Optical Characteristics and Radiative Properties of Aerosols in Harbin, Heilongjiang Province during 2017
Abstract
:1. Introduction
2. Methods
2.1. Study Site and Research Framework
2.2. Instrument
2.3. SBDART Model
3. Results and Discussion
3.1. Seasonal Characteristics of Aerosol Optical Properties
3.2. Monthly Variations in ARF
3.3. Variations in Aerosol Types
3.4. Seasonal Variations in ARF
4. Conclusions
Author Contributions
Funding
Acknowledgments
Conflicts of Interest
References
- Loeb, N. Towards a Seamless Global Long-Term Earth Radiation Budget Climate Data Record. In AGU Fall Meeting Abstracts. In Proceedings of the Agu Fall Meeting, San Francisco, CA, USA, 14–18 December 2015. [Google Scholar]
- Jacob, D.J. Introduction to Atmospheric Chemistry; Princeton University Press: Princeton, NJ, USA, 1999. [Google Scholar]
- Ramachandran, S.; Kedia, S. Radiative effects of aerosols over Indo-Gangetic plain: Environmental (urban vs. rural) and seasonal variations. Environ. Sci. Pollut. Res. 2012, 19, 2159–2171. [Google Scholar] [CrossRef]
- Ramanathan, V.C.P.J.; Crutzen, P.J.; Kiehl, J.T.; Rosenfeld, D. Aerosols, climate, and the hydrological cycle. Science 2001, 294, 2119–2124. [Google Scholar] [CrossRef] [Green Version]
- Stocker, T. (Ed.) Climate Change 2013: The Physical Science Basis: Working Group I Contribution to the Fifth Assessment Report of the Intergovernmental Panel on Climate Change; Cambridge University Press: Cambridge, UK, 2014. [Google Scholar]
- Zheng, Y.; Che, H.; Yang, L.; Chen, J.; Wang, Y.; Xia, X.; An, L. Optical and radiative properties of aerosols during a severe haze episode over the North China Plain in December 2016. J. Meteorol. Res. 2017, 31, 1045–1061. [Google Scholar] [CrossRef]
- Che, H.; Qi, B.; Zhao, H.; Xia, X.; Eck, T.F.; Goloub, P.; Wu, Y. Aerosol optical properties and direct radiative forcing based on measurements from the China Aerosol Remote Sensing Network (CARSNET) in eastern China. Atmos. Chem. Phys. 2018, 18, 405–425. [Google Scholar] [CrossRef] [Green Version]
- Mai, B.; Deng, X.; Li, Z.; Liu, J.; Xia, X.A.; Che, H.; Cribb, M. Aerosol optical properties and radiative impacts in the Pearl River Delta region of China during the dry season. Adv. Atmos. Sci. 2018, 35, 195–208. [Google Scholar] [CrossRef]
- Li, X.; Yang, Y.; Liu, S.; Zhao, Q.; Wang, G.; Wang, Y. Light absorption properties of brown carbon (BrC) in autumn and winter in Beijing: Composition, formation and contribution of nitrated aromatic compounds. Atmos. Environ. 2020, 223, 117289. [Google Scholar] [CrossRef]
- Li, Q.; Wu, B.; Liu, J.; Zhang, H.; Cai, X.; Song, Y. Characteristics of the atmospheric boundary layer and its relation with PM2. 5 during haze episodes in winter in the North China Plain. Atmos. Environ. 2020, 223, 117265. [Google Scholar] [CrossRef]
- Chen, Q.X.; Yuan, Y.; Huang, X.; Jiang, Y.Q.; Tan, H.P. Estimation of surface-level PM2. 5 concentration using aerosol optical thickness through aerosol type analysis method. Atmos. Environ. 2017, 159, 26–33. [Google Scholar] [CrossRef]
- Chen, W.; Zhang, S.; Tong, Q.; Zhang, X.; Zhao, H.; Ma, S.; He, Y. Regional characteristics and causes of haze events in Northeast China. Chin. Geogr. Sci. 2018, 28, 836–850. [Google Scholar] [CrossRef] [Green Version]
- Wu, Y.; Zhang, R.; Pu, Y.; Zhang, L.; Ho, K.F.; Fu, C. Aerosol optical properties observed at a semi-arid rural site in northeastern China. Aerosol Air Qual. Res. 2012, 12, 503–514. [Google Scholar] [CrossRef]
- Peng, W.; Huizheng, C.; Xiaochun, Z.; Qingli, S.; Yaqiang, W.; Zhonghua, Z.; Xin, D.; Dajiang, Y. Aerosol optical properties of regional background atmosphere in Northeast China. Atmos. Environ. 2010, 44, 4404–4412. [Google Scholar]
- Qianjun, M.; Chunlin, H.; Hengxing, Z.; Qixiang, C.; Yuan, Y. Aerosol optical properties and radiative effect under different weather conditions in Harbin, China. Infrared Phys. Technol. 2018, 89, 304–314. [Google Scholar]
- Wu, Y.; Zhu, J.; Che, H.; Xia, X.; Zhang, R. Column-integrated aerosol optical properties and direct radiative forcing based on sun photometer measurements at a semi-arid rural site in Northeast China. Atmos. Res. 2015, 157, 56–65. [Google Scholar] [CrossRef]
- Che, H.; Zhao, H.; Wu, Y.; Xia, X.; Zhu, J.; Wang, H.; Wang, Y.; Sun, J.; Yu, J.; Zhang, X.; et al. Analyses of aerosol optical properties and direct radiative forcing over urban and industrial regions in Northeast China. Meteorol. Atmos. Phys. 2015, 127, 345–354. [Google Scholar] [CrossRef]
- Xu, H.; Wang, W.; Wang, H.; Sun, Y.; Zhong, Z.; Wang, S. Differences in quantity and composition of leaf particulate matter and morphological structures in three evergreen trees and their association in Harbin, China. Environ. Pollut. 2019, 252, 1772–1790. [Google Scholar] [CrossRef] [PubMed]
- Chen, Q.X.; Huang, C.L.; Xiao, T.; Yuan, Y.; Mao, Q.J.; Tan, H.P. Characterization of atmospheric aerosols and source apportionment analyses in urban Harbin, northeast China. Infrared Phys. Technol. 2019, 103, 103109. [Google Scholar] [CrossRef]
- Xie, Y.; Chi, Y. Geochemical investigation of dry-and wet-deposited dust during the same dust-storm event in Harbin, China: Constraint on provenance and implications for formation of aeolian loess. J. Asian Earth Sci. 2016, 120, 43–61. [Google Scholar] [CrossRef]
- Zhang, M.; Chen, W.; Shen, X.; Zhao, H.; Gao, C.; Zhang, X.; Liu, W.; Yang, C.; Qin, Y.; Zhang, S.; et al. Comprehensive and high-resolution emission inventory of atmospheric pollutants for the northernmost cities agglomeration of Harbin-Changchun, China: Implications for local atmospheric environment management. J. Environ. Sci. 2021, 104, 150–168. [Google Scholar]
- Li, B.; Shi, X.F.; Liu, Y.P.; Lu, L.; Wang, G.L.; Thapa, S.; Qi, H. Long-term characteristics of criteria air pollutants in megacities of Harbin-Changchun megalopolis, Northeast China: Spatiotemporal variations, source analysis, and meteorological effects. Environ. Pollut. 2020, 267, 115441. [Google Scholar] [CrossRef]
- Estellés, V.; Campanelli, M.; Utrillas, M.P.; Expósito, F.; Martínez-Lozano, J.A. Comparison of AERONET and SKYRAD4. 2 inversion products retrieved from a Cimel CE318 sunphotometer. Atmos. Meas. Tech. 2012, 5, 569. [Google Scholar] [CrossRef] [Green Version]
- Qixiang, C.; Yuan, Y.; Xing, H.; Zhihong, H.; Heping, T. Assessment of column aerosol optical properties using ground-based sun-photometer at urban Harbin, Northeast China. J. Environ. Sci. 2018, 74, 50–57. [Google Scholar]
- Dubovik, O.; Holben, B.; Eck, T.F.; Smirnov, A.; Kaufman, Y.J.; King, M.D.; Tanré, D.; Slutsker, I. Variability of absorption and optical properties of key aerosol types observed in worldwide locations. J. Atmos. Sci. 2002, 59, 590–608. [Google Scholar] [CrossRef]
- Ricchiazzi, P.; Yang, S.; Gautier, C.; Sowle, D. SBDART: A research and teaching software tool for plane-parallel radiative transfer in the Earth’s atmosphere. Bull. Am. Meteorol. Soc. 1998, 79, 2101–2114. [Google Scholar] [CrossRef] [Green Version]
- Vachaspati, C.V.; Begam, G.R.; Ahammed, Y.N.; Kumar, K.R.; Reddy, R.R. Characterization of aerosol optical properties and model computed radiative forcing over a semi-arid region, Kadapa in India. Atmos. Res. 2018, 209, 36–49. [Google Scholar] [CrossRef]
- Bibi, H.; Alam, K.; Bibi, S. Estimation of shortwave direct aerosol radiative forcing at four locations on the Indo-Gangetic Plains: Model results and ground measurement. Atmos. Environ. 2017, 163, 166–181. [Google Scholar] [CrossRef]
- Shi, H.; Xiao, Z.; Liang, S.; Ma, H. A method for consistent estimation of multiple land surface parameters from MODIS top-of-atmosphere time series data. IEEE Trans. Geosci. Remote Sens. 2017, 55, 5158–5173. [Google Scholar] [CrossRef]
- Fang, H.; Liang, S.; Chen, M.; Walthall, C.; Daughtry, C. Statistical comparison of MISR, ETM+ and MODIS land surface reflectance and albedo products of the BARC land validation core site, USA. Int. J. Remote Sens. 2004, 25, 409–422. [Google Scholar] [CrossRef]
- Markowicz, K.M.; Lisok, J.; Xian, P. Simulation of long-term direct aerosol radiative forcing over the arctic within the framework of the iAREA project. Atmos. Environ. 2021, 244, 117882. [Google Scholar] [CrossRef]
- Kumar, K.R.; Kang, N.; Sivakumar, V.; Griffith, D. Temporal characteristics of columnar aerosol optical properties and radiative forcing (2011–2015) measured at AERONET’s Pretoria_CSIR_DPSS site in South Africa. Atmos. Environ. 2017, 165, 274–289. [Google Scholar] [CrossRef] [Green Version]
- Yu, X.; Zhu, B.; Zhang, M. Seasonal variability of aerosol optical properties over Beijing. Atmos. Environ. 2009, 43, 4095–4101. [Google Scholar] [CrossRef]
- Chen, H.; Gu, X.F.; Cheng, T.H.; Yu, T.; Li, Z.Q. Characteristics of aerosol types over China. J. Remote Sens. 2013, 17, 1559–1571. [Google Scholar]
- Zhao, H.; Che, H.; Zhang, X.; Ma, Y.; Wang, Y.; Wang, H.; Wang, Y. Characteristics of visibility and particulate matter (PM) in an urban area of Northeast China. Atmos. Pollut. Res. 2013, 4, 427–434. [Google Scholar] [CrossRef] [Green Version]
- Kim, D.; Ramanathan, V. Solar radiation budget and radiative forcing due to aerosols and clouds. J. Geophys. Res. Atmos. 2008, 113, D2. [Google Scholar] [CrossRef] [Green Version]
- Yu, H.; Kaufman, Y.J.; Chin, M.; Feingold, G.; Remer, L.A.; Anderson, T.L.; DeCola, P. A review of measurement-based assessments of the aerosol direct radiative effect and forcing. Atmos. Chem. Phys. 2006, 6, 613–666. [Google Scholar] [CrossRef] [Green Version]
- Zhao, H.; Che, H.; Ma, Y.; Xia, X.; Wang, Y.; Wang, P.; Wu, X. Temporal variability of the visibility, particulate matter mass concentration and aerosol optical properties over an urban site in Northeast China. Atmos. Res. 2015, 166, 204–212. [Google Scholar] [CrossRef]
- Yu, X.; Cheng, T.; Chen, J.; Liu, Y. A comparison of dust properties between China continent and Korea, Japan in East Asia. Atmos. Environ. 2006, 40, 5787–5797. [Google Scholar] [CrossRef]
- Liu, J.; Zheng, Y.; Li, Z.; Flynn, C.; Cribb, M. Seasonal variations of aerosol optical properties, vertical distribution and associated radiative effects in the Yangtze Delta region of China. J. Geophys. Res. Atmos. 2012, 117, D16. [Google Scholar] [CrossRef]
- Gong, C.; Xin, J.; Wang, S.; Wang, Y.; Zhang, T. Anthropogenic aerosol optical and radiative properties in the typical urban/suburban regions in China. Atmos. Res. 2017, 197, 177–187. [Google Scholar] [CrossRef]
- Kang, N.; Kumar, K.R.; Yu, X.; Yin, Y. Column-integrated aerosol optical properties and direct radiative forcing over the urban-industrial megacity Nanjing in the Yangtze River Delta, China. Environ. Sci. Pollut. Res. 2016, 23, 17532–17552. [Google Scholar] [CrossRef] [PubMed]
- Qin, K.; Wang, L.; Xu, J.; Letu, H.; Zhang, K.; Li, D.; Zhou, J.; Fan, W. Haze optical properties from long-term ground-based remote sensing over Beijing and Xuzhou, China. Remote Sens. 2018, 10, 518. [Google Scholar] [CrossRef] [Green Version]
- Pace, G.; Sarra, A.D.; Meloni, D.; Piacentino, S.; Chamard, P. Aerosol optical properties at Lampedusa (Central Mediterranean). 1. Influence of transport and identification of different aerosol types. Atmos. Chem. Phys. 2006, 6, 697–713. [Google Scholar] [CrossRef] [Green Version]
- Kaskaoutis, D.G.; Badarinath, K.V.S.; Kumar Kharol, S.; Rani Sharma, A.; Kambezidis, H.D. Variations in the aerosol optical properties and types over the tropical urban site of Hyderabad, India. J. Geophys. Res. Atmos. 2009, 114, D22. [Google Scholar] [CrossRef]
- Kumar, K.R.; Sivakumar, V.; Reddy, R.R.; Gopal, K.R.; Adesina, A.J. Identification and classification of different aerosol types over a subtropical rural site in Mpumalanga, South Africa: Seasonal variations as retrieved from the AERONET Sunphotometer. Aerosol. Air Qual. Res. 2014, 14, 108–123. [Google Scholar] [CrossRef] [Green Version]
- Yuan, Y.; Shuai, Y.; Li, X.W.; Liu, B.; Tan, H.P. Using a new aerosol relative optical thickness concept to identify aerosol particle species. Atmos. Res. 2014, 150, 1–11. [Google Scholar] [CrossRef]
- Tian, P.; Zhang, L.; Cao, X.; Sun, N.; Mo, X.; Liang, J.; Wang, H. Enhanced bottom-of-the-atmosphere cooling and atmosphere heating efficiency by mixed-type aerosols: A classification based on aerosol nonsphericity. J. Atmos. Sci. 2018, 75, 113–124. [Google Scholar] [CrossRef]
- Gharibzadeh, M.; Alam, K.; Abedini, Y.; Bidokhti, A.A.; Masoumi, A. Monthly and seasonal variations of aerosol optical properties and direct radiative forcing over Zanjan, Iran. J. Atmos. Solar Terr. Phys. 2017, 164, 268–275. [Google Scholar] [CrossRef]
Spring | Summer | Autumn | Winter | Total | |
---|---|---|---|---|---|
Sites | Dalanzadgad (43.58° N, 104.412° E) | Ussuriysk (43.70° N, 132.16° E) | Present Study (126.63° E, 45.75° N) |
---|---|---|---|
Daily average value of AOD500 | 0.03–0.60 | 0.05–3.14 | 0.07–1.29 |
Daily average value of AE440–870 | 0.10–1.71 | 0.20–2.04 | 0.37–1.97 |
AOD500 for more than half of the days | <0.08 | <0.17 | <0.2 |
AE440–870 more than one-third of days | >1.10 | >1.60 | >1.5 |
AOD500 in spring | 0.03–0.60 | 0.05–3.14 | 0.3 ± 0.25 |
AOD500 in Summer | 0.04–0.39 | 0.05–1.37 | 0.24 ± 0.14 |
AOD500 in autumn | 0.03–0.24 | 0.06–0.61 | 0.20 ± 0.21 |
AOD500 in winter | 0.04–0.38 | 0.46 | 0.27 ± 0.18 |
AE440–870 in spring | 0.39–1.41 | 0.55–1.96 | 1.30 ± 0.36 |
AE440–870 in Summer | 0.36–1.69 | 0.20–2.04 | 1.47 ± 0.18 |
AE440–870 in autumn | 0.10–1.71 | 0.98–1.96 | 1.29 ± 0.25 |
AE440–870 in winter | 0.27–1.56 | 0.93 | 1.39 ± 0.22 |
Station | Study Period | TOA | SFC | ATM | Reference |
---|---|---|---|---|---|
Harbin | 01/2017–12/2017 | Present study | |||
Harbin | 09/2016–04/2017 | Mao et al., 2018 | |||
Anshan | 2009–2013 | — | Che et al., 2015 | ||
Fushun | 2009–2013 | — | Che et al., 2015 | ||
Tongyu | 03/2010–04/2014 | — | Wu et al., 2015 | ||
Taihu | 06/2008–05/2009 | Liu et al., 2012 | |||
Lanzhou | 2004–2007 | Gong et al., 2017 | |||
Nanjing | 09/2007–08/2008 | Kang et al., 2016 | |||
Beijing | 01/2013–12/2016 | Qin et al., 2018 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (https://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, J.; Shen, W.; Yuan, Y.; Dong, S. Optical Characteristics and Radiative Properties of Aerosols in Harbin, Heilongjiang Province during 2017. Atmosphere 2021, 12, 463. https://doi.org/10.3390/atmos12040463
Liu J, Shen W, Yuan Y, Dong S. Optical Characteristics and Radiative Properties of Aerosols in Harbin, Heilongjiang Province during 2017. Atmosphere. 2021; 12(4):463. https://doi.org/10.3390/atmos12040463
Chicago/Turabian StyleLiu, Jiemei, Wenxiang Shen, Yuan Yuan, and Shikui Dong. 2021. "Optical Characteristics and Radiative Properties of Aerosols in Harbin, Heilongjiang Province during 2017" Atmosphere 12, no. 4: 463. https://doi.org/10.3390/atmos12040463
APA StyleLiu, J., Shen, W., Yuan, Y., & Dong, S. (2021). Optical Characteristics and Radiative Properties of Aerosols in Harbin, Heilongjiang Province during 2017. Atmosphere, 12(4), 463. https://doi.org/10.3390/atmos12040463