Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China
Abstract
:1. Introduction
2. Methods and Materials
2.1. Sample Collection
2.2. Analytical Procedure
2.3. Quality Assurance and Quality Control
2.4. Methods of Source Apportionment
2.5. Toxic Potency Assessment of PAHs
3. Results and Discussion
3.1. Concentrations and Compositions of PAHs
3.2. Source Apportionment of PAHs in the Atmosphere
3.3. Toxic Potency of PAHs and Source Contribution
4. Conclusions
Author Contributions
Funding
Institutional Review Board Statement
Informed Consent Statement
Data Availability Statement
Conflicts of Interest
References
- Ma, W.-L.; Liu, L.-Y.; Tian, C.-G.; Qi, H.; Jia, H.-L.; Song, W.-W.; Li, Y.-F. Polycyclic aromatic hydrocarbons in Chinese surface soil: Occurrence and distribution. Environ. Sci. Pollut. Res. 2015, 22, 4190–4200. [Google Scholar] [CrossRef]
- Hong, W.-J.; Jia, H.; Ma, W.-L.; Sinha, R.K.; Moon, H.-B.; Nakata, H.; Minh, N.H.; Chi, K.H.; Li, W.-L.; Kannan, K.; et al. Distribution, Fate, Inhalation Exposure and Lung Cancer Risk of Atmospheric Polycyclic Aromatic Hydrocarbons in Some Asian Countries. Environ. Sci. Technol. 2016, 50, 7163–7174. [Google Scholar] [CrossRef]
- Ma, L.; Li, B.; Liu, Y.; Sun, X.; Fu, D.; Sun, S.; Thapa, S.; Geng, J.; Qi, H.; Zhang, A.; et al. Characterization, sources and risk assessment of PM2.5-bound polycyclic aromatic hydrocarbons (PAHs) and nitrated PAHs (NPAHs) in Harbin, a cold city in Northern China. J. Clean. Prod. 2020, 264, 121673. [Google Scholar] [CrossRef]
- Liu, J.; Xu, Y.; Li, J.; Liu, D.; Tian, C.; Chaemfa, C.; Zhang, G. The distribution and origin of PAHs over the Asian marginal seas, the Indian and the Pacific Oceans: Implications for outflows from Asia and Africa. J. Geophys. Res. Atmos. 2014. [Google Scholar] [CrossRef] [Green Version]
- Shen, H.; Huang, Y.; Wang, R.; Zhu, D.; Li, W.; Shen, G.; Wang, B.; Zhang, Y.; Chen, Y.; Lu, Y.; et al. Global atmospheric emissions of polycyclic aromatic hydrocarbons from 1960 to 2008 and future predictions. Environ. Sci. Technol. 2013, 47, 6415–6424. [Google Scholar] [CrossRef] [PubMed] [Green Version]
- Wang, X.; Zong, Z.; Tian, C.; Chen, Y.; Luo, C.; Li, J.; Zhang, G.; Luo, Y. Combining positive matrix factorization and radiocarbon measurements for source apportionment of PM2.5 from a national background site in North China. Sci. Rep. 2017, 7, 10648. [Google Scholar] [CrossRef] [Green Version]
- Zhang, J.W.; Zhao, J.; Cai, J.; Gao, S.T.; Li, J.; Zeng, X.Y.; Yu, Z.G. Spatial distribution and source apportionment of atmospheric polycyclic aromatic hydrocarbons in the Pearl River Delta, China. Atmos. Pollut. Res. 2018, 9, 887–893. [Google Scholar] [CrossRef]
- Zhang, L.; Zhang, T.; Dong, L.; Shi, S.; Zhou, L.; Huang, Y. Assessment of halogenated POPs and PAHs in three cities in the Yangtze River Delta using high-volume samplers. Sci. Total Environ. 2013, 454–455, 619–626. [Google Scholar] [CrossRef] [PubMed]
- Shen, R.; Liu, Z.; Chen, X.; Wang, Y.; Wang, L.; Liu, Y.; Li, X. Atmospheric levels, variations, sources and health risk of PM2.5-bound polycyclic aromatic hydrocarbons during winter over the North China Plain. Sci. Total Environ. 2019, 655, 581–590. [Google Scholar] [CrossRef]
- Sun, X.; Wang, K.; Li, B.; Zong, Z.; Shi, X.; Ma, L.; Fu, D.; Thapa, S.; Qi, H.; Tian, C. Exploring the cause of PM2.5 pollution episodes in a cold metropolis in China. J. Clean. Prod. 2020, 256, 120275. [Google Scholar] [CrossRef]
- Belis, C.A.; Karagulian, F.; Larsen, B.R.; Hopke, P.K. Critical review and meta-analysis of ambient particulate matter source apportionment using receptor models in Europe. Atmos. Environ. 2013, 69, 94–108. [Google Scholar] [CrossRef]
- Hopke, P.K. A review of receptor modeling methods for source apportionment. J. Air Waste Manag. Assoc. 2016, 66, 237–259. [Google Scholar] [CrossRef]
- Liu, H.; Tian, C.; Zong, Z.; Wang, X.; Li, J.; Zhang, G. Development and assessment of a receptor source apportionment model based on four nonnegative matrix factorization algorithms. Atmos. Environ. 2019, 197, 159–165. [Google Scholar] [CrossRef]
- Wang, Y.; Zhang, Y. Nonnegative matrix factorization: A comprehensive review. IEEE Trans. Knowl. Data Eng. 2013, 25, 1336–1353. [Google Scholar] [CrossRef]
- Xue, X.; You, Y.; Wu, J.; Han, B.; Bai, Z.; Tang, N.; Zhang, L. Exposure measurement, risk assessment and source identification for exposure of traffic assistants to particle-bound PAHs in Tianjin, China. J. Environ. Sci. 2014, 26, 448–457. [Google Scholar] [CrossRef]
- Wang, X.; Zong, Z.; Tian, C.; Chen, Y.; Luo, C.; Tang, J.; Li, J.; Zhang, G. Assessing on toxic potency of PM2.5-bound polycyclic aromatic hydrocarbons at a national atmospheric background site in North China. Sci. Total Environ. 2018, 612, 330–338. [Google Scholar] [CrossRef]
- Shoeib, M.; Harner, T. Characterization and Comparison of Three Passive Air Samplers for Persistent Organic Pollutants. Environ. Sci. Technol. 2002, 36, 4142–4151. [Google Scholar] [CrossRef]
- Zhang, G.; Chakraborty, P.; Li, J.; Sampathkumar, P.; Balasubramanian, T.; Kathiresan, K.; Takahashi, S.; Subramanian, A.; Tanabe, S.; Jones, K.C. Passive atmospheric sampling of organochlorine pesticides, polychlorinated biphenyls, and polybrominated diphenyl ethers in urban, rural, and wetland sites along the coastal length of India. Environ. Sci. Technol. 2008, 42, 8218–8223. [Google Scholar] [CrossRef]
- Xu, Y.; Zhang, Y.-L.; Li, J.; Gioia, R.; Zhang, G.; Li, X.-D.; Spiro, B.; Bhatia, R.S.; Jones, K.C. The spatial distribution and potential sources of polycyclic aromatic hydrocarbons (PAHs) over the Asian marginal seas and the Indian and Atlantic Oceans. J. Geophys. Res. 2012, 117, D07302. [Google Scholar] [CrossRef]
- Motelay-Massei, A.; Harner, T.; Shoeib, M.; Diamond, M.; Stern, G.; Rosenberg, B. Using passive air samplers to assess urban-rural trends for persistent organic pollutants and polycyclic aromatic hydrocarbons. 2. Seasonal trends for PAHs, PCBs, and organochlorine pesticides. Environ. Sci. Technol. 2005, 39, 5763–5773. [Google Scholar] [CrossRef]
- Wang, X.; Liu, S.; Zhao, J.; Zuo, Q.; Liu, W.; Li, B.; Tao, S. Deposition flux of aerosol particles and 15 polycyclic aromatic hydrocarbons in the North China Plain. Environ. Toxicol. Chem. 2014, 33, 753–760. [Google Scholar] [CrossRef]
- Zhang, Y.; Deng, S.; Liu, Y.; Shen, G.; Li, X.; Cao, J.; Wang, X.; Reid, B.; Tao, S. A passive air sampler for characterizing the vertical concentration profile of gaseous phase polycyclic aromatic hydrocarbons in near soil surface air. Environ. Pollut. 2011, 159, 694–699. [Google Scholar] [CrossRef]
- Norris, G.; Duvall, R. EPA Positive Matrix Factorization (PMF) 5.0 Fundamentals and User Guide; EPA/600/R-14/108; U.S. Environmental Protection Agency National Exposure Research Laboratory: Washington, DC, USA, 2014; pp. 1–124.
- Paatero, P.; Eberly, S.; Brown, S.G.; Norris, G.A. Methods for estimating uncertainty in factor analytic solutions. Atmos. Meas. Tech. 2014, 7, 781–797. [Google Scholar] [CrossRef] [Green Version]
- Lee, D.D.; Seung, H.S. Learning the parts of objects by non-negative matrix factorization. Nature 1999, 401, 788–791. [Google Scholar] [CrossRef]
- Guan, N.; Tao, D.; Luo, Z.; Yuan, B. NeNMF: An optimal gradient method for nonnegative matrix factorization. IEEE Trans. Signal Process. 2012, 60, 2882–2898. [Google Scholar] [CrossRef]
- Li, L.; Zhang, Y.-J. FastNMF: Highly efficient monotonic fixed-point nonnegative matrix factorization algorithm with good applicability. J. Electron. Imaging 2009, 18, 033004. [Google Scholar] [CrossRef]
- Abd El Aziz, M.; Khidr, W. Nonnegative matrix factorization based on projected hybrid conjugate gradient algorithm. Signal Image Video Process. 2015, 9, 1825–1831. [Google Scholar] [CrossRef]
- Nisbet, I.C.T.; LaGoy, P.K. Toxic equivalency factors (TEFs) for polycyclic aromatic hydrocarbons (PAHs). Regul. Toxicol. Pharm. 1992, 16, 290–300. [Google Scholar] [CrossRef]
- Ma, W.-L.; Li, Y.-F.; Sun, D.-Z.; Qi, H.; Liu, L.-Y.; Zhang, Z.; Tian, C.-G.; Shen, J.-M. Gaseous polycyclic aromatic hydrocarbons in Harbin air. Environ. Sci. 2009, 30, 3167–3172. [Google Scholar]
- Chen, J.; Liao, J.; Wei, C. Coking wastewater treatment plant as a sources of polycyclic aromatic hydrocarbons (PAHs) in sediments and ecological risk assessment. Sci. Rep. 2020, 10, 7833. [Google Scholar] [CrossRef] [PubMed]
- Zhang, W.; Wei, C.; Feng, C.; Yan, B.; Li, N.; Peng, P.; Fu, J. Coking wastewater treatment plant as a source of polycyclic aromatic hydrocarbons (PAHs) to the atmosphere and health-risk assessment for workers. Sci. Total Environ. 2012, 432, 396–403. [Google Scholar] [CrossRef]
- Jia, T.; Guo, W.; Liu, W.; Xing, Y.; Lei, R.; Wu, X.; Sun, S. Spatial distribution of polycyclic aromatic hydrocarbons in the water–sediment system near chemical industry parks in the Yangtze River Delta, China. Sci. Total Environ. 2021, 754, 142176. [Google Scholar] [CrossRef]
- Xu, H.; Ta, W.; Yang, L.; Feng, R.; He, K.; Shen, Z.; Meng, Z.; Zhang, N.; Li, Y.; Zhang, Y.; et al. Characterizations of PM2.5-bound organic compounds and associated potential cancer risks on cooking emissions from dominated types of commercial restaurants in northwestern China. Chemosphere 2020, 261, 127758. [Google Scholar] [CrossRef]
- Huo, C.-Y.; Sun, Y.; Liu, L.-Y.; Sverko, E.; Li, Y.-F.; Li, W.-L.; Ma, W.-L.; Zhang, Z.-F.; Song, W.-W. Assessment of human indoor exposure to PAHs during the heating and non-heating season: Role of window films as passive air samplers. Sci. Total Environ. 2019, 659, 293–301. [Google Scholar] [CrossRef]
- Cui, S.; Song, Z.; Zhang, L.; Zhang, Z.; Hough, R.; Fu, Q.; An, L.; Shen, Z.; Li, Y.-F.; Liu, D.; et al. Polycyclic aromatic hydrocarbons in fresh snow in the city of Harbin in northeast China. Atmos. Environ. 2019, 215, 116915. [Google Scholar] [CrossRef]
- Ma, W.-L.; Li, Y.-F.; Sun, D.-Z.; Qi, H.; Liu, L.-Y. Polycyclic aromatic hydrocarbons in air of Harbin City. Chin. Environ. Sci. 2010, 30, 145–149. [Google Scholar]
- National Bureau of Statistics, China Statistical Yearbook 2017; China Statistics Press: Beijing, China, 2018. Available online: http://www.stats.gov.cn/tjsj/ndsj/2018/indexch.htm (accessed on 7 February 2021).
- Cheng, Y.; Yu, Q.-q.; Liu, J.-m.; Du, Z.-Y.; Liang, L.-l.; Geng, G.-n.; Zheng, B.; Ma, W.-l.; Qi, H.; Zhang, Q.; et al. Strong biomass burning contribution to ambient aerosol during heating season in a megacity in Northeast China: Effectiveness of agricultural fire bans? Sci. Total Environ. 2021, 754, 142144. [Google Scholar] [CrossRef] [PubMed]
- Cesari, D.; Amato, F.; Pandolfi, M.; Alastuey, A.; Querol, X.; Contini, D. An inter-comparison of PM10 source apportionment using PCA and PMF receptor models in three European sites. Environ. Sci. Pollut. Res. 2016, 23, 15133–15148. [Google Scholar] [CrossRef] [PubMed]
- Xu, S.; Liu, W.; Tao, S. Emission of polycyclic aromatic hydrocarbons in China. Environ. Sci. Technol. 2006, 40, 702–708. [Google Scholar] [CrossRef] [PubMed]
- Wang, J.; Geng, N.B.; Xu, Y.F.; Zhang, W.D.; Tang, X.Y.; Zhang, R.Q. PAHs in PM2.5 in Zhengzhou: Concentration, carcinogenic risk analysis, and source apportionment. Environ. Monit. Assess. 2014, 186, 7461–7473. [Google Scholar] [CrossRef] [PubMed]
- Wang, Y.; Xu, Y.; Chen, Y.; Tian, C.; Feng, Y.; Chen, T.; Li, J.; Zhang, G. Influence of different types of coals and stoves on the emissions of parent and oxygenated PAHs from residential coal combustion in China. Environ. Pollut. 2016, 212, 1–8. [Google Scholar] [CrossRef] [PubMed]
- Yunker, M.B.; Macdonald, R.W.; Vingarzan, R.; Mitchell, R.H.; Goyette, D.; Sylvestre, S. PAHs in the Fraser River basin: A critical appraisal of PAH ratios as indicators of PAH source and composition. Org. Geochem. 2002, 33, 489–515. [Google Scholar] [CrossRef]
- Katsoyiannis, A.; Sweetman, A.J.; Jones, K.C. PAH molecular diagnostic ratios applied to atmospheric sources: A critical evaluation using two decades of source inventory and air concentration data from the UK. Environ. Sci. Technol. 2011, 45, 8897–8906. [Google Scholar] [CrossRef] [PubMed]
- Liu, W.; Xu, Y.; Zhao, Y.; Liu, Q.; Yu, S.; Liu, Y.; Wang, X.; Liu, Y.; Tao, S.; Liu, W. Occurrence, source, and risk assessment of atmospheric parent polycyclic aromatic hydrocarbons in the coastal cities of the Bohai and Yellow Seas, China. Environ. Pollut. 2019, 254, 113046. [Google Scholar] [CrossRef]
- Tobiszewski, M.; Namieśnik, J. PAH diagnostic ratios for the identification of pollution emission sources. Environ. Pollut. 2012, 162, 110–119. [Google Scholar] [CrossRef] [PubMed]
- Xie, M.; Hannigan, M.P.; Barsanti, K.C. Gas/particle partitioning of n-alkanes, PAHs and oxygenated PAHs in urban Denver. Atmos. Environ. 2014, 95, 355–362. [Google Scholar] [CrossRef]
Industrial Zone | Business District | Residential Area | School | Wastewater Treatment Plant | Suburb | Average | |
---|---|---|---|---|---|---|---|
Acy | 1.56 ± 1.87 | 2.04 ± 4.09 | 1.98 ± 2.79 | 0.87 ± 1.12 | 1.98 ± 3.03 | 0.77 ± 1.14 | 1.53 ± 0.53 |
Ace | 1.61 ± 1.98 | 1.64 ± 2.60 | 1.85 ± 2.60 | 0.83 ± 1.21 | 1.40 ± 1.69 | 0.57 ± 1.07 | 1.32 ± 0.46 |
Flu | 11.8 ± 14.3 | 10.6 ± 16.6 | 10.8 ± 13.5 | 5.55 ± 6.84 | 9.13 ± 11.2 | 4.05 ± 7.08 | 8.67 ± 2.88 |
Phe | 45.2 ± 37.7 | 33.0 ± 29.4 | 33.9 ± 31.9 | 22.2 ± 19.2 | 45.0 ± 32.4 | 20.9 ± 21.4 | 33.4 ± 9.62 |
Ant | 3.69 ± 5.70 | 3.11 ± 5.94 | 2.81 ± 3.77 | 1.04 ± 1.31 | 2.42 ± 2.99 | 0.59 ± 0.79 | 2.28 ± 1.11 |
Fla | 12.9 ± 8.47 | 10.4 ± 9.55 | 8.05 ± 5.66 | 6.43 ± 4.23 | 21.1 ± 24.4 | 6.21 ± 5.84 | 10.9 ± 5.13 |
Pyr | 8.52 ± 5.99 | 6.54 ± 6.66 | 5.05 ± 3.91 | 3.63 ± 2.32 | 12.3 ± 12.1 | 3.45 ± 2.84 | 6.58 ± 3.08 |
BaA | 0.90 ± 0.71 | 0.59 ± 0.77 | 0.53 ± 0.47 | 0.26 ± 0.20 | 0.61 ± 0.40 | 0.19 ± 0.15 | 0.52 ± 0.23 |
Chr | 2.08 ± 1.08 | 1.40 ± 1.11 | 1.16 ± 0.67 | 0.80 ± 0.50 | 1.96 ± 1.51 | 0.77 ± 0.66 | 1.36 ± 0.51 |
BbF | 1.18 ± 0.75 | 0.82 ± 0.91 | 0.68 ± 0.51 | 0.40 ± 0.27 | 0.81 ± 0.50 | 0.46 ± 0.52 | 0.73 ± 0.26 |
BkF | 0.34 ± 0.22 | 0.24 ± 0.25 | 0.20 ± 0.16 | 0.11 ± 0.08 | 0.25 ± 0.16 | 0.12 ± 0.13 | 0.21 ± 0.08 |
BaP | 0.37 ± 0.37 | 0.26 ± 0.36 | 0.21 ± 0.22 | 0.10 ± 0.10 | 0.26 ± 0.30 | 0.06 ± 0.05 | 0.21 ± 0.10 |
IDP | 0.46 ± 0.38 | 0.31 ± 0.35 | 0.26 ± 0.23 | 0.15 ± 0.13 | 0.32 ± 0.30 | 0.17 ± 0.18 | 0.28 ± 0.10 |
DahA | 0.10 ± 0.07 | 0.06 ± 0.07 | 0.06 ± 0.05 | 0.03 ± 0.02 | 0.05 ± 0.03 | 0.03 ± 0.02 | 0.05 ± 0.02 |
Bghip | 0.43 ± 0.34 | 0.28 ± 0.32 | 0.27 ± 0.27 | 0.14 ± 0.11 | 0.55 ± 0.76 | 0.14 ± 0.14 | 0.30 ± 0.15 |
3-ring | 63.9 ± 60.7 | 50.4 ± 57.0 | 51.4 ± 54.0 | 30.5 ± 29.1 | 59.9 ± 47.8 | 26.9 ± 29.9 | 47.2 ± 13.9 |
4-ring | 24.4 ± 16.1 | 18.9 ± 18.0 | 14.8 ± 10.7 | 11.1 ± 7.13 | 35.9 ± 37.9 | 10.6 ± 9.44 | 19.3 ± 8.80 |
5-ring | 1.99 ± 1.39 | 1.38 ± 1.58 | 1.14 ± 0.93 | 0.65 ± 0.46 | 1.37 ± 0.94 | 0.67 ± 0.71 | 1.20 ± 0.46 |
6-ring | 0.89 ± 0.72 | 0.60 ± 0.67 | 0.53 ± 0.50 | 0.29 ± 0.24 | 0.87 ± 1.06 | 0.30 ± 0.32 | 0.58 ± 0.24 |
Total | 91.2 ± 76.2 | 71.4 ± 75.6 | 67.9 ± 65.6 | 42.6 ± 34.7 | 98.1 ± 76.7 | 38.5 ± 38.0 | 68.3 ± 22.3 |
ΣBaPeq | 0.89 ± 0.77 | 0.63 ± 0.78 | 0.53 ± 0.51 | 0.28 ± 0.23 | 0.65 ± 0.54 | 0.23 ± 0.20 | 0.54 ± 0.23 |
Summer | Autumn | Winter | Spring | |
---|---|---|---|---|
Acy | 0.14 ± 0.09 | 0.59 ± 0.29 | 5.16 ± 1.64 | 0.43 ± 0.23 |
Ace | 0.21 ± 0.15 | 0.45 ± 0.20 | 4.49 ± 1.16 | 0.34 ± 0.10 |
Flu | 1.24 ± 0.88 | 2.35 ± 0.90 | 28.1 ± 6.43 | 4.52 ± 1.70 |
Phe | 12.7 ± 11.1 | 16.4 ± 7.98 | 75.8 ± 16.6 | 32.6 ± 5.79 |
Ant | 0.35 ± 0.31 | 0.78 ± 0.37 | 7.36 ± 3.46 | 0.76 ± 0.19 |
Fla | 7.51 ± 8.68 | 11.1 ± 8.62 | 15.4 ± 4.52 | 9.85 ± 2.21 |
Pyr | 3.96 ± 4.28 | 6.37 ± 4.28 | 10.9 ± 3.74 | 5.38 ± 1.16 |
BaA | 0.24 ± 0.15 | 0.36 ± 0.21 | 1.03 ± 0.48 | 0.46 ± 0.14 |
Chr | 1.04 ± 0.73 | 1.35 ± 0.66 | 1.70 ± 0.70 | 1.37 ± 0.31 |
BbF | 0.41 ± 0.22 | 0.40 ± 0.20 | 1.26 ± 0.54 | 0.85 ± 0.23 |
BkF | 0.11 ± 0.06 | 0.11 ± 0.06 | 0.37 ± 0.16 | 0.26 ± 0.07 |
BaP | 0.08 ± 0.04 | 0.09 ± 0.05 | 0.54 ± 0.26 | 0.15 ± 0.06 |
IDP | 0.12 ± 0.06 | 0.10 ± 0.04 | 0.58 ± 0.24 | 0.33 ± 0.10 |
DahA | 0.03 ± 0.01 | 0.03 ± 0.01 | 0.11 ± 0.05 | 0.06 ± 0.02 |
Bghip | 0.11 ± 0.06 | 0.10 ± 0.04 | 0.71 ± 0.43 | 0.30 ± 0.10 |
3-rings | 14.6 ± 12.3 | 20.6 ± 9.56 | 120.9 ± 27.8 | 38.7 ± 6.57 |
4-rings | 12.7 ± 13.7 | 19.1 ± 13.6 | 29.0 ± 9.22 | 17.1 ± 3.72 |
5-rings | 0.63 ± 0.32 | 0.62 ± 0.31 | 2.27 ± 1.00 | 1.31 ± 0.35 |
6-rings | 0.23 ± 0.11 | 0.19 ± 0.08 | 1.29 ± 0.62 | 0.63 ± 0.19 |
Total | 28.2 ± 26.2 | 40.6 ± 23.1 | 153.5 ± 38.1 | 57.7 ± 10.3 |
ΣBaPeq | 0.23 ± 0.12 | 0.27 ± 0.13 | 1.20 ± 0.52 | 0.47 ± 0.13 |
Q | Q(Robust) | |
---|---|---|
MU | 922.96 | 901.55 |
OG | 922.96 | 901.55 |
FP | 922.96 | 901.55 |
CG | 922.96 | 901.55 |
PMF | 933.83 | 930.88 |
Molecular Ratios | Petrogenic Sources | Petroleum Combustion | Coal/Biomass Combustion |
---|---|---|---|
Ant/(Ant + Phe) | <0.1 | >0.1 | >0.1 |
Fla/(Fla + Pyr) | <0.4 | 0.4–0.5 | >0.5 |
BaA/(BaA + Chr) | <0.2 | 0.2–0.35 | >0.35 |
IDP/(IDP + BghiP) | <0.2 | 0.2–0.5 | >0.5 |
Publisher’s Note: MDPI stays neutral with regard to jurisdictional claims in published maps and institutional affiliations. |
© 2021 by the authors. Licensee MDPI, Basel, Switzerland. This article is an open access article distributed under the terms and conditions of the Creative Commons Attribution (CC BY) license (http://creativecommons.org/licenses/by/4.0/).
Share and Cite
Liu, H.; Li, B.; Qi, H.; Ma, L.; Xu, J.; Wang, M.; Ma, W.; Tian, C. Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China. Atmosphere 2021, 12, 297. https://doi.org/10.3390/atmos12030297
Liu H, Li B, Qi H, Ma L, Xu J, Wang M, Ma W, Tian C. Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China. Atmosphere. 2021; 12(3):297. https://doi.org/10.3390/atmos12030297
Chicago/Turabian StyleLiu, Haitao, Bo Li, Hong Qi, Lixin Ma, Jianzhong Xu, Minling Wang, Wenwen Ma, and Chongguo Tian. 2021. "Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China" Atmosphere 12, no. 3: 297. https://doi.org/10.3390/atmos12030297
APA StyleLiu, H., Li, B., Qi, H., Ma, L., Xu, J., Wang, M., Ma, W., & Tian, C. (2021). Source Apportionment and Toxic Potency of Polycyclic Aromatic Hydrocarbons (PAHs) in the Air of Harbin, a Cold City in Northern China. Atmosphere, 12(3), 297. https://doi.org/10.3390/atmos12030297