Double High-Level Ozone and PM2.5 Co-Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO
Abstract
:1. Introduction
2. Materials and Methods
2.1. Sampling Site Description
2.2. Water-Soluble Inorganic Ion and Trace Gas Measurements
2.3. PM2.5 Mass Concentrations and Trace Gases
2.4. Meteorological Data
3. Results and Discussion
3.1. Overview of PM2.5 and Trace Gas Pollution in Shanghai
3.1.1. Seasonal Behaviors
3.1.2. Distinguishment of Double High-Level O3 and PM2.5 Episodes
3.1.3. Characteristics of Double Low-Level O3 and PM2.5 Periods
3.2. General Characteristic of Double High-Level O3 and PM2.5 Episodes
3.2.1. Mixed Pollution Episodes with Double High-Level PM2.5 and O3
3.2.2. Characteristic of Water-Soluble Secondary Inorganic Ions in PM2.5 during the Double High-Level PM2.5 and O3 Pollution Episodes
3.2.3. Characteristic of Gaseous Pollutants and Meteorological Parameters during the Double High Pollution Episodes
3.3. Formation Mechanisms of the Double High-Level O3 and PM2.5 Episodes
3.4. Impact of Daytime HONO on O3 Formation during Double High-Level PM2.5 and O3 Pollution Cases
4. Conclusions
Supplementary Materials
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Fu, Q.; Zhuang, G.; Wang, J.; Xu, C.; Huang, K.; Li, J.; Hou, B.; Lu, T.; Streets, D.G. Mechanism of formation of the heaviest pollution episode ever recorded in the Yangtze River Delta, China. Atmos. Environ. 2008, 42, 2023–2036. [Google Scholar] [CrossRef]
- Chen, H.; Zhuang, B.; Liu, J.; Wang, T.; Li, S.; Xie, M.; Li, M.; Chen, P.; Zhao, M. Characteristics of ozone and particles in the near-surface atmosphere in the urban area of the Yangtze River Delta, China. Atmos. Chem. Phys. Discuss. 2019, 19, 4153–4175. [Google Scholar] [CrossRef] [Green Version]
- Ding, X.; Kong, L.; Du, C.; Zhanzakova, A.; Fu, H.; Tang, X.; Wang, L.; Yang, X.; Chen, J.; Cheng, T. Characteristics of size-resolved atmospheric inorganic and carbonaceous aerosols in urban Shanghai. Atmos. Environ. 2017, 167, 625–641. [Google Scholar] [CrossRef]
- Qiao, T.; Zhao, M.; Xiu, G.; Yu, J. Simultaneous monitoring and compositions analysis of PM1 and PM2.5 in Shanghai: Implications for characterization of haze pollution and source apportionment. Sci. Total. Environ. 2016, 557–558, 386–394. [Google Scholar] [CrossRef] [PubMed]
- Zhang, K.; Zhou, L.; Fu, Q.; Yan, L.; Morawska, L.; Jayaratne, R.; Xiu, G. Sources and vertical distribution of PM2.5 over Shanghai during the winter of 2017. Sci. Total. Environ. 2020, 706, 135683. [Google Scholar] [CrossRef]
- Song, Y.; Tang, X.Y.; Fang, C.; Zhang, Y.H.; Hu, M.; Zeng, L.M.; Li, C.C.; Michael, B. Relationship between the visibility degradation and particle pollution in Beijing. Acta Scien. Circum. 2003, 234, 468–471. [Google Scholar]
- Bell, M.L.; Davis, D.L.; Gouveia, N.; Borja-Aburto, V.H.; Cifuentes, L.A. The avoidable health effects of air pollution in three Latin American cities: Santiago, São Paulo, and Mexico City. Environ. Res. 2006, 100, 431–440. [Google Scholar] [CrossRef]
- Seinfeld, J.H.; Pandis, S.N. Atmospheric Chemistry and Physics: From Air Pollution to Climate Change, 2nd ed.; John Wiley & Sons, Inc.: Hoboken, NJ, USA, 2006. [Google Scholar]
- Huang, R.-J.; Zhang, Y.; Bozzetti, C.; Ho, K.-F.; Cao, J.-J.; Han, Y.; Daellenbach, K.R.; Slowik, J.G.; Platt, S.M.; Canonaco, F.; et al. High secondary aerosol contribution to particulate pollution during haze events in China. Nat. Cell Biol. 2014, 514, 218–222. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, T.; Xue, L.; Brimblecombe, P.; Lam, Y.F.; Li, L.; Zhang, L. Ozone pollution in China: A review of concentrations, meteorological influences, chemical precursors, and effects. Sci. Total. Environ. 2017, 575, 1582–1596. [Google Scholar] [CrossRef] [PubMed]
- Abdullah, A.M.; Ismail, M.; Yuen, F.S.; Abdullah, S.; Elhadi, R.E. The relationship between daily maximum temperature and daily maximum ground level ozone concentration. Pol. J. Environ. Stud. 2017, 26, 517–523. [Google Scholar] [CrossRef]
- Atkinson, R. Atmospheric chemistry of VOCs and NOX. Atmos. Environ. 2000, 34, 2063–2101. [Google Scholar] [CrossRef]
- Tong, L.; Zhang, H.; Yu, J.; He, M.; Xu, N.; Zhang, J.; Qian, F.; Feng, J.; Xiao, H. Characteristics of surface ozone and nitrogen oxides at urban, suburban and rural sites in Ningbo, China. Atmos. Res. 2017, 187, 57–68. [Google Scholar] [CrossRef]
- Shen, X.; Sun, J.; Zhang, X.; Zhang, Y.; Zhang, L.; Che, H.; Ma, Q.; Yu, X.; Yue, Y. Characterization of submicron aerosols and effect on visibility during a severe haze-fog episode in Yangtze River Delta, China. Atmos. Environ. 2015, 120, 307–316. [Google Scholar] [CrossRef] [Green Version]
- Zhang, Q.; Yan, R.; Fan, J.; Yu, S.; Yang, W.; Li, P.; Wang, S.; Chen, B.; Liu, W.; Zhang, X. A heavy haze episode in Shanghai in December of 2013: Characteristics, origins and implications. Aerosol Air Qual. Res. 2015, 15, 1881–1893. [Google Scholar] [CrossRef] [Green Version]
- Zheng, G.J.; Duan, F.K.; Su, H.; Ma, Y.L.; Cheng, Y.F.; Zheng, B.; Zhang, Q.; Huang, T.; Kimoto, T.; Chang, D.; et al. Exploring the severe winter haze in Beijing: The impact of synoptic weather, regional transport and heterogeneous reactions. Atmos. Chem. Phys. Discuss. 2015, 15, 2969–2983. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.J.; Fu, C.B.; Yang, X.Q.; Sun, J.N.; Zheng, L.F.; Xie, Y.N.; Herrmann, E.; Nie, W.; Petäjä, T.; Kerminen, V.-M.; et al. Ozone and fine particle in the western Yangtze River Delta: An overview of 1 yr data at the SORPES station. Atmos. Chem. Phys. Discuss. 2013, 13, 5813–5830. [Google Scholar] [CrossRef] [Green Version]
- Yue, D.; Zhong, L.; Zhang, T.; Shen, J.; Zhou, Y.; Zeng, L.; Dong, H.; Ye, S. Pollution properties of water-soluble secondary inorganic ions in atmospheric PM2.5 in the Pearl River Delta region. Aerosol Air Qual. Res. 2015, 15, 1737–1747. [Google Scholar] [CrossRef] [Green Version]
- Zhang, G.; Xu, H.; Qi, B.; Du, R.; Gui, K.; Wang, H.; Jiang, W.; Liang, L.; Xu, W. Characterization of atmospheric trace gases and particulate matter in Hangzhou, China. Atmos. Chem. Phys. Discuss. 2018, 18, 1705–1728. [Google Scholar] [CrossRef] [Green Version]
- Sun, W.; Wang, D.; Yao, L.; Fu, H.; Fu, Q.; Wang, H.; Li, Q.; Wang, L.; Yang, X.; Xian, A.; et al. Chemistry-triggered events of PM2.5 explosive growth during late autumn and winter in Shanghai, China. Environ. Pollut. 2019, 254, 112864. [Google Scholar] [CrossRef] [PubMed]
- Li, L.; An, J.; Shi, Y.; Zhou, M.; Yan, R.; Huang, C.; Wang, H.; Lou, S.; Wang, Q.; Lu, Q.; et al. Source apportionment of surface ozone in the Yangtze River Delta, China in the summer of 2013. Atmos. Environ. 2016, 144, 194–207. [Google Scholar] [CrossRef]
- Awang, N.R.; Ramli, N.A.; Shith, S.; Zainordin, N.S.; Manogaran, H. Transformational characteristics of ground-level ozone during high particulate events in urban area of Malaysia. Air Qual. Atmos. Health 2018, 11, 715–727. [Google Scholar] [CrossRef]
- Tie, X.; Long, X.; Li, G.; Zhao, S.; Cao, J.; Xu, J. Ozone enhancement due to the photodissociation of nitrous acid in eastern China. Atmos. Chem. Phys. Discuss. 2019, 19, 11267–11278. [Google Scholar] [CrossRef] [Green Version]
- Wang, D.; Zhou, B.; Fu, Q.; Zhao, Q.; Zhang, Q.; Chen, J.; Yang, X.; Duan, Y.; Li, J. Intense secondary aerosol formation due to strong atmospheric photochemical reactions in summer: Observations at a rural site in eastern Yangtze River Delta of China. Sci. Total. Environ. 2016, 571, 1454–1466. [Google Scholar] [CrossRef]
- Li, K.; Jacob, D.J.; Shen, L.; Lu, X.; De Smedt, I.; Liao, H. Increases in surface ozone pollution in China from 2013 to 2019: Anthropogenic and meteorological influences. Atmos. Chem. Phys. 2020, 20, 11423–11433. [Google Scholar] [CrossRef]
- Gao, J.; Li, Y.; Zhu, B.; Hu, B.; Wang, L.; Bao, F. What have we missed when studying the impact of aerosols on surface ozone via changing photolysis rates? Atmos. Chem. Phys. 2020, 20, 10831–10844. [Google Scholar] [CrossRef]
- Kim, S.; VandenBoer, T.C.; Young, C.J.; Riedel, T.P.; Thornton, J.A.; Swarthout, B.; Sive, B.; Lerner, B.; Gilman, J.B.; Warneke, C.; et al. The primary and recycling sources of OH during the NACHTT-2011 campaign: HONO as an important OH primary source in the wintertime. J. Geophys. Res. Atmos. 2014, 119, 6886–6896. [Google Scholar] [CrossRef] [Green Version]
- Xue, C.; Zhang, C.; Ye, C.; Liu, P.; Catoire, V.; Krysztofiak, G.; Chen, H.; Ren, Y.; Zhao, X.; Wang, J.; et al. HONO budget and its role in nitrate formation in the rural North China Plain. Environ. Sci. Technol. 2020, 54, 11048–11057. [Google Scholar] [CrossRef] [PubMed]
- Liu, Z.; Wang, Y.; Gu, D.; Zhao, C.; Huey, L.G.; Stickel, R.; Liao, J.; Shao, M.; Zhu, T.; Zeng, L.; et al. Summertime photochemistry during CAREBeijing-2007: ROx budgets and O3 formation. Atmos. Chem. Phys. 2012, 12, 7737–7752. [Google Scholar] [CrossRef] [Green Version]
- Tang, Y.; An, J.; Wang, F.; Li, Y.; Qu, Y.; Chen, Y.; Lin, J. Impacts of an unknown daytime HONO source on the mixing ratio and budget of HONO, and hydroxyl, hydroperoxyl, and organic peroxy radicals, in the coastal regions of China. Atmos. Chem. Phys. Discuss. 2015, 15, 9381–9398. [Google Scholar] [CrossRef] [Green Version]
- Aumont, B.; Chervier, F.; Laval, S. Contribution of HONO sources to the NOx/HOx/O3 chemistry in the polluted boundary layer. Atmos. Environ. 2003, 37, 487–498. [Google Scholar] [CrossRef]
- Li, Y.; An, J.; Min, M.; Zhang, W.; Wang, F.; Xie, P. Impacts of HONO sources on the air quality in Beijing, Tianjin and Hebei Province of China. Atmos. Environ. 2011, 45, 4735–4744. [Google Scholar] [CrossRef]
- Du, H.; Kong, L.; Cheng, T.; Chen, J.; Yang, X.; Zhang, R.; Han, Z.; Yan, Z.; Ma, Y. Insights into Ammonium Particle-to-Gas Conversion: Non-sulfate Ammonium Coupling with Nitrate and Chloride. Aerosol Air Qual. Res. 2010, 10, 589–595. [Google Scholar] [CrossRef]
- Makkonen, U.; Virkkula, A.; Mantykentta, J.; Hakola, H.; Keronen, P.; Vakkari, V.; Aalto, P.P. Semi-continuous gas and inorganic aerosol measurements at a Finnish urban site: Comparisons with filters, nitrogen in aerosol and gas phases, and aerosol acidity. Atmos. Chem. Phys. 2012, 12, 5617–5631. [Google Scholar] [CrossRef] [Green Version]
- Charron, A.; Harrison, R.M.; Moorcroft, S.; Booker, J. Quantitative interpretation of divergence between PM10 and PM2.5 mass measurement by TEOM and gravimetric (Partisol) instruments. Atmos. Environ. 2004, 38, 415–423. [Google Scholar] [CrossRef]
- Allen, G.; Sioutas, C.; Koutrakis, P.; Reiss, R.; Lurmann, F.W.; Roberts, P.T. Evaluation of the TEOM® method for measurement of ambient particulate mass in urban areas. J. Air Waste Manag. Assoc. 1997, 47, 682–689. [Google Scholar] [CrossRef] [PubMed]
- Wang, T.; Wei, X.L.; Ding, A.J.; Poon, C.N.; Lam, K.S.; Li, Y.S.; Chan, L.Y.; Anson, M. Increasing surface ozone concentrations in the background atmosphere of Southern China, 1994–2007. Atmos. Chem. Phys. Discuss. 2009, 9, 6217–6227. [Google Scholar] [CrossRef] [Green Version]
- Ding, A.; Wang, T.; Thouret, V.; Cammas, J.-P.; Nedelec, P. Tropospheric ozone climatology over Beijing: Analysis of aircraft data from the MOZAIC program. Atmos. Chem. Phys. Discuss. 2008, 8, 1–13. [Google Scholar] [CrossRef] [Green Version]
- Lin, W.; Xu, X.; Zhang, X.; Tang, J. Contributions of pollutants from North China Plain to surface ozone at the Shangdianzi GAW Station. Atmos. Chem. Phys. 2008, 8, 5889–5898. [Google Scholar] [CrossRef] [Green Version]
- Liu, N.W.; Lin, W.L.; Ma, J.Z.; Xu, W.Y.; Xu, X.B. Seasonal variation in surface ozone and its regional characteristics at global atmosphere watch stations in China. J. Environ. Sci. 2020, 77, 291–302. [Google Scholar] [CrossRef]
- Xu, X.B.; Lin, W.L.; Xu, W.Y.; Jin, J.L.; Wang, Y.; Zhang, G.; Zhang, X.C.; Ma, Z.Q.; Dong, Y.Z.; Ma, Q.L.; et al. Long-term changes of regional ozone in China: Implications for human health and ecosystem impacts. Elem. Sci. Anthrop. 2020, 8, 13. [Google Scholar] [CrossRef] [Green Version]
- Wang, T.; Cheung, V.T.F.; Anson, M.; Li, Y.S. Ozone and related gaseous pollutants in the boundary layer of eastern China: Overview of the recent measurements at a rural site. Geophys. Res. Lett. 2001, 28, 2373–2376. [Google Scholar] [CrossRef] [Green Version]
- Zhao, M.F.; Huang, Z.S.; Qiao, T.; Zhang, Y.K.; Xiu, G.L.; Yu, J.Z. Chemical characterization, the transport pathways and potential sources of PM2.5 in Shanghai: Seasonal variations. Atmos. Res. 2015, 158, 66–78. [Google Scholar] [CrossRef]
- Zhang, L.M.; Gong, S.L.; Padro, J.; Barrie, L. A size-segregated particle dry deposition scheme for an atmospheric aerosol module. Atmos. Environ. 2001, 35, 549–560. [Google Scholar] [CrossRef]
- Khoder, M.I. Atmospheric conversion of sulfur dioxide to particulate sulfate and nitrogen dioxide to particulate nitrate and gaseous nitric acid in an urban area. Chemosphere 2002, 49, 675–684. [Google Scholar] [CrossRef]
- Yu, S.C.; Zhang, Q.Y.; Yan, R.C.; Wang, S.; Li, P.F.; Chen, B.X.; Liu, W.P.; Zhang, X.Y. Origin of air pollution during a weekly heavy haze episode in Hangzhou, China. Environ. Chem. Lett. 2014, 12, 543–550. [Google Scholar] [CrossRef]
- Huang, X.F.; Yu, J.Z.; Yuan, Z.; Lau, A.K.H.; Louie, P.K.K. Source analysis of high particulate matter days in Hong Kong. Atmos. Environ. 2009, 43, 1196–1203. [Google Scholar] [CrossRef]
- Kong, L.D.; Du, C.T.; Zhanzakova, A.; Cheng, T.T.; Yang, X.; Wang, L.; Fu, H.B.; Chen, J.M.; Zhang, S.C. Trends in heterogeneous aqueous reaction in continuous haze episodes in suburban Shanghai: An in-depth case study. Sci. Total Environ. 2018, 634, 1192–1204. [Google Scholar] [CrossRef] [PubMed]
- Ming, L.L.; Jin, L.; Li, J.; Fu, P.Q.; Yang, W.Y.; Liu, D.; Zhang, G.; Wang, Z.F.; Li, X.D. PM2.5 in the Yangtze River Delta, China: Chemical compositions, seasonal variations, and regional pollution events. Environ. Pollut. 2017, 223, 200–212. [Google Scholar] [CrossRef] [PubMed]
- Du, H.H.; Kong, L.D.; Cheng, T.T.; Chen, J.M.; Du, J.F.; Li, L.; Xia, X.G.; Leng, C.P.; Huang, G.H. Insights into summertime haze pollution events over Shanghai based on online water-soluble ionic composition of aerosols. Atmos. Environ. 2011, 45, 5131–5137. [Google Scholar] [CrossRef]
- Wang, H.L.; Qiao, L.P.; Lou, S.R.; Zhou, M.; Chen, J.M.; Wang, Q.; Tao, S.K.; Chen, C.H.; Huang, H.Y.; Li, L.; et al. PM2.5 pollution episode and its contributors from 2011 to 2013 in urban Shanghai, China. Atmos. Environ. 2015, 123, 298–305. [Google Scholar] [CrossRef]
- Cesari, D.; De Benedetto, G.E.; Bonasoni, P.; Busetto, M.; Dinoi, A.; Merico, E.; Chirizzi, D.; Cristofanelli, P.; Donateo, A.; Grasso, F.M.; et al. Seasonal variability of PM2.5 and PM10 composition and sources in an urban background site in Southern Italy. Sci. Total Environ. 2018, 612, 202–213. [Google Scholar] [CrossRef]
- Mooibroek, D.; Schaap, M.; Weijers, E.P.; Hoogerbrugge, R. Source apportionment and spatial variability of PM2.5 using measurements at five sites in the Netherlands. Atmos. Environ. 2011, 45, 4180–4191. [Google Scholar] [CrossRef] [Green Version]
- Sun, Y.L.; Zhuang, G.S.; Tang, A.H.; Wang, Y.; An, Z.S. Chemical characteristics of PM2.5 and PM10 in haze-fog episodes in Beijing. Environ. Sci. Technol. 2006, 40, 3148–3155. [Google Scholar] [CrossRef] [PubMed]
- Ohta, S.; Okita, T. A chemical characterization of atmospheric aerosol in Sapporo. Atmos. Environ. 1990, 24, 815–822. [Google Scholar] [CrossRef]
- Zhou, M.; Qiao, L.P.; Zhu, S.H.; Li, L.; Lou, S.R.; Wang, H.L.; Wang, Q.; Tao, S.K.; Huang, C.; Chen, C.H. Chemical characteristics of fine particles and their impact on visibility impairment in Shanghai based on a 1-year period observation. J. Environ. Sci. 2016, 48, 151–160. [Google Scholar] [CrossRef] [PubMed]
- Hu, Q.Q.; Fu, H.B.; Wang, Z.Z.; Kong, L.D.; Chen, M.D.; Chen, J.M. The variation of characteristics of individual particles during the haze evolution in the urban Shanghai atmosphere. Atmos. Res. 2016, 18, 95–105. [Google Scholar] [CrossRef]
- Zhao, Y.; Liu, Y.C.; Ma, J.Z.; Ma, Q.X.; He, H. Heterogeneous reaction of SO2 with soot: The roles of relative humidity and surface composition of soot in surface sulfate formation. Atmos. Environ. 2017, 152, 465–476. [Google Scholar] [CrossRef]
- Leng, C.P.; Duan, J.Y.; Xu, C.; Zhang, H.F.; Wang, Y.F.; Wang, Y.Y.; Li, X.; Kong, L.D.; Tao, J.; Zhang, R.J.; et al. Insights into a historic severe haze event in Shanghai: Synoptic situation, boundary layer and pollutants. Atmos. Chem. Phys. 2016, 16, 9221–9234. [Google Scholar] [CrossRef] [Green Version]
- He, H.; Wang, Y.S.; Ma, Q.X.; Ma, J.Z.; Chu, B.W.; Ji, D.S.; Tang, G.Q.; Liu, C.; Zhang, H.X.; Hao, J.M. Mineral dust and NOX promote the conversion of SO2 to sulfate in heavy pollution days. Sci. Rep. 2014, 4, 4172. [Google Scholar] [CrossRef]
- Arimoto, R.; Duce, R.A.; Savoie, D.L.; Prospero, J.M.; Talbot, R.; Cullen, J.D.; Tomza, U.; Lewis, N.F.; Jay, B.J. Relationships among aerosol constituents from Asia and the North Pacific during PEM-West A. J. Geophys. Res. Atmos. 1996, 101, 2011–2023. [Google Scholar] [CrossRef]
- Zhao, M.F.; Qiao, T.; Huang, Z.S.; Zhu, M.Y.; Xu, W.; Xiu, G.L.; Tao, J.; Lee, S.C. Comparison of ionic and carbonaceous compositions of PM2.5 in 2009 and 2012 in Shanghai, China. Sci. Total Environ. 2015, 536, 695–703. [Google Scholar] [CrossRef] [PubMed]
- Han, T.T.; Liu, X.G.; Zhang, Y.H.; Gu, J.W.; Tian, H.Z.; Zeng, L.M.; Chang, S.Y.; Cheng, Y.F.; Lu, K.D.; Hu, M. Chemical characteristics of PM10 during the summer in the mega-city Guangzhou, China. Atmos. Res. 2014, 137, 25–34. [Google Scholar] [CrossRef]
- Ghazali, N.A.; Ramli, N.A.; Yahaya, A.S.; Yusof, N.F.F.M.D.; Sansuddin, N.; Al Madhoun, W.A. Transformation of nitrogen dioxide into ozone and prediction of ozone concentrations using multiple linear regression techniques. Environ. Monit. Assess. 2010, 165, 475–489. [Google Scholar] [CrossRef]
- David, Y.H.; Sheng, C.; Chen, S.C.; Zou, Z. PM2.5 in China: Measurements, sources, visibility and health effects, and mitigation. Particuology 2014, 13, 1–26. [Google Scholar]
- Pudasainee, D.; Sapkota, B.; Shrestha, M.L.; Kaga, A.; Kondo, A.; Inoue, Y. Ground level ozone concentrations and its association with NOX and meteorological parameters in Kathmandu valley, Nepal. Atmos. Environ. 2006, 40, 8081–8087. [Google Scholar] [CrossRef]
- Shen, X.H.; Lee, T.Y.; Guo, J.; Wang, X.F.; Li, P.H.; Xu, P.J.; Wang, Y.; Ren, Y.; Wang, W.; Wang, T.; et al. Aqueous phase sulfate production in clouds in eastern China. Atmos. Environ. 2012, 62, 502–511. [Google Scholar] [CrossRef]
- Lee, Y.N.; Schwartz, S.E. Reaction kinetics of nitrogen dioxide with liquid water at low partial pressure. J. Phys. Chem. 1981, 85, 840–848. [Google Scholar] [CrossRef]
- Schiffman, A.; Nelson, D.D., Jr.; Nesbitt, D.J. Quantum yields for OH production from 193 and 248 nm photolysis of HNO3 and H2O2. J. Chem. Phys. 1993, 98, 6935–6946. [Google Scholar] [CrossRef]
- Schuttlefield, J.; Rubasinghege, G.; EI-Maazawi, M.; Bone, J.; Grassian, V.H. Photochemistry of adsorbed nitrate. J. Am. Chem. Soc. 2008, 130, 12210–12211. [Google Scholar] [CrossRef]
- Xu, W.; Kuang, Y.; Zhao, C.; Tao, J.; Zhao, G.; Bian, Y.; Yang, W.; Yu, Y.; Shen, C.; Liang, L.; et al. NH3-promoted hydrolysis of NO2 induces explosive growth in HONO. Atmos. Chem. Phys. 2019, 19, 10557–10570. [Google Scholar] [CrossRef] [Green Version]
- Li, J.; Posfai, M.; Hobbs, P.V.; Buseck, P.R. Individual aerosol particles from biomass burning in southern Africa: 2. compositions and aging of inorganic particles. J. Geophys. Res. Atmos. 2003, 108, 8484. [Google Scholar] [CrossRef] [Green Version]
- Tong, S.Y.; Kong, L.D.; Yang, K.J.; Shen, J.D.; Chen, L.; Jin, S.Y.; Wang, C.; Sha, F.; Wang, L. Characteristics of air pollution episodes influenced by biomass burning pollution in Shanghai, China. Atmos. Environ. 2020, 238, 117756. [Google Scholar] [CrossRef]
Parameter/Specaies | Case 1 | Case 2 | Case 3 | Case 4 | Case 5 | Case 6 | Average |
---|---|---|---|---|---|---|---|
PM2.5 (μg/m3) | 93.7 ± 18.4 | 99.5 ± 39.3 | 95.2 ± 10.6 | 86.4 ± 34.6 | 97.4 ± 38.8 | 78.8 ± 25.9 | 92.1 ± 32.1 |
O3 (μg/m3) | 132.4 ± 63.6 | 122.9 ± 90.0 | 147.7 ± 104.3 | 143.8 ± 89.5 | 169.0 ± 57.1 | 155.8 ± 73.9 | 151.7 ± 76.8 |
O3-8 h (μg/m3) | 145.4 ± 52.0 | 140.8 ± 74.5 | 169.7 ± 85.1 | 164.3 ± 73.6 | 174.1 ± 43.7 | 169.7 ± 54.6 | 146.8 ± 67.1 |
SO2 (μg/m3) | 23.25 ± 7.67 | 17.33 ± 10.69 | 26.92 ± 33.95 | 30.33 ± 4.71 | 20.36 ± 7.18 | 19.52 ± 6.02 | 22.15 ± 13.70 |
NO2 (μg/m3) | 36.50 ± 9.58 | 38.50 ± 11.99 | 53.54 ± 24.72 | 40.67 ± 10.03 | 35.78 ± 16.67 | 37.11 ± 19.00 | 39.04 ± 17.40 |
CO (μg/m3) | 789.17 ± 104.77 | 851.08 ± 233.43 | 948.00 ± 294.60 | 791.54 ± 106.86 | 1154.06 ± 386.35 | 993.81 ± 220.64 | 983.95 ± 312.48 |
NOx (μg/m3) | 40.54 ± 11.92 | 45.17 ± 18.69 | 68.33 ± 52.56 | 46.54 ± 11.06 | 38.89 ± 18.53 | 48.21 ± 33.56 | 46.07 ± 28.32 |
K+ (μg/m3) | 1.09 ± 0.13 | 1.58 ± 0.47 | 1.49 ± 0.25 | 1.06 ± 0.13 | 0.58 ± 0.29 | 0.47 ± 0.17 | 0.88 ± 0.49 |
Ca2+ (μg/m3) | 0.24 ± 0.10 | 0.23 ± 0.14 | 0.22 ± 0.09 | 0.46 ± 0.07 | 0.25 ± 0.10 | 0.25 ± 0.09 | 0.27 ± 0.12 |
Na+ (μg/m3) | 0.31 ± 0.04 | 0.35 ± 0.07 | 0.28 ± 0.04 | 0.32 ± 0.03 | 0.00 ± 0.00 | 0.22 ± 0.05 | 0.19 ± 0.14 |
Mg2+ (μg/m3) | 0.09 ± 0.05 | 0.14 ± 0.05 | 0.11 ± 0.04 | 0.03 ± 0.04 | 0.06 ± 0.04 | 0.06 ± 0.03 | 0.08 ± 0.05 |
Cl− (μg/m3) | 1.02 ± 0.52 | 0.27 ± 0.49 | 0.00 ± 0.00 | 1.75 ± 0.40 | 0.98 ± 0.68 | 0.68 ± 0.44 | 0.81 ± 0.70 |
NO3− (μg/m3) | 20.85 ± 7.68 | 20.72 ± 6.97 | 12.69 ± 5.74 | 13.45 ± 8.89 | 25.59 ± 14.31 | 17.53 ± 9.04 | 19.89 ± 11.43 |
SO42− (μg/m3) | 20.53 ± 5.53 | 27.18 ± 13.34 | 26.73 ± 5.05 | 22.30 ± 10.45 | 14.53 ± 4.59 | 14.98 ± 5.23 | 18.97 ± 8.71 |
NH4+ (μg/m3) | 12.97 ± 2.58 | 15.92 ± 5.84 | 12.98 ± 1.38 | 13.46 ± 5.86 | 13.91 ± 6.39 | 11.23 ± 4.44 | 13.27 ± 5.27 |
HONO (ppbv) | 1.49 ± 0.55 | 2.18 ± 1.20 | 2.50 ± 1.49 | 4.74 ± 1.50 | 1.56 ± 0.79 | 2.14 ± 2.00 | 2.22 ± 1.64 |
HONO (ppbv) daytime | 1.15 ± 0.38 | 2.00 ± 1.48 | 2.21 ± 1.78 | 4.21 ± 1.81 | 1.16 ± 0.75 | 1.48 ± 1.60 | 1.78 ± 1.60 |
SIA (μg/m3) | 54.35 ± 10.43 | 63.83 ± 24.19 | 52.40 ± 5.44 | 49.21 ± 21.65 | 54.03 ± 24.72 | 43.73 ± 17.09 | 52.13 ± 20.62 |
TWSI (μg/m3) | 57.09 ± 10.86 | 66.39 ± 25.08 | 54.50 ± 5.45 | 52.84 ± 21.78 | 55.91 ± 25.52 | 45.41 ± 17.58 | 54.36 ± 21.22 |
SIA/TWSI | 0.95 ± 0.01 | 0.96 ± 0.01 | 0.96 ± 0.01 | 0.92 ± 0.03 | 0.97 ± 0.01 | 0.96 ± 0.01 | 0.96 ± 0.02 |
TWSI/PM2.5 | 0.62 ± 0.10 | 0.68 ± 0.04 | 0.58 ± 0.07 | 0.61 ± 0.04 | 0.55 ± 0.11 | 0.56 ± 0.07 | 0.58 ± 0.09 |
SIA/PM2.5 | 0.59 ± 0.09 | 0.65 ± 0.04 | 0.56 ± 0.07 | 0.56 ± 0.05 | 0.51 ± 0.13 | 0.54 ± 0.07 | 0.56 ± 0.08 |
NO3−/SO42− | 1.13 ± 0.59 | 0.98 ± 0.53 | 0.52 ± 0.28 | 0.65 ± 0.42 | 1.64 ± 0.67 | 1.20 ± 0.68 | 1.17 ± 0.71 |
SOR | 0.52 ± 0.09 | 0.68 ± 0.15 | 0.58 ± 0.09 | 0.82 ± 0.06 | 0.50 ± 0.11 | 0.65 ± 0.14 | 0.60 ± 0.15 |
NOR | 0.30 ± 0.08 | 0.29 ± 0.09 | 0.16 ± 0.06 | 0.19 ± 0.10 | 0.34 ± 0.15 | 0.27 ± 0.13 | 0.28 ± 0.13 |
Temp (oC) | 19.2 ± 4.8 | 21.4 ± 3.9 | 26.3 ± 3.8 | 29.6 ± 3.1 | 19.9 ± 3.8 | 20.9 ± 3.6 | 22.0 ± 5.1 |
RH (%) | 72.2 ± 15.2 | 82.1 ± 13.4 | 65.7 ± 13.2 | 65.1 ± 11.6 | 53.2 ± 18.7 | 61.8 ± 12.9 | 63.6 ± 17.4 |
WS (m/s) | 2.9 ± 1.2 | 2.7 ± 1.6 | 3.3 ± 1.4 | 1.0 ± 0.3 | 1.5 ± 0.6 | 1.6 ± 0.7 | 1.9 ± 1.2 |
Vis (km) | 7.5 ± 2.7 | 5.1 ± 1.2 | 7.0 ± 1.5 | 10.1 ± 4.0 | 9.5 ± 7.2 | 9.0 ± 5.6 | 8.3 ± 5.3 |
Double High Case | HONO | NO2 | |||
---|---|---|---|---|---|
6:0–18:00 | 8:0–16:00 | 6:0–18:00 | 8:0–16:00 | ||
Case 1 | O3 | −0.860 ** | −0.871 ** | −0.822 ** | −0.915 ** |
Case 2 | O3 | −0.917 ** | −0.916 ** | −0.658 ** | −0.962 ** |
Case 3 | O3 | −0.918 ** | −0.935 ** | −0.825 ** | −0.898 ** |
Case 4 | O3 | −0.688 ** | −0.385 | −0.208 | −0.525 |
Case 5 | O3 | −0.811 ** | −0.900 ** | −0.683 ** | −0.707 ** |
Case 6 | O3 | −0.769 ** | −0.676 ** | −0.602 ** | −0.426 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Yang, K.; Kong, L.; Tong, S.; Shen, J.; Chen, L.; Jin, S.; Wang, C.; Sha, F.; Wang, L. Double High-Level Ozone and PM2.5 Co-Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO. Atmosphere 2021, 12, 557. https://doi.org/10.3390/atmos12050557
Yang K, Kong L, Tong S, Shen J, Chen L, Jin S, Wang C, Sha F, Wang L. Double High-Level Ozone and PM2.5 Co-Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO. Atmosphere. 2021; 12(5):557. https://doi.org/10.3390/atmos12050557
Chicago/Turabian StyleYang, Kejing, Lingdong Kong, Songying Tong, Jiandong Shen, Lu Chen, Shengyan Jin, Chao Wang, Fei Sha, and Lin Wang. 2021. "Double High-Level Ozone and PM2.5 Co-Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO" Atmosphere 12, no. 5: 557. https://doi.org/10.3390/atmos12050557
APA StyleYang, K., Kong, L., Tong, S., Shen, J., Chen, L., Jin, S., Wang, C., Sha, F., & Wang, L. (2021). Double High-Level Ozone and PM2.5 Co-Pollution Episodes in Shanghai, China: Pollution Characteristics and Significant Role of Daytime HONO. Atmosphere, 12(5), 557. https://doi.org/10.3390/atmos12050557