References
- Van Thu, T.; Krishnamurti, T.N. Vortex initialization for typhoon track prediction. Theor. Appl. Clim. 1992, 47, 117–126. [Google Scholar] [CrossRef]
- Bender, M.A.; Ross, R.J.; Tuleya, R.E.; Kurihara, Y. Improvements in Tropical Cyclone Track and Intensity Forecasts Using the GFDL Initialization System. Mon. Weather Rev. 1993, 121, 2046–2061. [Google Scholar] [CrossRef] [Green Version]
- Kurihara, Y.; Bender, M.A.; Ross, R.J. An Initialization Scheme of Hurricane Models by Vortex Specification. Mon. Weather Rev. 1993, 121, 2030–2045. [Google Scholar] [CrossRef] [Green Version]
- Zou, X.; Xiao, Q. Studies on the Initialization and Simulation of a Mature Hurricane Using A Variational Bogus Data Assimilation Scheme. J. Atmos. Sci. 1999, 57, 836–860. [Google Scholar] [CrossRef] [Green Version]
- Liu, Q.; Marchok, T.; Pan, H.-L.; Bender, M.; Lord, S. Improvements in Hurricane Initialization and Forecasting at NCEP with Global and Regional (GFDL) Models; NCEP Office Note: College Park, MD, USA, 2000; p. 472. [Google Scholar]
- Pu, Z.-X.; Braun, S.A. Evaluation of Bogus Vortex Techniques with Four-Dimensional Variational Data Assimilation. Mon. Weather Rev. 2001, 129, 2023–2039. [Google Scholar] [CrossRef]
- Torn, R.D.; Hakim, G.J. Ensemble Data Assimilation Applied to RAINEX Observations of Hurricane Katrina (2005). Mon. Weather Rev. 2009, 137, 2817–2829. [Google Scholar] [CrossRef]
- Zhang, F.; Weng, Y.; Sippel, J.A.; Meng, Z.; Bishop, C. Cloud-Resolving Hurricane Initialization and Prediction through Assimilation of Doppler Radar Observations with an Ensemble Kalman Filter. Mon. Weather Rev. 2009, 137, 2105–2125. [Google Scholar] [CrossRef] [Green Version]
- Hamill, T.M.; Whitaker, J.S.; Fiorino, M.; Benjamin, S. Global Ensemble Predictions of 2009′s Tropical Cyclones Initialized with an Ensemble Kalman Filter. Mon. Weather Rev. 2011, 139, 668–688. [Google Scholar] [CrossRef] [Green Version]
- Zhang, F.; Weng, Y.; Gamache, J.; Marks, F. Performance of convection-permitting hurricane initialization and prediction during 2008–2010 with ensemble data assimilation of inner-core airborne Doppler radar observations. Geophys. Res. Lett. 2011, 38, 2–7. [Google Scholar] [CrossRef] [Green Version]
- Aksoy, A.; Aberson, S.D.; Vukićević, T.; Sellwood, K.J.; Lorsolo, S.; Zhang, X. Assimilation of High-Resolution Tropical Cyclone Observations with an Ensemble Kalman Filter Using NOAA/AOML/HRD’s HEDAS: Evaluation of the 2008–11 Vortex-Scale Analyses. Mon. Weather Rev. 2013, 141, 1842–1865. [Google Scholar] [CrossRef]
- Aksoy, A.; Lorsolo, S.; Vukićević, T.; Sellwood, K.J.; Aberson, S.D.; Zhang, F. The HWRF Hurricane Ensemble Data Assimilation System (HEDAS) for High-Resolution Data: The Impact of Airborne Doppler Radar Observations in an OSSE. Mon. Weather Rev. 2012, 140, 1843–1862. [Google Scholar] [CrossRef] [Green Version]
- Weng, Y.; Zhang, F. Assimilating Airborne Doppler Radar Observations with an Ensemble Kalman Filter for Convection-Permitting Hurricane Initialization and Prediction: Katrina (2005). Mon. Weather Rev. 2012, 140, 841–859. [Google Scholar] [CrossRef] [Green Version]
- Dong, J.; Xue, M. Assimilation of radial velocity and reflectivity data from coastal WSR-88D radars using an ensemble Kalman filter for the analysis and forecast of landfalling hurricaneIke (2008). Q. J. R. Meteorol. Soc. 2012, 139, 467–487. [Google Scholar] [CrossRef] [Green Version]
- Poterjoy, J.; Zhang, F. Intercomparison and Coupling of Ensemble and Four-Dimensional Variational Data Assimilation Methods for the Analysis and Forecasting of Hurricane Karl (2010). Mon. Weather Rev. 2014, 142, 3347–3364. [Google Scholar] [CrossRef] [Green Version]
- Hamill, T.M.; Snyder, C. A Hybrid Ensemble Kalman Filter—3D Variational Analysis Scheme. Mon. Weather Rev. 2000, 128, 2905–2919. [Google Scholar] [CrossRef]
- Lorenc, A.C. The potential of the ensemble Kalman filter for NWP—A comparison with 4D-Var. Q. J. R. Meteorol. Soc. 2003, 129, 3183–3203. [Google Scholar] [CrossRef]
- Wang, X.; Barker, D.M.; Snyder, C.; Hamill, T.M. A Hybrid ETKF-3DVAR Data Assimilation Scheme for the WRF Model. Part I: Observing System Simulation Experiment. Mon. Weather Rev. 2008, 136, 5116–5131. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Barker, D.; Snyder, C.; Hamill, T.M. A Hybrid ETKF–3DVAR Data Assimilation Scheme for the WRF Model. Part II: Real Observation Experiments. Mon. Weather Rev. 2008, 136, 5132–5147. [Google Scholar] [CrossRef] [Green Version]
- Wang, X.; Parrish, D.; Kleist, D.T.; Whitaker, J.S. GSI 3DVar-Based Ensemble—Variational Hybrid Data Assimilation for NCEP Global Forecast System: Single-Resolution Experiments. Mon. Weather Rev. 2013, 141, 4098–4117. [Google Scholar] [CrossRef]
- Wang, X. Incorporating Ensemble Covariance in the Gridpoint Statistical Interpolation Variational Minimization: A Mathematical Framework. Mon. Weather Rev. 2010, 138, 2990–2995. [Google Scholar] [CrossRef] [Green Version]
- Wang, X. Application of the WRF Hybrid ETKF–3DVAR Data Assimilation System for Hurricane Track Forecasts. Weather Forecast. 2011, 26, 868–884. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Huang, X.-Y. Sensitivity of Limited-Area Hybrid Variational-Ensemble Analyses and Forecasts to Ensemble Perturbation Resolution. Mon. Weather Rev. 2015, 143, 3454–3477. [Google Scholar] [CrossRef]
- Schwartz, C.S.; Liu, Z.; Huang, X.-Y.; Kuo, Y.-H.; Fong, C.-T. Comparing Limited-Area 3DVAR and Hybrid Variational-Ensemble Data Assimilation Methods for Typhoon Track Forecasts: Sensitivity to Outer Loops and Vortex Relocation. Mon. Weather Rev. 2013, 141, 4350–4372. [Google Scholar] [CrossRef]
- Wang, X.; Lei, T. GSI-Based Four-Dimensional Ensemble–Variational (4DEnsVar) Data Assimilation: Formulation and Single-Resolution Experiments with Real Data for NCEP Global Forecast System. Mon. Weather Rev. 2014, 142, 3303–3325. [Google Scholar] [CrossRef]
- Li, Y.; Wang, X.; Xue, M. Assimilation of Radar Radial Velocity Data with the WRF Hybrid Ensemble—3DVAR System for the Prediction of Hurricane Ike (2008). Mon. Weather Rev. 2012, 140, 3507–3524. [Google Scholar] [CrossRef] [Green Version]
- Li, X.; Ming, J.; Xue, M.; Wang, Y.; Zhao, K. Implementation of a dynamic equation constraint based on the steady state momentum equations within the WRF hybrid ensemble—3DVar data assimilation system and test with radar T-TREC wind assimilation for tropical Cyclone Chanthu (2010). J. Geophys. Res. Atmos. 2015, 120, 4017–4039. [Google Scholar] [CrossRef] [Green Version]
- Lu, X.; Wang, X.; Li, Y.; Tong, M.; Ma, X. GSI-based ensemble-variational hybrid data assimilation for HWRF for hurricane initialization and prediction: Impact of various error covariances for airborne radar observation assimilation. Q. J. R. Meteorol. Soc. 2017, 143, 223–239. [Google Scholar] [CrossRef]
- Lu, X.; Wang, X.; Tong, M.; Tallapragada, V. GSI-Based, Continuously Cycled, Dual-Resolution Hybrid Ensemble—Variational Data Assimilation System for HWRF: System Description and Experiments with Edouard (2014). Mon. Weather Rev. 2017, 145, 4877–4898. [Google Scholar] [CrossRef]
- Zhang, S.; Pu, Z. Numerical Simulation of Rapid Weakening of Hurricane Joaquin with Assimilation of High-Definition Sounding System Dropsondes during the Tropical Cyclone Intensity Experiment: Comparison of Three- and Four-Dimensional Ensemble—Variational Data Assimilation. Weather Forecast. 2019, 34, 521–538. [Google Scholar] [CrossRef]
- Poterjoy, J.; Zhang, F.; Weng, Y. The Effects of Sampling Errors on the EnKF Assimilation of Inner-Core Hurricane Observations. Mon. Weather Rev. 2014, 142, 1609–1630. [Google Scholar] [CrossRef] [Green Version]
- Poterjoy, J.; Zhang, F. Comparison of Hybrid Four-Dimensional Data Assimilation Methods with and without the Tangent Linear and Adjoint Models for Predicting the Life Cycle of Hurricane Karl (2010). Mon. Weather Rev. 2016, 144, 1449–1468. [Google Scholar] [CrossRef]
- Evensen, G. Analysis of iterative ensemble smoothers for solving inverse problems. Comput. Geosci. 2018, 22, 885–908. [Google Scholar] [CrossRef] [Green Version]
- Whitaker, J.S.; Hamill, T.M. Ensemble Data Assimilation without Perturbed Observations. Mon. Weather Rev. 2002, 130, 1913–1924. [Google Scholar] [CrossRef]
- Liu, Q.; Lord, S.; Surgi, N.; Zhu, Y.; Wobus, R.; Toth, Z.; Marchok, T. Hurricane Re-location in Global Ensemble Forecast System. In Proceedings of the 27th Conference on Hurricanes and Tropical Meteorology, Monterey, CA, USA, 23–28 April 2006; Available online: https://ams.confex.com/ams/pdfpapers/108503.pdf (accessed on 16 July 2019).
- Wang, X.; Snyder, C.; Hamill, T.M. On the Theoretical Equivalence of Differently Proposed Ensemble—3DVAR Hybrid Analysis Schemes. Mon. Weather Rev. 2007, 135, 222–227. [Google Scholar] [CrossRef]
- Gaspari, G.; Cohn, S.E. Construction of correlation functions in two and three dimensions. Q. J. R. Meteorol. Soc. 1999, 125, 723–757. [Google Scholar] [CrossRef]
- Trahan, S.; Sparling, L. An Analysis of NCEP Tropical Cyclone Vitals and Potential Effects on Forecasting Models. Weather Forecast. 2012, 27, 744–756. [Google Scholar] [CrossRef]
- Tong, M.; Sippel, J.A.; Tallapragada, V.; Liu, E.; Kieu, C.; Kwon, I.-H.; Wang, W.; Liu, Q.; Ling, Y.; Zhang, B. Impact of Assimilating Aircraft Reconnaissance Observations on Tropical Cyclone Initialization and Prediction Using Operational HWRF and GSI Ensemble—Variational Hybrid Data Assimilation. Mon. Weather Rev. 2018, 146, 4155–4177. [Google Scholar] [CrossRef]
- Chen, Y.; Snyder, C. Assimilating Vortex Position with an Ensemble Kalman Filter. Mon. Weather Rev. 2007, 135, 1828–1845. [Google Scholar] [CrossRef] [Green Version]
- Yang, S.-C.; Lin, K.-J.; Miyoshi, T.; Kalnay, E. Improving the spin-up of regional EnKF for typhoon assimilation and forecasting with Typhoon Sinlaku (2008). Tellus A Dyn. Meteorol. Oceanogr. 2013, 65, 20804. [Google Scholar] [CrossRef]
- Tallapragada, V.; Gopalakrishnan, S.G.; Liu, Q.; Marchok, T.P. Hurricane Weather Research and Forecasting (HWRF) Model: 2014 Scientific Documentation; Technical Report; Developmental Testbed Center: Boulder, CO, USA, 2014; pp. 1–105. Available online: https://dtcenter.org/sites/default/files/community-code/hwrf/docs/scientific_documents/HWRFv3.6a_ScientificDoc.pdf (accessed on 7 March 2017).
- Tallapragara, V.; Bernardet, L.; Biswas, M.; Ginis, I.; Kwon, Y.; Liu, Q.; Marchok, T.; Sheinin, D.; Thomas, B.; Tong, M.; et al. Hurricane Weather Research and Forecasting (HWRF) Model: 2015 Scientific Documentation; UCAR/NCAR-Research Data Archive: Boulder, CO, USA, 2016; p. 105. [Google Scholar]
- Liu, Q.; Zhang, X.; Tong, M.; Zhang, Z.; Liu, B.; Wang, W.; Zhu, L.; Zhang, B.; Xu, X.; Trahan, S.; et al. Vortex Initialization in the NCEP Operational Hurricane Models. Atmosphere 2020, 11, 968. [Google Scholar] [CrossRef]
- Zhou, C.; Shao, H.; Ligia, B. Applications of the GSI-Hybrid Data Assimilation for High-Resolution Tropical Storm Forecasts: Tackling the intensity spindown issue in 2014 HWRF. In Proceedings of the 16th WRF Users Workshop, Boulder, CO, USA, 15–19 June 2015; Available online: https://dtcenter.org/eval/data_assim/publications/GSI-Hybridat2015WRFUsersWorkshop.v2poster.pdf (accessed on 10 July 2019).
- Gamache, J.F.; Franklin, J.; Surgi, N.; Liu, Q. Real-Time Dissemination of Hurricane Wind Fields Determined from Airborne Doppler Radar Data Real-Time Dissemination of Hurricane Wind Fields Determined; Technical Report; NOAA: Washington, DC, USA, 2005; 38p. Available online: http://www.nhc.noaa.gov/jht/2003-2005reports/DOPLRgamache_JHTfinalreport.pdf (accessed on 16 July 2019).
- Lu, X.; Wang, X. Improving Hurricane Analyses and Predictions with TCI, IFEX Field Campaign Observations, and CIMSS AMVs Using the Advanced Hybrid Data Assimilation System for HWRF. Part I: What is Missing to Capture the Rapid Intensification of Hurricane Patricia (2015) when HWRF is already Initialized with a More Realistic Analysis? Mon. Weather Rev. 2019, 147, 1351–1373. [Google Scholar] [CrossRef]
- Hamill, T.M.; Whitaker, J.S. What Constrains Spread Growth in Forecasts Initialized from Ensemble Kalman Filters? Mon. Weather Rev. 2011, 139, 117–131. [Google Scholar] [CrossRef] [Green Version]
Data Type | Domain (d01) | Domain (d02) | Domain (d03) | |
---|---|---|---|---|
Conventional Observations | Radiosondes | No observations are assimilated | Y | Y |
Dropwindsondes | Y | Y | ||
Aircraft Reports | Y | Y | ||
Surface Ship and Buoy Observations | Y | Y | ||
Surface Observations over Land | Y | Y | ||
Pibal Winds | Y | Y | ||
Wind Profilers | Y | Y | ||
Radar-derived Velocity Azimuth Display Winds | Y | Y | ||
WindSat Scatterometer Winds | Y | Y | ||
Integrated Precipitable Water Derived from the Global Positioning System | Y | Y | ||
Tail Doppler Radar Observations | Y | Y | ||
Satellite Derived Winds | Y | Y | ||
Satellite radiances | IR | Y | N | |
MW | Y | N |
Date | Abbreviation | SFMR Legs |
---|---|---|
1200 UTC 15 September 2014 | E1 | 5 |
1800 UTC 15 September 2014 | E2 | 3 |
1800 UTC 16 September 2014 | E3 | 4 |
1200 UTC 17 September 2014 | E4 | 2 |
1800 UTC 17 September 2014 | E5 | 1 |
Physics | Scheme |
---|---|
Microphysics | Ferrier |
Cumulus | Simplified Arakawa-Schubert (SAS) |
Surface Layer | HWRF Surface Layer |
Land-surface Model | GFDL slab scheme |
Planetary Boundary Layer | Non-local |
Radiation | Eta Longwave and Shortwave |
Experiment Name | DA Window | Vortex Relocation Procedure | DA Method |
---|---|---|---|
6H-3DEnVar | 6 h | TCVitals + EnSRF | 3DEnVar |
6H-4DEnVar | 6 h | TCVitals + EnSRF | 4DEnVar |
1H-3DEnVar | 1 h | TCVitals + EnSRF | 3DEnVar |
6H-4DEnVar-sl | 6 h | Satellite | 4DEnVar |
1H-3DEnVar-sl | 1 h | Satellite | 3DEnVar |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Davis, B.; Wang, X.; Lu, X. A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014). Atmosphere 2021, 12, 942. https://doi.org/10.3390/atmos12080942
Davis B, Wang X, Lu X. A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014). Atmosphere. 2021; 12(8):942. https://doi.org/10.3390/atmos12080942
Chicago/Turabian StyleDavis, Benjamin, Xuguang Wang, and Xu Lu. 2021. "A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014)" Atmosphere 12, no. 8: 942. https://doi.org/10.3390/atmos12080942
APA StyleDavis, B., Wang, X., & Lu, X. (2021). A Comparison of HWRF Six-Hourly 4DEnVar and Hourly 3DEnVar Assimilation of Inner Core Tail Dopper Radar Observations for the Prediction of Hurricane Edouard (2014). Atmosphere, 12(8), 942. https://doi.org/10.3390/atmos12080942