Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol Water-Based Supersaturation Condensation Growth Measurement System
Abstract
:1. Introduction
2. Materials and Methods
2.1. Description of Water-Based Supersaturated Condensation Growth Measurement System
2.2. Description of Water-Based Supersaturation Control Unit
2.3. Activation Efficiency Calculation
2.4. Experimental Set-Up of Water-Based Supersaturation Control System Calibrtion
3. Results and Discussions
3.1. Calculation Results of Water-Based Supersaturation Growth Control System
3.2. Stability Time of Condensation Growth Measurement System
3.3. Measurement of Monodisperse Standard Particles for Different Supersaturated Condensation Growth Control Conditions
4. Conclusions
- The calibrated supersaturation had a wide dynamic range from 0.92 to 2.33 or higher depending on the measured D50, and it meets the measurement requirement of 0.95–2.2. The resolution was up to 0.14, the stabilization time about 6 min and even 80 s for saturation 0.92–1.01. This helped to control saturation rapidly, and the control deviation of saturation was no more than 0.06. Moreover, a higher saturation can be achieved by adjusting the temperature difference. Thus, the constructed condensation growth system can be combined with a humidity control system to measure the growth factor over a wide humidity range (10–233%).
- A condensation growth experiment was conducted for monodisperse standard particles of different chemical components and different sizes under different saturation conditions. Compared with hygroscopic growth at high humidity, the particle size increased significantly. This proved the importance of ultrafine particles activation and growth to form additional cloud droplet. The condensation growth result of single-component standard particles showed that particles increase in size as the saturation increases; for AS particles, condensation growth medium size of 30 nm, 50 nm and 80 nm increased to similar sizes at the same saturation level, with a difference within 13.4%. AS particles grew to a size larger than glucose particles when the same size particles passed through the growth control system, and the increase in size for AS increased 13.4–30.2% relative to that of glucose.
- For mixed-component particles, the increase in size for particles increased with the increase of saturation, and with the increase of glucose ratio, the increase in size decreased about 15.9–25.0%. Hygroscopic organic compounds inhibited the growth of inorganic compounds for mixed-component particles.
Author Contributions
Funding
Conflicts of Interest
References
- Pandis, S.N.; Seinfeld, J.H.; Pilinis, C. The smog-fog-smog cycle and acid deposition. J. Geophys. Res. Atmos. 1990, 95, 18489–18500. [Google Scholar] [CrossRef]
- Tang, G.Q.; Zhao, P.S.; Wang, Y.H.; Gao, W.K.; Cheng, M.T.; Xin, J.Y.; Li, X.; Wang, Y.S. Mortality and air pollution in Beijing: The long-term relationship. Atmos. Environ. 2017, 150, 238–243. [Google Scholar] [CrossRef]
- Kerminen, V.M.; Paramonov, M.; Anttila, T.; Riipinen, I.; Fountoukis, C.; Korhonen, H.; Asmi, E.; Laakso, L.; Lihavainen, H.; Swietlicki, E.; et al. Cloud condensation nuclei production associated with atmospheric nucleation: A synthesis based on existing literature and new results. Atmos. Chem. Phys. 2012, 12, 12037–12059. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Pirjola, U.; Makela, J.M. Stable sulphate clusters as a source of new atmospheric particles. Nature 2000, 404, 66–69. [Google Scholar] [CrossRef] [PubMed]
- Zhang, R.; Khalizov, A.; Wang, L.; Hu, M.; Xu, W. Nucleation and growth of nanoparticles in the atmosphere. Chem. Rev. 2012, 112, 1957–2011. [Google Scholar] [CrossRef] [PubMed]
- Fan, J.W.; Rosenfeld, D.; Zhang, Y.W.; Giangrande, S.E.; Li, Z.Q.; Machado, L.A.T.; Martin, S.T.; Yang, Y.; Wang, J.; Artaxo, P.; et al. Substantial convection and precipitation enhancements by ultrafine aerosol particles. Science 2018, 359, 411–418. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Agarwal, J.K.; Sem, G.J. Continuous-flow, single-particle-counting condensation nucleus counter. J. Aerosol Sci. 1980, 11, 343–357. [Google Scholar] [CrossRef]
- Kuang, C.A.; Chen, M.D.; McMurry, P.H.; Wang, J. Modification of laminar flow ultrafine condensation particle counters for the enhanced detection of 1 nm condensation nuclei. Aerosol Sci. Technol. 2012, 46, 309–315. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Laakso, L.; Lehtinen, K.E.J.; Riipinen, I.; Dal Maso, M.; Anttila, T.; Kerminen, V.M.; Horrak, U.; Vana, M.; Tammet, H. Initial steps of aerosol growth. Atmos. Chem. Phys. 2004, 4, 2553–2560. [Google Scholar] [CrossRef] [Green Version]
- Stolzenburg, M.R.; McMurry, P.H. An ultrafine aerosol condensation nucleus counter. Aerosol Sci. Technol. 1991, 14, 48–65. [Google Scholar] [CrossRef]
- Duan, J.Y.; Wang, Y.Y.; Xie, X.; Li, M.; Tao, J.; Wu, Y.F.; Cheng, T.T.; Zhang, R.J.; Liu, Y.H.; Li, X.; et al. Influence of pollutants on activity of aerosol cloud condensation nuclei (CCN) during pollution and post-rain periods in Guangzhou, southern China. Sci. Total Environ. 2018, 642, 1008–1019. [Google Scholar] [CrossRef]
- Chang, D.Y.; Lelieveld, J.; Tost, H.; Steil, B.; Pozzer, A.; Yoon, J. Aerosol physicochemical effects on CCN activation simulated with the chemistry-climate model EMAC. Atmos. Environ. 2017, 162, 127–140. [Google Scholar] [CrossRef]
- Nenes, A.; Chuang, P.Y.; Flagan, R.C.; Seinfeld, J.H. A theoretical analysis of cloud condensation nucleus (CCN) instruments. J. Geophys. Res. Atmos. 2001, 106, 3449–3474. [Google Scholar] [CrossRef] [Green Version]
- Fukuta, N.; Saxena, V.K. Horizontal thermal-gradient cloud condensation nucleus spectrometer. J. Appl. Meteorol. 1979, 18, 1352–1362. [Google Scholar] [CrossRef] [Green Version]
- Hudson, J.G. An instantaneous CCN spectrometer. J. Atmos. Ocean. Technol. 1989, 6, 1055–1065. [Google Scholar] [CrossRef] [Green Version]
- Mordas, G.; Sipila, M.; Kulmala, M. Nanometer particle detection by the condensation particle counter UF-02proto. Aerosol Sci. Technol. 2008, 42, 521–527. [Google Scholar] [CrossRef]
- Stolzenburg, M.R.; McMurry, P.H. Equations governing single and tandem DMA configurations and a new lognormal approximation to the transfer function. Aerosol Sci. Technol. 2008, 42, 421–432. [Google Scholar] [CrossRef] [Green Version]
- Michel Flores, J.; Bar-Or, R.Z.; Bluvshtein, N.; Abo-Riziq, A.; Kostinski, A.; Borrmann, S.; Koren, I.; Koren, I.; Rudich, Y. Absorbing aerosols at high relative humidity: Linking hygroscopic growth to optical properties. Atmos. Chem. Phys. 2012, 12, 5511–5521. [Google Scholar] [CrossRef] [Green Version]
- Kulmala, M.; Riipinen, I.; Sipila, M.; Manninen, H.E.; Petaja, T.; Junninen, H.; Dal Maso, M.; Mordas, G.; Mirme, A.; Vana, M.; et al. Toward direct measurement of atmospheric nucleation. Science 2007, 318, 89–92. [Google Scholar] [CrossRef] [Green Version]
- Villani, P.; Picard, D.; Michaud, V.; Laj, P.; Wiedensohler, A. Design and Validation of a volatility hygroscopic tandem differential mobility analyzer (VH-TDMA) to characterize the relationships between the thermal and hygroscopic properties of atmospheric aerosol particles. Aerosol Sci. Technol. 2008, 42, 729–741. [Google Scholar] [CrossRef]
- Lei, T.; Ma, N.; Hong, J.; Tuch, T.; Wang, X.; Wang, Z.; Pöhlker, M.; Ge, M.; Wang, W.; Mikhailov, E.; et al. Nano-hygroscopicity tandem differential mobility analyzer (nano-HTDMA) for investigating hygroscopic properties of sub-10 nm aerosol nanoparticles. Atmos. Meas. Tech. 2020, 13, 5551–5567. [Google Scholar] [CrossRef]
- Duplissy, J.; Gysel, M.; Sjogren, S.; Meyer, N.; Good, N.; Kammermann, L.; Michaud, V.; Weigel, R.; dos Santos, S.M.; Gruening, C.; et al. Intercomparison study of six HTDMAs: Results and recommendations. Atmos. Meas. Tech. 2009, 2, 363–378. [Google Scholar] [CrossRef] [Green Version]
- Kupc, A.; Bischof, O.; Tritscher, T.; Beeston, M.; Krinke, T.; Wagner, P.E. Laboratory characterization of a new nano-water-based CPC 3788 and performance comparison to an ultrafine butanol-based CPC 3776. Aerosol Sci. Technol. 2013, 47, 183–191. [Google Scholar] [CrossRef]
- Keller, A.; Tritscher, T.; Burtscher, H. Performance of water-based CPC 3788 for particles from a propane-flame soot-generator operated with rich fuel/air mixtures. J. Aerosol Sci. 2013, 60, 67–72. [Google Scholar] [CrossRef]
- Bian, J.; Gui, H.; Xie, Z.; Yu, T.; Wei, X.; Wang, W.; Liu, J. Simulation of three-stage operating temperature for supersaturation water-based condensational growth tube. J. Environ. Sci. China 2020, 90, 275–285. [Google Scholar] [CrossRef]
- Hering, S.V.; Stolzenburg, M.R. A method for particle size amplification by water condensation in a laminar, thermally diffusive flow. Aerosol Sci. Technol. 2005, 39, 428–436. [Google Scholar] [CrossRef]
- Ma, N.; Zhao, C.; Deng, Z.; Tao, J.; Yu, R.; Chen, J.; Bian, Y. A modified method for calibrating the supersaturations in DMT cloud condensation nuclei counter. Acta Sci. Nat. Univ. Pekin. 2014, 50, 805–811. [Google Scholar]
- Rose, D.; Gunthe, S.S.; Mikhailov, E.; Frank, G.P.; Dusek, U.; Andreae, M.O.; Poeschl, U. Calibration and measurement uncertainties of a continuous-flow cloud condensation nuclei counter (DMT-CCNC): CCN activation of ammonium sulfate and sodium chloride aerosol particles in theory and experiment. Atmos. Chem. Phys. 2008, 8, 1153–1179. [Google Scholar] [CrossRef] [Green Version]
- Denjean, C.; Formenti, P.; Picquet-Varrault, B.; Katrib, Y.; Pangui, E.; Zapf, P.; Doussin, J.F. A new experimental approach to study the hygroscopic and optical properties of aerosols: Application to ammonium sulfate particles. Atmos. Meas. Tech. 2014, 7, 183–197. [Google Scholar] [CrossRef] [Green Version]
- Mochida, M.; Kawamura, K. Hygroscopic properties of levoglucosan and related organic compounds characteristic to biomass burning aerosol particles. J. Geophys. Res. Atmos. 2004, 109. [Google Scholar] [CrossRef] [Green Version]
- Zhao, Y.; Liu, Y.C.; Ma, J.Z.; Ma, Q.X.; He, H. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. Atmos. Environ. 2017, 152, 465–476. [Google Scholar] [CrossRef]
- Petters, S.S.; Petters, M.D. Surfactant effect on cloud condensation nuclei for two-component internally mixed aerosols. J. Geophys. Res. Atmos. 2016, 121, 1878–1895. [Google Scholar] [CrossRef] [Green Version]
- Kreidenweis, S.M.; Remer, L.A.; Bruintjes, R.; Dubovik, O. Smoke aerosol from biomass burning in Mexico: Hygroscopic smoke optical model. J. Geophys. Res. Atmos. 2001, 106, 4831–4844. [Google Scholar] [CrossRef] [Green Version]
- Kuai, Y.; Xie, Z.; Chen, J.; Gui, H.; Xu, L.; Kuang, C.; Wang, P.; Liu, X.; Liu, J.; Lakowicz, J.R.; et al. Real-time measurement of the hygroscopic growth dynamics of single aerosol nanoparticles with bloch surface wave microscopy. ACS Nano 2020, 14, 9136–9144. [Google Scholar] [CrossRef]
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Bian, J.; Gui, H.; Wei, X.; Yu, T.; Xie, Z.; Wang, J.; Liu, J. Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol Water-Based Supersaturation Condensation Growth Measurement System. Atmosphere 2021, 12, 558. https://doi.org/10.3390/atmos12050558
Bian J, Gui H, Wei X, Yu T, Xie Z, Wang J, Liu J. Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol Water-Based Supersaturation Condensation Growth Measurement System. Atmosphere. 2021; 12(5):558. https://doi.org/10.3390/atmos12050558
Chicago/Turabian StyleBian, Jiejie, Huaqiao Gui, Xiuli Wei, Tongzhu Yu, Zhibo Xie, Jie Wang, and Jianguo Liu. 2021. "Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol Water-Based Supersaturation Condensation Growth Measurement System" Atmosphere 12, no. 5: 558. https://doi.org/10.3390/atmos12050558
APA StyleBian, J., Gui, H., Wei, X., Yu, T., Xie, Z., Wang, J., & Liu, J. (2021). Development and Application of a Wide Dynamic Range and High Resolution Atmospheric Aerosol Water-Based Supersaturation Condensation Growth Measurement System. Atmosphere, 12(5), 558. https://doi.org/10.3390/atmos12050558